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ABSTRACT 
An itinerary scripting language provides a tool to accelerate the 

development of mobile agent applications. The main purpose of 

this paper is to discuss research challenges of itinerant mobile 

agents (ITAG) and describe the migration of ITAG to JADE, the 

popular FIPA-compliant agent platform. The migration process 

was based on two major steps: the migration of agent 

communications and agent tasks (behaviors). The ITAG Engine 

has been extracted to provide an easy migration to any new agent 

platform. In our experiments the results show that the current 

ITAGIII (using JADE) has better performance and stability 

compared to ITAGII (using Grasshopper).  The paper discusses 

the experiments and comparisons in detail. 

Categories and Subject Descriptors 
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence 

– Multiagent systems; C.2.4 [Computer-Communication 

Networks]: Distributed Systems 

General Terms 
Algorithms, Measurement, Performance, Design, Languages, 

Experimentation, Theory 

Keywords 
Itinerary Language, Itinerary Agent (ITAG), JADE, Grasshopper, 

Agent Platforms, Scalability, Applications, Agent 

Communication, Agent, Messaging 

1. INTRODUCTION 
Mobile agents are defined as a future framework of distributed 

electronic services and are used in data mining, electronic 

commerce and network management [1]. All stages of a business 

transaction, such as negotiating and signing contracts can be 

carried out using mobile agents. A mobile agent can be described 

as a software entity which is capable of moving from one location 

to another and continuing its execution. ITAG (ITinerary AGents) 

is a scripting language and prototype system previously developed 

by us [2, 3, 4]. An itinerary scripting language (for mobile agents) 

aims to make developing agent applications easier. It allows the 

developer to script together mobile agents from existing 

components by specifying what the agent should do, at which 

location and when.  

The purpose of this paper is to extend the Itinerary Language and 

port the current ITAG system which runs on Grasshopper agent 

platform to the popular FIPA (Foundation for Intelligent Physical 

Agents)-compliant agent platform JADE [5]. We also developed a 

visual tool which allows users to easily create and execute their 

own test cases and demonstration environments for ITAG.  

There are a number of reasons behind choosing JADE. One of 

these reasons is that JADE is open-source, continuously 

maintained and well supported [6]. Since ITAG aims to support 

mobile devices, the existence of JADE-LEAP (Lightweight 

Extensible Agent Platform) [6], a lightweight release of JADE for 

mobile devices, was also a consideration. 

The rest of this paper is organized as follows. In section 2, an 

overview of the ITAG system will be given. Section 3 will discuss 

the migration process from Grasshopper to JADE. In section 4, we 

will present new features of ITAGIII. In section 5, the 

experiments and result will be evaluated. Some related work will 

be discussed in section 6. Finally, conclusions and future work of 

this paper will be presented in section 7. 

2. ITAG SYSTEM OVERVIEW 

2.1 ITAG: The Itinerary Scripting Language 
ITAG is an executable implementation of the itinerary algebra in 

the form of a scripting language described in [2, 4]. We first 

briefly outline the algebra below. We assume an object-oriented 

model of agents, where an agent is an instance of a class given 

roughly by:  

mobile agent = state + action + mobility 

We assume that agents have the capability of cloning, which is, 

creating copies of themselves with the same state and code. Also, 

agents can communicate to synchronize their movements, and the 

agent's code can execute at each location it visits.  
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Let A, O and P be finite sets of agent, action and place symbols, 

respectively. Itineraries (denoted by I) are now formed as follows 

representing the null activity, atomic activity, parallel, sequential, 

nondeterministic, conditional nondeterministic behavior, and have 

the following syntax:  

I :: 0 | Aa
p  | ( I ||⊕ I  ) | ( I . I )  | (I  | I ) | ( I : П I )   

where AA∈ , Oa ∈ , Pp ∈ , ⊕ is an operator which, after a 

parallel operation causing cloning, recombines an agent with its 

clone to form one agent, and П is an operator which returns a 

boolean value to model conditional behavior. We specify how ⊕ 

and П are used but we assume that their definitions are 

application-specific.  

We assume that all agents in an itinerary have a starting place 

(which we call the agent's home) denoted by Ph ∈ . Given an 

itinerary I, we shall use agents(I ) to refer to the agents mentioned 

in I.  

