Seventh International Conference on
Autonomous Agents and Multiagent Systems

AAMAS 2008
http://gaips.inesc-id.pt/aamas2008/

Sixth International Workshop
AT2AI-6:

From Agent Theory to Agent Implementation
http://www.ofai.at /research/agents/conf/at2ai6/

May 13, 2008, Estoril, Portugal (EU)
Chairs: Bernhard Jung, Fabien Michel, Alessandro Ricci and Paolo Petta

Working Notes
OFAI Technical Report 2008-01

This volume is available as OFAI Technical Report 2008-01 at:
http://www.ofai.at /cgi-bin/tr-online?number+2008-01

AT2AI-6 Working Notes

AT2AIl-6: From Agent Theory to Agent Implementation

Preface

Bernhard Jung
Austrian Research Institute for Artificial
Intelligence (OFAl) *
Freyung 6/6
1010 Vienna, Austria, EU
bernhard.jung@ofai.at

Alessandro Ricci
DEIS, ALMA MATER STUDIORUM
Universita di Bologna
Via Venezia, 52
47023 Cesena, ltaly, EU

a.ricci@unibo.it

Since its first edition in 1998, the workshop series “From
Agent Theory to Agent Implementation” has been not only
documenting the progress in development and practical de-
ployment of agent-related technologies, but also managed
to contribute itself to the rapid development of this area.
AT2AI promotes actively the exchange of ideas and expe-
riences between researchers and practitioners working on
the whole range of theoretical and application-oriented is-
sues of agent technology. It encompasses both the micro
and macro aspects of agent-oriented design, and discusses
the relations of drawing boards and partly idealised mod-
els to modelling tools and frameworks to deployment, man-
agement and maintenance of implementations. The focus
of AT2AI lies in the discussion of direct experience reports
from all stakeholders, so as to remain well aware of the actual
target domains while using the language of current agent
terminology.

Of particular relevance to the workshop are reflections
that share insights about experiences and lessons learnt when
applying specific agent theories or architectures to applica-
tion problems, or, from the recipients’ end, when contract-
ing agent technologies to provide a service envisioned. Such
discussions and critiques may be aimed at conceptual vocab-
ulary, methods, methodologies, good and bad management
practices, and other tools and activities: anything that may
be of value for system designers to improve the mapping of
their agent-oriented toolbox to application needs, and for
other stakeholders to better understand the available poten-
tial and current challenges of agent-oriented systems.

Previous editions of AT2AI produced a first blueprint of a
layered ecology of technologies for the development of agent
based applications' This perspective considers middleware,

*The Austrian Research Institute for Artificial Intelligence is
supported by the Austrian Federal Ministry for Science and
Research and the Austrian Federal Ministry for Transport,
Innovation and Technology.

'Petta P., Miiller J.P.: Editorial: Engineering Agent Sys-
tems, Applied Artificial Intelligence, Best of “From Agent
Theory to Agent Implementation 37, 16(9-10):671-676,
2002.

Fabien Michel
CReSTIC / LERI
IUT de Reims-Chéalons-Charleville
Rue des crayéres BP 1035
51 687 Reims CEDEX 2, France, EU
fabien.michel@univ-reims.fr

Paolo Petta
Austrian Research Institute for Artificial
Intelligence (OFAI)
Freyung 6/6
1010 Vienna, Austria, EU
paolo.petta@ofai.at

tools, off-the shelf platforms, integrated development envi-
ronments (IDEs), and the like, with respect to their practi-
cal value to improve the application performance delivered.
The qualities of these support technologies can in turn be im-
proved and better exploited with the design of architectural
frameworks and the deployment of standards. The evolu-
tion of these in turn can be assisted by the development
of sound theoretical foundations and related formal meth-
ods. Methodologies are considered as working know-that
and know-how, capturing and maintaining the best prac-
tises how to identify, align, and process application- and
environment-derived (bottom-up) and support technology
related (top-down) requirements and options.

