
Comparative Efficiency and Implementation Issues of
Itinerant Agent Language on Different Agent Platforms

Abdullah Almuhaideb1,3 Kutila Gunasekera1 Arkady Zaslavsky1 Seng Wai Loke2
1
Faculty of Information Technology

Monash University
Melbourne, Australia

2
Department of Computer Science and Computer Engineering

La Trobe University
Melbourne, Australia

aalmuhaidob@kfu.edu.sa, {kutila.gunasekera, arkady.zaslavsky}@infotech.monash.edu.au,
S.Loke@latrobe.edu.au

ABSTRACT
An itinerary scripting language provides a tool to accelerate the

development of mobile agent applications. The main purpose of

this paper is to discuss research challenges of itinerant mobile

agents (ITAG) and describe the migration of ITAG to JADE, the

popular FIPA-compliant agent platform. The migration process

was based on two major steps: the migration of agent

communications and agent tasks (behaviors). The ITAG Engine

has been extracted to provide an easy migration to any new agent

platform. In our experiments the results show that the current

ITAGIII (using JADE) has better performance and stability

compared to ITAGII (using Grasshopper). The paper discusses

the experiments and comparisons in detail.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence

– Multiagent systems; C.2.4 [Computer-Communication

Networks]: Distributed Systems

General Terms
Algorithms, Measurement, Performance, Design, Languages,

Experimentation, Theory

Keywords
Itinerary Language, Itinerary Agent (ITAG), JADE, Grasshopper,

Agent Platforms, Scalability, Applications, Agent

Communication, Agent, Messaging

1. INTRODUCTION
Mobile agents are defined as a future framework of distributed

electronic services and are used in data mining, electronic

commerce and network management [1]. All stages of a business

transaction, such as negotiating and signing contracts can be

carried out using mobile agents. A mobile agent can be described

as a software entity which is capable of moving from one location

to another and continuing its execution. ITAG (ITinerary AGents)

is a scripting language and prototype system previously developed

by us [2, 3, 4]. An itinerary scripting language (for mobile agents)

aims to make developing agent applications easier. It allows the

developer to script together mobile agents from existing

components by specifying what the agent should do, at which

location and when.

The purpose of this paper is to extend the Itinerary Language and

port the current ITAG system which runs on Grasshopper agent

platform to the popular FIPA (Foundation for Intelligent Physical

Agents)-compliant agent platform JADE [5]. We also developed a

visual tool which allows users to easily create and execute their

own test cases and demonstration environments for ITAG.

There are a number of reasons behind choosing JADE. One of

these reasons is that JADE is open-source, continuously

maintained and well supported [6]. Since ITAG aims to support

mobile devices, the existence of JADE-LEAP (Lightweight

Extensible Agent Platform) [6], a lightweight release of JADE for

mobile devices, was also a consideration.

The rest of this paper is organized as follows. In section 2, an

overview of the ITAG system will be given. Section 3 will discuss

the migration process from Grasshopper to JADE. In section 4, we

will present new features of ITAGIII. In section 5, the

experiments and result will be evaluated. Some related work will

be discussed in section 6. Finally, conclusions and future work of

this paper will be presented in section 7.

2. ITAG SYSTEM OVERVIEW

2.1 ITAG: The Itinerary Scripting Language
ITAG is an executable implementation of the itinerary algebra in

the form of a scripting language described in [2, 4]. We first

briefly outline the algebra below. We assume an object-oriented

model of agents, where an agent is an instance of a class given

roughly by:

mobile agent = state + action + mobility

We assume that agents have the capability of cloning, which is,

creating copies of themselves with the same state and code. Also,

agents can communicate to synchronize their movements, and the

agent's code can execute at each location it visits.

3Abdullah Almuhaideb is a staff member at the Department of Network

Computing, King Faisal University in AlAhsa, Saudi Arabia. This work

was done while he was visiting Monash University.

Jung, Michel, Ricci & Petta (eds.): AT2AI-6 Working Notes, From Agent

Theory to Agent Implementation, 6th Int. Workshop,May 13, 2008,

AAMAS 2008, Estoril, Portugal, EU.