Agent Movement (Aa
p). A

a
p means “move agent A to place p and 

perform action a”. This expression is the smallest granularity 

mobility abstraction. It involves one agent, one move and one 

action at the destination.  

Parallel Composition (“||”). Two expressions composed by “||” are 

executed in parallel. For instance, (Aa
p || B

b
q) means that agents A 

and B are executed concurrently. Parallelism may imply cloning 

of agents. For instance, to execute the expression (Aa
p || Ab

q), 

where p ≠ q, cloning is needed since agent A has to perform 

actions at both p and q in parallel. When cloning has occurred, 

decloning is needed, i.e. clones are combined using an associated 

application specific operator (denoted by ⊕ as mentioned earlier).  

Sequential Composition (“.”). Two expressions composed by the 

operator “.” are executed sequentially. For example, (Aa
p . Ab

q) 

means move agent A to place p to perform action a and then to 

place q to perform action b.  

Independent Nondeterminism (“|”). An itinerary of the form (I | J) 

is used to express nondeterministic choice: “I don't care which but 

perform one of I or J”. If agents(I) ∩ agents(J) ≠ 0, no clones are 

assumed, i.e. I and J are treated independently. It is an 

implementation decision whether to perform both actions 

concurrently terminating when either one succeeds (which might 

involve cloning but clones are destroyed once a result is 

obtained), or trying one at a time (in which case order may 

matter).  

Conditional Nondeterminism (“:”). Independent nondeterminism 

does not specify any dependencies between its alternatives. We 

introduce conditional nondeterminism which is similar to short-

circuit evaluation of boolean expressions in programming 

languages such as C. An itinerary of the form I : П J means first 

perform I , and then evaluate П on the state of the agents. If П 

evaluates to true, then the itinerary is completed. If П evaluates to 

false, the itinerary J is performed (i.e., in effect, we perform I . J). 

The semantics of conditional nondeterminism depends on some 

given П.  

2.2 Itinerary Language Examples and 

Implementation 
We give an example using agents to vote. An agent V, starting 

from home, carries a list of candidates from host to host visiting 

each voting party. Once each party has voted, the agent goes home 

to tabulate results (assuming that home provides the resources and 

details about how to tabulate), and then announces the results to 

all voters in parallel (and cloning itself as it does so). Assuming 

four voters (at places p, q, r, and s), vote is an action accepting a 

vote (e.g., by displaying a graphical user interface), tabulate is the 

action of tabulating results, and announce is the action of 

displaying results; the mobility behavior is as follows:  

V 
vote

p 
 . 

V 
vote

q 
 .
 V 

vote
r 

 .
 V 

vote
s 

 .
 V 

tabulate
h 

 .(
 V 

announce
p 

||
  

V 
announce

q 
||
 V 

announce
r 

||
 V 

announce
s
) 

Implementation: To allow the programmer to type the itinerary 

expressions into the computer, we provide an ASCII syntax and a 

Controlled English (limited natural language) version. The 

translations are given in Table 1. When the operators are used 

without op, we assume a pre-specified system default one, i.e. 

using op is an optional clause. Aa
p . A

b
q. A

c
r  can be described as 

follows: “(move A to a do p) then (move A to b do q) then (move 

A to c do r)." Apart from the above basic elements of the 

language, we define the following five phrases that map down to 

more complex expressions:  

1. A
a

h is translated as return A do a.  

2. A
a

p . A
a

q.A
a

r. A
a

s  is translated as 

tour A to p, q, r, s in series do a.  

3. A
a

p || A
a

q || A
a

r || A
a

s  is translated as  

tour A to p, q, r, s in parallel do a.  

4. A
a

p | A
a

q | A
a

r | A
a

s  is translated as  

tour A to one of p, q, r, s do a.  

5. A
a

p : A
a

q : A
a

r : A
a

s  is translated as  

tour A if needed to p, q, r, s do a.  

Table 1. Translations 

Symbol ASCII Controlled English 

  Aa
p [A,p,a] Move A to P do a 

    .  . Then 

:П :{op} Otherwise using op 

    | | Or 

   ||⊕ #{op} In parallel with using op 

 

Similarly, we also have Aa
p :П Aa

q : П Aa
r : П Aa

s  translated as 

tour A if needed to p, q, r, s do a using П.  