Subsequently, AT2AI compiled an updated inventory against
the maturing agent field: the status of logic-based approaches
was addressed in particular; but evidence was also provided
for how routine consideration of a multitude of perspectives
is finally starting to meet the requirements posed by seri-
ous application needs, including e.g. issues of privacy and
flexible access right management. The delineation of the
scope of our domain of analysis is in need of constant fur-
ther revising and updating, with recent developments being
exemplified by the integration of agent-based contributions
into the overall technology toolbox for distributed systems
and increasing autonomy of technical MAS at the structural
macro level.

This is the first edition of AT2AI being co-located with
AAMAS and thus held outside the nurturing environment of
the European Meeting on Cybernetics and Systems research
that has played a decisive contribution for the establishing
of this workshop series. We were all the more happy to see
how well this call for papers was received. With the help of
the serious and timely effort of the programme committee,
out of 35 submissions the twenty papers collected in these
working notes were selected. As explained in the call, the
evaluation criteria emphasised a contribution’s potential of
being of value for the broad community of agent-based tech-
nology researchers, developers, and users: be it in terms
of innovative perspectives, be it in terms of insights gained
with real-world deployments. As much of the precious lim-
ited time at the workshop as possible will be used for in-

AT2AI-6 Working Notes

teraction among the participants, setting out from topics
addressed in the accepted papers. The discussion slots will
involve authors of multiple papers, with these working notes
providing supporting background material. Due to this ap-
proach taken, it may well be the case (and we actually do
hope) that single papers are referred to at multiple times
during the working day.

AT2AI-6 entertains strong links to two other AAMAS
workshops: Agent Oriented Software Engineering (AOSE)
and Programming Multi-Agent Systems (ProMAS): Imme-
diately following AT2AI-6, there will be a joint evening ses-
sion of these three workshops.

Programme Committee

Ardissono, Liliana
Bauer, Bernhard
Bergenti, Federico
Boissier, Olivier
Bordini, Rafael
Coelho, Helder
Demazeau, Yves
Dastani, Mehdi
Dickinson, Ian

El Fallah Seghrouchni, Amal
Ferber, Jacques
Giorgini, Paolo
Gomez Sanz, Jorge J.
Gouaich, Abdelkader

We are also grateful to the following additional reviewers:

Amara, Nejla
Asnar, Yudistira
Bryl, Volha

Acknowledgements

We have to thank Jérg P. Miiller in at least twofold ways:
for co-initiating the AT2AI series, and for suggesting to us
to place a bid to organise AT2AI-6 with AAMAS 2008. Our
thanks go also to Robert Trappl, for supporting the birth
and development of the AT2AI workshop within EMCSR.
As Workshop Chair, Juan Antonio Rodriguez-Aguilar has
provided reliable support throughout the preparation pro-
cess, enduring all our special quirks and related enquiries.
And of course we also wish to thank the local organisers,
headed by Ana Paiva and Luis Antunes, for their substan-
tial efforts.

Gustavsson, Rune
Hanachi, Chihab
Holvoet, Tom

Hubner, Jomi Fred
Leite, Joao

Marinier III, Robert P.
Omicini, Andrea
Platon, Eric

van Riemsdijk, Birna
Schumacher, Michael Ignaz
Simonin, Olivier
Vizzari, Giuseppe
Weiss, Gerhard
Weyns, Danny

Crepin, Ludivine
Dalpiaz, Fabiano
Huget, Marc-Philippe

AT2AI-6 Working Notes

Table of Contents

Keeping Balance up Sisyphus Path: Thoughts on Bringing Innovation in BPM through Agent
Technology (Invited Talk)
Giovanni Rimassa

From a Generic MultiAgent Architecture to MultiAgent Information Retrieval Systems
Andrea Addis, Giuliano Armano and Eloisa Vargiu

Comparative Efficiency and Implementation Issues of Itinerant Agent Language on Different
Agent Platforms
Abdullah Almuhaideb, Kutila Gunasekera, Arkady Zaslavsky and Seng Loke

A Universal Criteria Catalog for Evaluation of Heterogeneous Agent Development Artifacts
Lars Braubach, Alexander Pokahr and Winfried Lamersdorf

Implementing reactive BDI agents with user-given constraints and objectives
Aniruddha Dasgqupta and Aditya Ghose

Modeling Multi-Agent Systems through Event-driven Lightweight DSC-based Agents
Giancarlo Fortino, Alfredo Garro, Samuele Mascillaro and Wilma Russo