Not for citation

Let A, O and P be finite sets of agent, action and place symbols,

respectively. Itineraries (denoted by I) are now formed as follows

representing the null activity, atomic activity, parallel, sequential,

nondeterministic, conditional nondeterministic behavior, and have

the following syntax:

I :: 0 | Aa
p | (I ||⊕ I) | (I . I) | (I | I) | (I : П I)

where AA∈ , Oa ∈ , Pp ∈ , ⊕ is an operator which, after a

parallel operation causing cloning, recombines an agent with its

clone to form one agent, and П is an operator which returns a

boolean value to model conditional behavior. We specify how ⊕

and П are used but we assume that their definitions are

application-specific.

We assume that all agents in an itinerary have a starting place

(which we call the agent's home) denoted by Ph ∈ . Given an

itinerary I, we shall use agents(I) to refer to the agents mentioned

in I.

Agent Movement (Aa
p). A

a
p means “move agent A to place p and

perform action a”. This expression is the smallest granularity

mobility abstraction. It involves one agent, one move and one

action at the destination.

Parallel Composition (“||”). Two expressions composed by “||” are

executed in parallel. For instance, (Aa
p || B

b
q) means that agents A

and B are executed concurrently. Parallelism may imply cloning

of agents. For instance, to execute the expression (Aa
p || Ab

q),

where p ≠ q, cloning is needed since agent A has to perform

actions at both p and q in parallel. When cloning has occurred,

decloning is needed, i.e. clones are combined using an associated

application specific operator (denoted by ⊕ as mentioned earlier).

Sequential Composition (“.”). Two expressions composed by the

operator “.” are executed sequentially. For example, (Aa
p . Ab

q)

means move agent A to place p to perform action a and then to

place q to perform action b.

Independent Nondeterminism (“|”). An itinerary of the form (I | J)

is used to express nondeterministic choice: “I don't care which but

perform one of I or J”. If agents(I) ∩ agents(J) ≠ 0, no clones are

assumed, i.e. I and J are treated independently. It is an

implementation decision whether to perform both actions

concurrently terminating when either one succeeds (which might

involve cloning but clones are destroyed once a result is

obtained), or trying one at a time (in which case order may

matter).

Conditional Nondeterminism (“:”). Independent nondeterminism

does not specify any dependencies between its alternatives. We

introduce conditional nondeterminism which is similar to short-

circuit evaluation of boolean expressions in programming

languages such as C. An itinerary of the form I : П J means first

perform I , and then evaluate П on the state of the agents. If П

evaluates to true, then the itinerary is completed. If П evaluates to

false, the itinerary J is performed (i.e., in effect, we perform I . J).

The semantics of conditional nondeterminism depends on some

given П.

2.2 Itinerary Language Examples and

Implementation
We give an example using agents to vote. An agent V, starting

from home, carries a list of candidates from host to host visiting

each voting party. Once each party has voted, the agent goes home

to tabulate results (assuming that home provides the resources and

details about how to tabulate), and then announces the results to

all voters in parallel (and cloning itself as it does so). Assuming

four voters (at places p, q, r, and s), vote is an action accepting a

vote (e.g., by displaying a graphical user interface), tabulate is the

action of tabulating results, and announce is the action of

displaying results; the mobility behavior is as follows:

V
vote

p
 .

V
vote

q
 .
 V

vote
r

 .
 V

vote
s

 .
 V

tabulate
h

 .(
 V

announce
p

||

V
announce

q
||
 V

announce
r

||
 V

announce
s
)

Implementation: To allow the programmer to type the itinerary

expressions into the computer, we provide an ASCII syntax and a

Controlled English (limited natural language) version. The

translations are given in Table 1. When the operators are used

without op, we assume a pre-specified system default one, i.e.

using op is an optional clause. Aa
p . A

b
q. A

c
r can be described as

follows: “(move A to a do p) then (move A to b do q) then (move

A to c do r)." Apart from the above basic elements of the

language, we define the following five phrases that map down to

more complex expressions:

1. A
a

h is translated as return A do a.

2. A
a

p . A
a

q.A
a

r. A
a

s is translated as

tour A to p, q, r, s in series do a.

3. A
a

p || A
a

q || A
a

r || A
a

s is translated as

tour A to p, q, r, s in parallel do a.

4. A
a

p | A
a

q | A
a

r | A
a

s is translated as

tour A to one of p, q, r, s do a.

5. A
a

p : A
a

q : A
a

r : A
a

s is translated as

tour A if needed to p, q, r, s do a.