Using the phrases, the voting itinerary can be concisely described 

as follows:  

(tour V to p,q,r,s in series do vote) 

 then (return V do tabulate) 



 then (tour V to p,q,r,s in parallel do 
announce)  

ITAG implementation is in the Java programming language, 

previously built on top of Grasshopper (ITAG and ITAGII) and 

now JADE (ITAGIII) agent toolkits. In all implementations, the 

user first types in itinerary scripts into an applet (running in a 

Web browser). Then, the itinerary script is parsed into a binary 

tree representation and executed by an interpreter. Execution is as 

follows: the interpreter translates the actions specified in the script 

into commands which are then forwarded to agents which are 

initially at a place (the home). These agents on receiving the 

commands are then launched into the agent network to do their 

work. Figure 1 shows an example of the ITAG demo user 

interface. We explain the ITAG system architecture in the next 

section. 

 
Figure 1. An example of ITAG demo user interface in action 

2.3 ITAG System Architecture 
The ITAG system is broken down into a number of 

distinguishable modules that handle different functionalities of the 

system. Figure 2 below illustrates these different modules and 

their interactions with each other. 

Users of the ITAG system interact with it through the User 

Interface. The UI allows users to configure an itinerary using a 

limited natural language format. The UI also contains a separate 

area which shows the results of itinerary execution (Agent status 

and Output panes in Figure1). The UI itself does not understand 

the ITAG language and cannot execute an itinerary. A user can 

configure an itinerary in the limited natural language format in the 

User Interface and have it converted to an itinerary language 

statement. This conversion is done by the ITAG Parser module. 

When the user requests the itinerary to be executed, the itinerary 

is passed on to the Controller Agent for execution. 

ITAG Parser is part of the ITAG API and is independent of the 

underlying agent platform. It parses a user configured itinerary 

from its user-friendly limited natural language format to the 

itinerary language format (ASCII format).  

 
Figure 2.  System Architecture 

The ITAG Engine is the core of ITAG and contains the logic of 

the Itinerary Language. It also forms part of the ITAG API and is 

independent of the underlying agent platform. The engine 

provides the necessary components to execute an itinerary and the 

Controller Agent uses the ITAG Engine to understand and execute 

an itinerary. The Engine takes as input an itinerary. As output the 

engine makes method calls to carry out the tasks specified in the 

itinerary. 

The ITAG system consists of two types of agents: Controller 

Agents and Worker Agents. Worker Agents are created and 

controlled by Controller Agents. During the execution of an 

itinerary Worker Agents maybe created and destroyed afterwards. 

A system may consist of multiple Controller Agents. These two 

types of agents are described below. 

The Controller Agent gets as input an itinerary from the User 

Interface. Its main functionality is executing this itinerary by 

driving worker agents accordingly with the help of the ITAG 

Engine. The Controller Agent is the controller and executor of an 

itinerary. 

The Worker Agents carry out application-specific useful 

functionality requested by users from the ITAG system. A worker 

is a simple agent controlled by another (controller) agent. It only 

responds to commands from the controller agent and is not aware 

of itineraries or the ITAG language. The worker agent is able to 

do the following tasks when requested by its controller: 

• move or copy itself to different locations 

• execute a method (by downloading its class files from a 

pre-defined location) 

• store any results it gathers by executing various methods 

in its “pocket” 

• combine “pockets” with other worker agents 

• destroy itself 

The web server provides a place to host the User Interface (e.g. 

applet) and the user defined method and operator classes. 

Methods are application specific code to be executed by ITAG 

agents (i.e. worker agents) which are represented as actions in the 

itinerary language. They contain useful functionality written by 

application developers and added to the system dynamically. 



Operators (represented by ⊕ and П in the itinerary language) can 

also be dynamically added to the web server for use by the ITAG 

system. 

3. MIGRATION PROCESS FROM 

GRASSHOPPER TO JADE PLATFORM 
The migration of ITAG from Grasshopper to JADE consists of 

two main stages. The first is porting the agent communication and 

the second, agent tasks (behaviors). The communication and 

behavior mechanisms of JADE lead to ease of development and 

better performance in comparison to Grasshopper. 