Table 1. Translations

Symbol ASCII Controlled English

 Aa
p [A,p,a] Move A to P do a

 . . Then

:П :{op} Otherwise using op

 | | Or

 ||⊕ #{op} In parallel with using op

Similarly, we also have Aa
p :П Aa

q : П Aa
r : П Aa

s translated as

tour A if needed to p, q, r, s do a using П.

Using the phrases, the voting itinerary can be concisely described

as follows:

(tour V to p,q,r,s in series do vote)

 then (return V do tabulate)

 then (tour V to p,q,r,s in parallel do
announce)

ITAG implementation is in the Java programming language,

previously built on top of Grasshopper (ITAG and ITAGII) and

now JADE (ITAGIII) agent toolkits. In all implementations, the

user first types in itinerary scripts into an applet (running in a

Web browser). Then, the itinerary script is parsed into a binary

tree representation and executed by an interpreter. Execution is as

follows: the interpreter translates the actions specified in the script

into commands which are then forwarded to agents which are

initially at a place (the home). These agents on receiving the

commands are then launched into the agent network to do their

work. Figure 1 shows an example of the ITAG demo user

interface. We explain the ITAG system architecture in the next

section.

Figure 1. An example of ITAG demo user interface in action

2.3 ITAG System Architecture
The ITAG system is broken down into a number of

distinguishable modules that handle different functionalities of the

system. Figure 2 below illustrates these different modules and

their interactions with each other.

Users of the ITAG system interact with it through the User

Interface. The UI allows users to configure an itinerary using a

limited natural language format. The UI also contains a separate

area which shows the results of itinerary execution (Agent status

and Output panes in Figure1). The UI itself does not understand

the ITAG language and cannot execute an itinerary. A user can

configure an itinerary in the limited natural language format in the

User Interface and have it converted to an itinerary language

statement. This conversion is done by the ITAG Parser module.

When the user requests the itinerary to be executed, the itinerary

is passed on to the Controller Agent for execution.

ITAG Parser is part of the ITAG API and is independent of the

underlying agent platform. It parses a user configured itinerary

from its user-friendly limited natural language format to the

itinerary language format (ASCII format).

Figure 2. System Architecture

The ITAG Engine is the core of ITAG and contains the logic of

the Itinerary Language. It also forms part of the ITAG API and is

independent of the underlying agent platform. The engine

provides the necessary components to execute an itinerary and the

Controller Agent uses the ITAG Engine to understand and execute

an itinerary. The Engine takes as input an itinerary. As output the

engine makes method calls to carry out the tasks specified in the

itinerary.

The ITAG system consists of two types of agents: Controller

Agents and Worker Agents. Worker Agents are created and

controlled by Controller Agents. During the execution of an

itinerary Worker Agents maybe created and destroyed afterwards.

A system may consist of multiple Controller Agents. These two

types of agents are described below.

The Controller Agent gets as input an itinerary from the User

Interface. Its main functionality is executing this itinerary by

driving worker agents accordingly with the help of the ITAG

Engine. The Controller Agent is the controller and executor of an

itinerary.

The Worker Agents carry out application-specific useful

functionality requested by users from the ITAG system. A worker

is a simple agent controlled by another (controller) agent. It only

responds to commands from the controller agent and is not aware

of itineraries or the ITAG language. The worker agent is able to

do the following tasks when requested by its controller:

• move or copy itself to different locations

• execute a method (by downloading its class files from a

pre-defined location)

• store any results it gathers by executing various methods

in its “pocket”

• combine “pockets” with other worker agents

• destroy itself

The web server provides a place to host the User Interface (e.g.

applet) and the user defined method and operator classes.

Methods are application specific code to be executed by ITAG

agents (i.e. worker agents) which are represented as actions in the

itinerary language. They contain useful functionality written by

application developers and added to the system dynamically.

Operators (represented by ⊕ and П in the itinerary language) can

also be dynamically added to the web server for use by the ITAG

system.

3. MIGRATION PROCESS FROM

GRASSHOPPER TO JADE PLATFORM
The migration of ITAG from Grasshopper to JADE consists of

two main stages. The first is porting the agent communication and

the second, agent tasks (behaviors). The communication and

behavior mechanisms of JADE lead to ease of development and

better performance in comparison to Grasshopper.