3.1 Agent Communication 
Agent communication which is a fundamental feature of an agent 

platform describes how two agents converse. In Grasshopper, the 

communication between agents is through their proxies. But in 

JADE, agents communicate through message passing as 

asynchronous agent messages [5]. Proxies do not exist in JADE; 

instead, an agent searches the current location of its target by 

querying the AMS (Agent Management Service) according to the 

FIPA specifications. The Agent Management Service gives JADE 

a better communication hub compared to Grasshopper. The region 

server in Grasshopper could become a bottleneck, as it must 

update every proxy just before being used [7]. Based on our 

implementation we found that JADE has an excellent control over 

cloned agents in terms of keeping references of these agents and 

destroying them at the end of their tasks whereas in Grasshopper 

some cloned agents could be left without being killed after task 

completion. 

3.2 Agent Tasks (Behaviors) 
In JADE, the agent is allowed to have just a single Java thread 

per-agent [5]. Inside this thread multiple behaviors can be added 

using a round-robin non-preemptive scheduling policy [8]. 

Grasshopper makes use of the more complicated alternative of 

implementing a multi-threaded system to handle, for example, 

socket connections and communication processes. The JADE 

behaviors improve agent performance as the switching between 

behaviors is far faster than switching between Java threads. 

Another advantage of the JADE behaviors against multi-threaded 

systems is its elimination of all synchronization issues between 

parallel behaviors accessing the same resources since all 

behaviors are executed by the same Java thread which result in a 

performance enhancement as well. [5, 8, 9] 

4. ITAGIII NEW FEATURES 
With ITAGIII, an improved GUI has been introduced to provide 

simplicity to the system. The first screen that a user encounters in 

the demo system lists the existing applications in the server that 

an ITAG agent is capable of executing. An application, in ITAG, 

is a collection of methods that collaborate together to provide a 

complete service to the user. Also an intermediate page has been 

introduced as an option in case an application may require further 

user input to run this application. For example, an intermediate 

page has been introduced in “make an appointment” application 

in order to collect an appointment preferred times of the user.   

Also in ITAGIII, the problem of nondeterministic activity (“|”) 

implementation has been fully solved and full control of the clone 

agents has been achieved. The implemented semantics carry out 

all activities in parallel and select the first one to finish (others are 

discarded). The complexity of killing other agents and threads was 

the reason for non-implementation in the previous version of 

ITAG under Grasshopper. (i.e. The original agent could be killed 

under nondeterministic activity but with the clone agents left 

alive). 

Another feature of ITAGIII is the ITAG Engine which has been 

extracted from ITAGII version. The ITAG Engine provides for 

easy development of an ITAG system on any new mobile agent 

platform. The Controller Agent for the new agent platform has to 

implement an interface itagIII.engine.AgentDealings 

which contains methods representing the output commands of the 

ITAG Engine. We give the AgentDealings interface below 

followed by figure 3 which shows the ITAG Engine and its 

relation to other components.  

public interface AgentDealings { 
   public boolean go(String agentId, 

    String tempLocation) throws Throwable; 
 public boolean exec(String agentId, 
    String method, String  
    dynamicpath) throws Throwable; 
 public String cloning(String agentId)  
    throws Exception; 
 public void combine(String source,  
    String destination, int ativityNum) 
    throws Exception; 
 public Vector getAgentPocket( 
    String source)throws Exception; 
 public void showAgentPocket( 
    String agentId)throws Exception; 
 public void removeAgent(String agentName)  
    throws Exception; 
 public String yourLocation( 
    String agentName) throws Exception; 
 public boolean existAgent( 
   String agentId); 
 public boolean existLocation( 
   String agentId); 

}  

 Figure 3. ITAG Engine and its relation to other ITAG system 

components 

5. COMPARISON OF ITAGII AND ITAGIII 

PERFORMANCES 
The aim of this experiment is to compare the performance of the 

two versions of ITAG system on JADE (ITAGIII) and 

Grasshopper (ITAGII) agent platforms.  

5.1 Experiment Set-up 

5.1.1 Test Scenarios 
The basic test scenario is explained in this section. First, we give 

below an itinerary encapsulating all the test cases. 

move WorkerAgent to Home doing clearResults 
then tour WorkerAgent to [one of] 
Location-1, Location-2, Location-3 ... 



  [in series|in parallel|if needed] 
      doing getInfo 

then move WorkerAgent to Home doing   
    showResults 

 The controller agent communicates first with the worker agent to 

return home and run the clearResults method, which will clear the 

worker agent’s pocket. Then the controller agent communicates 

with the worker agent to move to Location-1, Location-2 and 

Location-3 running the getInfo method. getInfo method will 

retrieve the date and time of the location of the agent  as well as 

the machine name and IP address. Also getInfo method returns 

true or false randomly in order to test nondeterministic and 

conditional nondeterministic activities. Finally the controller 

agent communicates with the worker agent to return home running 

the showResults method. This method will display the agent’s 

pocket in the user interface as well as writing the result to a log 

file.  

Different test scenarios are realized through change of parameters, 

which are explained below. 

• Number of destinations - The most likely scenario for an 

agent is to travel to a number of locations. Therefore, in our 

test we examine the worker agent in a different number of 

locations starting with two and increasing up to six 

locations. 

• Type of activities – The four types of ITAG activities to be 

tested are: sequential, parallel, nondeterministic and 

conditional nondeterministic. 

5.1.2 Test Environment and Measurement 
The experiment is repeated for every activity, with the locations 

on the same host and on different hosts. Due to limitations with 

ITAGII (under Grasshopper), the system was not tested for 

nondeterministic activity, and also the system could not be tested 

with the different locations on different hosts. The testing 

environments for a number of locations located on different hosts 

were four PC’s: one hosted the Controller Agent and the JADE 

main container and the other three hosted the six locations with 

two containers for every host. Table 2 shows hardware and 

software configuration of the test PC's. All PC's were connected to 

a 100Mbps network. To gain accurate results, each experiment 

was repeated ten times and the average taken. The performance 

was measured for every activity based on the number of locations 

and the average time taken to complete the test.  

Table 2. Hardware and Software of the testing environment 

Processor Intel Pentium 4 CPU 3.00 GHz 

Memory 1GB (SDRAM) 

Operating System 
Windows XP Professional 

Version 2002 Service Pack 2 

Java version Sun JDK 1.5.0_12 

JADE version 3.5 

Grasshopper version 2.2.4 

 

5.2 Results 
This section presents the results based on ITAG system activities. 

Each activity section will contain two figures. The first one will 

compare ITAGII and ITAGIII by plotting the average time versus 

number of locations in the itinerary. All locations for this test are 

on the same host. The second figure shows a similar graph but 

compares ITAGIII (JADE based agents) with the locations 

physically distributed on four different hosts and on the same 

host. 

5.2.1 Sequential Activity 
The result of this experiment shows that ITAGIII has a better 

performance than ITAGII. As figure 4 illustrates, an ITAGIII 

agent was consistently able to finish its itinerary task faster than 

ITAGII. The performance of ITAGII degrades rapidly with 

increasing number of locations compared to ITAGIII. For 

example, with four locations we see ITAGIII is seven times faster 

and with six locations it is six times faster. 
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Figure 4. Sequential activity, comparing ITAG system with 

JADE and Grasshopper based agents on the same host 

When comparing ITAGIII under JADE based agents with 

different number of locations on the same host and on different 

hosts (Figure 5) we see no significant variation in the time taken. 

Since the experiments were conducted on a high-speed LAN with 

low traffic, communication overheads were negligible. This 

indicates that ITAGIII does not incur an extra overhead when the 

agents communicate and move between multiple machines. As 

future work we intend to conduct experiments in heterogeneous 

wide-area network environments using agents with larger 

workloads. 
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Figure 5. Sequential activity, comparing ITAG system with 

JADE based agents on the same host and on different hosts 

 



5.2.2 Parallel Activity 
The parallel activity scenario test in figure 6 shows that, as in the 

sequential activity, that ITAGIII has a better performance than 

ITAGII (six times faster on 3 locations). However, on ITAGII the 

agent was unable to continue its tasks with more than 3 locations 

to be visited in parallel. This is due to ITAGII’s issues with 

managing multiple clones which was previously explained. Also 

this indicates that ITAGIII is more stable, scalable and efficient 

than ITAGII. 
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Figure 6. Parallel activity, comparing ITAG system with 