3.1 Agent Communication
Agent communication which is a fundamental feature of an agent

platform describes how two agents converse. In Grasshopper, the

communication between agents is through their proxies. But in

JADE, agents communicate through message passing as

asynchronous agent messages [5]. Proxies do not exist in JADE;

instead, an agent searches the current location of its target by

querying the AMS (Agent Management Service) according to the

FIPA specifications. The Agent Management Service gives JADE

a better communication hub compared to Grasshopper. The region

server in Grasshopper could become a bottleneck, as it must

update every proxy just before being used [7]. Based on our

implementation we found that JADE has an excellent control over

cloned agents in terms of keeping references of these agents and

destroying them at the end of their tasks whereas in Grasshopper

some cloned agents could be left without being killed after task

completion.

3.2 Agent Tasks (Behaviors)
In JADE, the agent is allowed to have just a single Java thread

per-agent [5]. Inside this thread multiple behaviors can be added

using a round-robin non-preemptive scheduling policy [8].

Grasshopper makes use of the more complicated alternative of

implementing a multi-threaded system to handle, for example,

socket connections and communication processes. The JADE

behaviors improve agent performance as the switching between

behaviors is far faster than switching between Java threads.

Another advantage of the JADE behaviors against multi-threaded

systems is its elimination of all synchronization issues between

parallel behaviors accessing the same resources since all

behaviors are executed by the same Java thread which result in a

performance enhancement as well. [5, 8, 9]

4. ITAGIII NEW FEATURES
With ITAGIII, an improved GUI has been introduced to provide

simplicity to the system. The first screen that a user encounters in

the demo system lists the existing applications in the server that

an ITAG agent is capable of executing. An application, in ITAG,

is a collection of methods that collaborate together to provide a

complete service to the user. Also an intermediate page has been

introduced as an option in case an application may require further

user input to run this application. For example, an intermediate

page has been introduced in “make an appointment” application

in order to collect an appointment preferred times of the user.

Also in ITAGIII, the problem of nondeterministic activity (“|”)

implementation has been fully solved and full control of the clone

agents has been achieved. The implemented semantics carry out

all activities in parallel and select the first one to finish (others are

discarded). The complexity of killing other agents and threads was

the reason for non-implementation in the previous version of

ITAG under Grasshopper. (i.e. The original agent could be killed

under nondeterministic activity but with the clone agents left

alive).

Another feature of ITAGIII is the ITAG Engine which has been

extracted from ITAGII version. The ITAG Engine provides for

easy development of an ITAG system on any new mobile agent

platform. The Controller Agent for the new agent platform has to

implement an interface itagIII.engine.AgentDealings

which contains methods representing the output commands of the

ITAG Engine. We give the AgentDealings interface below

followed by figure 3 which shows the ITAG Engine and its

relation to other components.

public interface AgentDealings {
 public boolean go(String agentId,

 String tempLocation) throws Throwable;
 public boolean exec(String agentId,
 String method, String
 dynamicpath) throws Throwable;
 public String cloning(String agentId)
 throws Exception;
 public void combine(String source,
 String destination, int ativityNum)
 throws Exception;
 public Vector getAgentPocket(
 String source)throws Exception;
 public void showAgentPocket(
 String agentId)throws Exception;
 public void removeAgent(String agentName)
 throws Exception;
 public String yourLocation(
 String agentName) throws Exception;
 public boolean existAgent(
 String agentId);
 public boolean existLocation(
 String agentId);

}

 Figure 3. ITAG Engine and its relation to other ITAG system

components

5. COMPARISON OF ITAGII AND ITAGIII

PERFORMANCES
The aim of this experiment is to compare the performance of the

two versions of ITAG system on JADE (ITAGIII) and

Grasshopper (ITAGII) agent platforms.

5.1 Experiment Set-up

5.1.1 Test Scenarios
The basic test scenario is explained in this section. First, we give

below an itinerary encapsulating all the test cases.

move WorkerAgent to Home doing clearResults
then tour WorkerAgent to [one of]
Location-1, Location-2, Location-3 ...

 [in series|in parallel|if needed]
 doing getInfo

then move WorkerAgent to Home doing
 showResults

 The controller agent communicates first with the worker agent to

return home and run the clearResults method, which will clear the

worker agent’s pocket. Then the controller agent communicates

with the worker agent to move to Location-1, Location-2 and

Location-3 running the getInfo method. getInfo method will

retrieve the date and time of the location of the agent as well as

the machine name and IP address. Also getInfo method returns

true or false randomly in order to test nondeterministic and

conditional nondeterministic activities. Finally the controller

agent communicates with the worker agent to return home running

the showResults method. This method will display the agent’s

pocket in the user interface as well as writing the result to a log

file.

Different test scenarios are realized through change of parameters,

which are explained below.

• Number of destinations - The most likely scenario for an

agent is to travel to a number of locations. Therefore, in our

test we examine the worker agent in a different number of

locations starting with two and increasing up to six

locations.

• Type of activities – The four types of ITAG activities to be

tested are: sequential, parallel, nondeterministic and

conditional nondeterministic.

5.1.2 Test Environment and Measurement
The experiment is repeated for every activity, with the locations

on the same host and on different hosts. Due to limitations with

ITAGII (under Grasshopper), the system was not tested for

nondeterministic activity, and also the system could not be tested

with the different locations on different hosts. The testing

environments for a number of locations located on different hosts

were four PC’s: one hosted the Controller Agent and the JADE

main container and the other three hosted the six locations with

two containers for every host. Table 2 shows hardware and

software configuration of the test PC's. All PC's were connected to

a 100Mbps network. To gain accurate results, each experiment

was repeated ten times and the average taken. The performance

was measured for every activity based on the number of locations

and the average time taken to complete the test.

Table 2. Hardware and Software of the testing environment

Processor Intel Pentium 4 CPU 3.00 GHz

Memory 1GB (SDRAM)

Operating System
Windows XP Professional

Version 2002 Service Pack 2

Java version Sun JDK 1.5.0_12

JADE version 3.5

Grasshopper version 2.2.4

5.2 Results
This section presents the results based on ITAG system activities.

Each activity section will contain two figures. The first one will

compare ITAGII and ITAGIII by plotting the average time versus

number of locations in the itinerary. All locations for this test are

on the same host. The second figure shows a similar graph but

compares ITAGIII (JADE based agents) with the locations

physically distributed on four different hosts and on the same

host.

5.2.1 Sequential Activity
The result of this experiment shows that ITAGIII has a better

performance than ITAGII. As figure 4 illustrates, an ITAGIII

agent was consistently able to finish its itinerary task faster than

ITAGII. The performance of ITAGII degrades rapidly with

increasing number of locations compared to ITAGIII. For

example, with four locations we see ITAGIII is seven times faster

and with six locations it is six times faster.

Sequential Activ ity

0
10

20
30

40
50

60
70

80

2 3 4 5 6

Locations

T
im

e
(s

e
c

o
n

d
s

)

ITAGIII (JADE) ITAGII (Grasshopper)

Figure 4. Sequential activity, comparing ITAG system with

JADE and Grasshopper based agents on the same host

When comparing ITAGIII under JADE based agents with

different number of locations on the same host and on different

hosts (Figure 5) we see no significant variation in the time taken.

Since the experiments were conducted on a high-speed LAN with

low traffic, communication overheads were negligible. This

indicates that ITAGIII does not incur an extra overhead when the

agents communicate and move between multiple machines. As

future work we intend to conduct experiments in heterogeneous

wide-area network environments using agents with larger

workloads.

Sequential Activity

4

5

6

7

8

9

10

11

12

13

2 3 4 5 6

Locations

T
im

e
(s

e
c
o

n
d

s
)

JADE same host JADE different hosts

Figure 5. Sequential activity, comparing ITAG system with

JADE based agents on the same host and on different hosts

5.2.2 Parallel Activity
The parallel activity scenario test in figure 6 shows that, as in the

sequential activity, that ITAGIII has a better performance than

ITAGII (six times faster on 3 locations). However, on ITAGII the

agent was unable to continue its tasks with more than 3 locations

to be visited in parallel. This is due to ITAGII’s issues with

managing multiple clones which was previously explained. Also

this indicates that ITAGIII is more stable, scalable and efficient

than ITAGII.

Parallel Activity

0

5

10

15

20

25

30

2 3 4 5 6

Locations

T
im

e
(s

e
c

o
n

d
s

)

ITAGIII (JADE) ITAGII (Grasshopper)

Figure 6. Parallel activity, comparing ITAG system with

JADE and Grasshopper based agents on the same host

Figure 7 shows that ITAGIII has the same performance with the

locations on the same host and on different hosts, which support

the same conclusion from the sequential activity.