JADE and Grasshopper based agents on the same host 

 
Figure 7 shows that ITAGIII has the same performance with the 

locations on the same host and on different hosts, which support 

the same conclusion from the sequential activity. 
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Figure 7. Parallel activity, comparing ITAG system with 

JADE based agents on the same host and on different hosts 

5.2.3 Nondeterministic Activity 
In this test, the worker agent clones itself based on the number of 

locations and sends them to the different locations to execute the 

tasks. When one of the agents finishes its task that agent’s result is 

taken and all the clones destroyed. We can see from figure 8 that 

ITAGIII on different machines has a slightly better and stable 

performance than on the same machine. We believe this behaviour 

could be due to the distribution of the computation load between 

multiple CPUs with a fast network connecting them. A similar 

argument is put forward in [8]. 
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Figure 8. Nondeterministic activity, comparing ITAG system 

with JADE based agents on the same host and on different 

hosts 

5.2.4 Conditional Nondeterministic Activity 
When running this test multiple times the number of locations the 

worker agent travels to (in sequence) fluctuates based on the result 

returned by the getInfo method. For example, the agent travels 

from one location to another as long as the getInfo method returns 

false, otherwise the agent will skip the rest of locations and return 

home to show the result. In the graphs below we show the average 

times taken to complete the test. Figure 9 supports the previous 

test results and shows that ITAGIII has better performance than 

ITAGII.  
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Figure 9. Conditional Nondeterministic activity, comparing 

ITAG system with JADE and Grasshopper based agents on 

the same host 

 

In previous tests we saw that the performance of JADE on same 

host versus multiple hosts is similar, but in figure 10 we do not 

see this relationship because of the random behavior explained 

above.  
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Figure 10. Conditional Nondeterministic activity, comparing 

ITAG system with JADE based agents on the same host and on 

different hosts 

 

6. RELATED WORK 
Iٌn this section we first briefly look at several itinerary languages 

found in literature. Lu and Xu defined a mobile agent itinerary 

language (MAIL) [10] which has been implemented as a feature 

in the Naplet [11] mobile agent system. Their work however is 

limited to a single mobile agent platform (Naplet) while ITAG can 

be easily implemented on any mobile agent platform by using the 

ITAG Engine. Performance figures for MAIL based agents were 

also not available for comparison with ITAG. 

Rech et al. in [12, 13, 14] describe a flexible itinerary that can be 

adjusted at run-time to ensure greater fault tolerance. In ITAG 

with the activity A
a

l the agents have some flexibility by specifying 

the place of execution as a result of some function “l”. Also, a 

branch of ITAG [15] with the concept of “Goals” introduces a 

degree of flexibility to the itinerary. 

Finally, we consider the Itinerary Graph [16] system. In their 

work the migration strategies which are used to perform the 

mobile agent’s actions are sequential, parallel and selective. The 

selective strategy is similar to ITAG’s Conditional Non-

determinism. The lack of a strategy equivalent to Independent 

Non-determinism is a limitation in Itinerary Graphs. 

In terms of platform comparisons, we find that previous work 

such as [7, 8, 9] give general discussions of the performance and 

efficiency of JADE and Grasshopper. However, in this paper we 

compare them in a more specific manner through the 

implementation of ITAG and its four behaviours, namely 

sequential, parallel, Independent Non-determinism and 

Conditional Non-determinism. 

7. CONCLUSIONS AND FUTUREWORK 
This paper describes an implementation of ITAG (ITinerary 

AGent) system based on the theory of itinerary scripting language 

which aims to minimize the effort in mobile agent applications 

development. A description of the itinerary language has been 

given with examples as well as descriptions of the implementation 

of ITAG on JADE. The ITAG Engine is the fundamental 

component of the ITAG implementation which can be ported to 

any mobile agent platform. The experimental results demonstrate 

an evidently better performance of the new ITAGIII under JADE 

platform compared with ITAGII under Grasshopper. Under the 

tested situations, there were no noticeable differences in 

performance between JADE based agents on the same host and on 

different hosts. In our future work, we aim to extend the itinerary 

language with more behaviors as well as enhancing the ITAG 

demo system with more applications. 