Parallel Activity

2

3

4

5

6

7

8

9

10

11

2 3 4 5 6

Locations

T
im

e
(s

e
c
o

n
d

s
)

JADE same host JADE different hosts

Figure 7. Parallel activity, comparing ITAG system with

JADE based agents on the same host and on different hosts

5.2.3 Nondeterministic Activity
In this test, the worker agent clones itself based on the number of

locations and sends them to the different locations to execute the

tasks. When one of the agents finishes its task that agent’s result is

taken and all the clones destroyed. We can see from figure 8 that

ITAGIII on different machines has a slightly better and stable

performance than on the same machine. We believe this behaviour

could be due to the distribution of the computation load between

multiple CPUs with a fast network connecting them. A similar

argument is put forward in [8].

Nondeterministic Activity

0

0.5

1

1.5

2

2.5

3

2 3 4 5 6

Locations

T
im

e
(s

e
c
o

n
d

s
)

JADE same host JADE different hosts

Figure 8. Nondeterministic activity, comparing ITAG system

with JADE based agents on the same host and on different

hosts

5.2.4 Conditional Nondeterministic Activity
When running this test multiple times the number of locations the

worker agent travels to (in sequence) fluctuates based on the result

returned by the getInfo method. For example, the agent travels

from one location to another as long as the getInfo method returns

false, otherwise the agent will skip the rest of locations and return

home to show the result. In the graphs below we show the average

times taken to complete the test. Figure 9 supports the previous

test results and shows that ITAGIII has better performance than

ITAGII.

Conditional Nondeterministic Activity

0

5

10

15

20

25

30

35

2 3 4 5 6

Locations

T
im

e
(s

e
c
o

n
d

s
)

ITAGIII (JADE) ITAGII (Grasshopper)

Figure 9. Conditional Nondeterministic activity, comparing

ITAG system with JADE and Grasshopper based agents on

the same host

In previous tests we saw that the performance of JADE on same

host versus multiple hosts is similar, but in figure 10 we do not

see this relationship because of the random behavior explained

above.

Conditional Nondeterministic Activity

2
3
4
5
6
7
8
9

10
11
12
13

2 3 4 5 6

Locations

T
im

e
(s

e
c
o

n
d

s
)

JADE same host JADEdifferent hosts

Figure 10. Conditional Nondeterministic activity, comparing

ITAG system with JADE based agents on the same host and on

different hosts

6. RELATED WORK
Iٌn this section we first briefly look at several itinerary languages

found in literature. Lu and Xu defined a mobile agent itinerary

language (MAIL) [10] which has been implemented as a feature

in the Naplet [11] mobile agent system. Their work however is

limited to a single mobile agent platform (Naplet) while ITAG can

be easily implemented on any mobile agent platform by using the

ITAG Engine. Performance figures for MAIL based agents were

also not available for comparison with ITAG.

Rech et al. in [12, 13, 14] describe a flexible itinerary that can be

adjusted at run-time to ensure greater fault tolerance. In ITAG

with the activity A
a

l the agents have some flexibility by specifying

the place of execution as a result of some function “l”. Also, a

branch of ITAG [15] with the concept of “Goals” introduces a

degree of flexibility to the itinerary.

Finally, we consider the Itinerary Graph [16] system. In their

work the migration strategies which are used to perform the

mobile agent’s actions are sequential, parallel and selective. The

selective strategy is similar to ITAG’s Conditional Non-

determinism. The lack of a strategy equivalent to Independent

Non-determinism is a limitation in Itinerary Graphs.

In terms of platform comparisons, we find that previous work

such as [7, 8, 9] give general discussions of the performance and

efficiency of JADE and Grasshopper. However, in this paper we

compare them in a more specific manner through the

implementation of ITAG and its four behaviours, namely

sequential, parallel, Independent Non-determinism and

Conditional Non-determinism.

7. CONCLUSIONS AND FUTUREWORK
This paper describes an implementation of ITAG (ITinerary

AGent) system based on the theory of itinerary scripting language

which aims to minimize the effort in mobile agent applications

development. A description of the itinerary language has been

given with examples as well as descriptions of the implementation

of ITAG on JADE. The ITAG Engine is the fundamental

component of the ITAG implementation which can be ported to

any mobile agent platform. The experimental results demonstrate

an evidently better performance of the new ITAGIII under JADE

platform compared with ITAGII under Grasshopper. Under the

tested situations, there were no noticeable differences in

performance between JADE based agents on the same host and on

different hosts. In our future work, we aim to extend the itinerary

language with more behaviors as well as enhancing the ITAG

demo system with more applications.