8. ACKNOWLEDGMENTS 
The work reported in this paper has been funded in part by the 

Australian Research Council’s Research Network on Enterprise 

Information Infrastructure through the Taskforce on Context-

Aware Computing (EII-CAC). We also acknowledge the travel 

assistance by King Faisal University, AlAhsa, Saudi Arabia. 

9. REFERENCES 
[1] Esparza, O., Fernandez, M. and Soriano, M. 2003. Protecting 

mobile agents by using traceability techniques. In 

Proceedings of the International Conference on Information 

Technology: Research and Education 2003, 264-268. 

[2] Loke, S.W., Schmidt, H. and Zaslavsky, A. 1999. 

Programming the Mobility Behaviour of Agents by 

Composing Itineraries. In The 5th Asian Computer Science 

Conference (ASIAN'99), (Phuket, Thailand), Springer-

Verlag, 214–226. 

[3] Loke, S.W., Zaslavsky, A., Yap, B. and Fonseka, J.R. 2001. 

An Itinerary Scripting Language for Mobile Agents in 

Enterprise Applications. In Proceedings of the 2nd Asia-

Pacific Conference on Intelligent Agent Technology (IAT 

2001), (Maebashi, Japan), 124-128. 

[4] Yap, B. and Fonseka, J.R. 2001. ITAG: Itinerary Agent, 

DSTC, Monash University, 29. 

[5] Bellifemine, F.L., Caire, G. and Greenwood, D. 2007. 

Developing multi-agent systems with JADE. John Wiley, 

Chichester, England ; Hoboken, NJ. 

[6] Leszczyna, R. 2004. Evaluation of agent platforms, 

Technical report, European Commission, Joint Research 

Centre,Institute for the Protection and security of the Citizen, 

Ispra, Italy 

[7] Trillo, R., Ilarri, S. and Mena, E. 2007. Comparison and 

Performance Evaluation of Mobile Agent Platforms. In Third 

International Conference on Autonomic and Autonomous 

Systems (ICAS'07), IEEE Computer Society, 41. 

[8] Burbeck, K., Garpe, D. and Nadjm-Tehrani, S. 2004. Scale-

up and performance studies of three agent platforms. In IEEE 

International Conference on Performance, Computing, and 

Communications, 857-863. 

[9] Kusek, K.J.G.J.M. 2006. A Performance Analysis of Multi-

Agent Systems. International Transactions on Systems 

Science and Applications (ITSSA), 1, No. 4. 335 – 341. 

[10] Lu, S. and Xu, C. 2005. A formal framework for agent 

itinerary specification, security reasoning and logic analysis. 

In 25th IEEE International Conference on Distributed 

Computing Systems Workshops. 580-586. 

[11] Cheng-Zhong, X. 2002. Naplet: a flexible mobile agent 

framework for network-centric applications. In Proceedings 

International, IPDPS 2002, Parallel and Distributed 

Processing Symposium, 219-226. 

[12] Rech, L., Montez, C. and de Oliveira, R. 2006. A New 

Model for the Itinerary Definition of Real-Time Imprecise 

Mobile Agents. In 2006 IEEE International Conference on 

Information Reuse and Integration, 123-126. 



[13] Rech, L., Montez, C. and de Oliveira, R. 2006. A Clone-Pair 

Approach for the Determination of the Itinerary of Imprecise 

Mobile Agents with Firm Deadlines. In ETFA '06. IEEE 

Conference on Emerging Technologies and Factory 

Automation, 9-15. 

[14] Rech, L., de Oliveira, R.S. and Montez, C. 2005. Dynamic 

determination of the itinerary of mobile agents with timing 

constraints. In IEEE/WIC/ACM International Conference on 

Intelligent Agent Technology, 45-50. 

[15] Toan, P., Loke, S.W. and Harland, J. 2003. Adding 

flexibility using structured goals: the case of itinerant mobile 

agents. In IEEE/WIC International Conference on Intelligent 

Agent Technology. IAT 2003, 562-565. 

[16] Bo, Y., Da-You, L., Kun, Y. and Wang, S.-S. 2003. 

Strategically migrating agents in itinerary graph. In 

International Conference on Machine Learning and 

Cybernetics, 1871-1876. 

 