8. ACKNOWLEDGMENTS
The work reported in this paper has been funded in part by the

Australian Research Council’s Research Network on Enterprise

Information Infrastructure through the Taskforce on Context-

Aware Computing (EII-CAC). We also acknowledge the travel

assistance by King Faisal University, AlAhsa, Saudi Arabia.

9. REFERENCES
[1] Esparza, O., Fernandez, M. and Soriano, M. 2003. Protecting

mobile agents by using traceability techniques. In

Proceedings of the International Conference on Information

Technology: Research and Education 2003, 264-268.

[2] Loke, S.W., Schmidt, H. and Zaslavsky, A. 1999.

Programming the Mobility Behaviour of Agents by

Composing Itineraries. In The 5th Asian Computer Science

Conference (ASIAN'99), (Phuket, Thailand), Springer-

Verlag, 214–226.

[3] Loke, S.W., Zaslavsky, A., Yap, B. and Fonseka, J.R. 2001.

An Itinerary Scripting Language for Mobile Agents in

Enterprise Applications. In Proceedings of the 2nd Asia-

Pacific Conference on Intelligent Agent Technology (IAT

2001), (Maebashi, Japan), 124-128.

[4] Yap, B. and Fonseka, J.R. 2001. ITAG: Itinerary Agent,

DSTC, Monash University, 29.

[5] Bellifemine, F.L., Caire, G. and Greenwood, D. 2007.

Developing multi-agent systems with JADE. John Wiley,

Chichester, England ; Hoboken, NJ.

[6] Leszczyna, R. 2004. Evaluation of agent platforms,

Technical report, European Commission, Joint Research

Centre,Institute for the Protection and security of the Citizen,

Ispra, Italy

[7] Trillo, R., Ilarri, S. and Mena, E. 2007. Comparison and

Performance Evaluation of Mobile Agent Platforms. In Third

International Conference on Autonomic and Autonomous

Systems (ICAS'07), IEEE Computer Society, 41.

[8] Burbeck, K., Garpe, D. and Nadjm-Tehrani, S. 2004. Scale-

up and performance studies of three agent platforms. In IEEE

International Conference on Performance, Computing, and

Communications, 857-863.

[9] Kusek, K.J.G.J.M. 2006. A Performance Analysis of Multi-

Agent Systems. International Transactions on Systems

Science and Applications (ITSSA), 1, No. 4. 335 – 341.

[10] Lu, S. and Xu, C. 2005. A formal framework for agent

itinerary specification, security reasoning and logic analysis.

In 25th IEEE International Conference on Distributed

Computing Systems Workshops. 580-586.

[11] Cheng-Zhong, X. 2002. Naplet: a flexible mobile agent

framework for network-centric applications. In Proceedings

International, IPDPS 2002, Parallel and Distributed

Processing Symposium, 219-226.

[12] Rech, L., Montez, C. and de Oliveira, R. 2006. A New

Model for the Itinerary Definition of Real-Time Imprecise

Mobile Agents. In 2006 IEEE International Conference on

Information Reuse and Integration, 123-126.

[13] Rech, L., Montez, C. and de Oliveira, R. 2006. A Clone-Pair

Approach for the Determination of the Itinerary of Imprecise

Mobile Agents with Firm Deadlines. In ETFA '06. IEEE

Conference on Emerging Technologies and Factory

Automation, 9-15.

[14] Rech, L., de Oliveira, R.S. and Montez, C. 2005. Dynamic

determination of the itinerary of mobile agents with timing

constraints. In IEEE/WIC/ACM International Conference on

Intelligent Agent Technology, 45-50.

[15] Toan, P., Loke, S.W. and Harland, J. 2003. Adding

flexibility using structured goals: the case of itinerant mobile

agents. In IEEE/WIC International Conference on Intelligent

Agent Technology. IAT 2003, 562-565.

[16] Bo, Y., Da-You, L., Kun, Y. and Wang, S.-S. 2003.

Strategically migrating agents in itinerary graph. In

International Conference on Machine Learning and

Cybernetics, 1871-1876.