An Executable Activity Theory Based Framework for Early Requirements Analysis
Rubén Fuentes-Ferndndez, Jorge Gomez-Sanz and Eva Ulldn

Issues for Organizational Multiagent Systems Development
Emilia Garcia, Estefania Argente and Adriana Giret

A Verification by Abstraction Framework for organizational Multi-Agent Systems
Nicolas Gaud, Vincent Hilaire, Stéphane Galland, Abderrafiaa Koukam and Massimo
Cossentino

MAMT: an environment for modeling and implementing mobile agents
Héla Hachicha, Adlen Loukil and Khaled Ghedira

Component based models and simulation experiments for multi-agent systems in James II
Jan Himmelspach, Mathias Rohl and Adelinde Uhrmacher

Agent Programming in Practise - Experiences with the JIAC IV Agent Framework
Benjamin Hirsch, Stefan Fricke, Olaf Kroll-Peters and Thomas Konnerth

Resource Coordination Deployment for Physical Agents
Bianca Innocenti, Beatriz Lépez Ibaniez and Joaquim Salvi Mas

Reactive agent mechanisms for scheduling manufacturing processes
Ask Just Jensen, Kasper Hallenborg and Yves Demazeau

An Agent Model for Collaborative Ubiquitous Environments
Marco Locatelli, Marco Loregian and Giuseppe Vizzari

Enhancing Multi-Agent Systems with Peer-to-Peer and Service-Oriented Technologies
Marco Mari, Agostino Poggi, Michele Tomaiuolo and Paola Turci

B

&

:

3
&
i
[]

=
-
4
n

RN

[109-115 |

II7=1231]

[120-13] |

ii

AT2AI-6 Working Notes

Interaction among agents that plan
Felipe Meneguzzi and Michael Luck

Implementing a Cognitive Model in Soar and ACT-R: A Comparison
Tigmen Muller, Annerieke Heuvelink and Fiemke Both

A Semantic Description For Agent Design Patterns
Luca Sabatucci, Massimo Cossentino and Salvatore Gaglio

Institutional Environments
Porfirio Silva, Rodrigo Ventura and Pedro Lima

Enhance Collaboration in Diabetic Healthcare for Children using Multi-agent Systems
Peng Zhang, Bengt Carlsson and Stefan J. Johansson

[15(-164 |

651721

iv

AT2AI-6: Rimassa G.: Keeping Balance up Sisyphus Path: Thoughts on Bringing Innovation in BPM through
Agent Technology (Invited Talk)

Keeping Balance up Sisyphus Path: Thoughts on Bringing
Innovation in BPM through Agent Technology

Giovanni Rimassa
Whitestein Technologies AG
Pestalozzistrasse, 24
CH-8032 Zurich
+41 44 256 5000

gri@whitestein.com

ABSTRACT

This talk presents and discusses an overall perspective on the
challenges, opportunities, and constraints faced by Whitestein
while trying to leverage Agent Technologies ideas and techniques
to bring substantial innovation to the Business Process
Management market through the novel approach of goal-oriented,
autonomic BPM.

Faithfully to the original spirit of the AT2AIl workshop series,
special care is devoted to highlight the interplay of matters
theoretical vs. practical, as well as business vs. technical, novel
vs. established, and other relevant dialectic pairs. Moreover, the
overall Whitestein activity in the area is placed in the context of
the conceptual framework proposed by the current edition of the
workshop.

As a concrete token that seeded most of the considerations, the
Living Systems® Autonomic Business Process Management
(LS/ABPM) product is used. Customer communication, business
partnerships, product conception, product development all
presented valuable lessons to be learned, some of which are
reported here as a hopefully stimulating contribution to the
discussion.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
— Intelligent agents Multiagent system. H.4.1 [Information
Systems Application]: Office Automation - Workflow
management.

General Terms
Management, Design, Economics, Standardization, Languages.

Keywords
Business Process Management, Technology Transfer, Business
Innovation, Theory Application.

Jung, Michel, Ricci & Petta (eds.): AT2AI-6 Working Notes, From
Agent Theory to Agent Implementation, 6th Int. Workshop,
May 13, 2008, AAMAS 2008, Estoril, Portugal, EU.

Not for citation

TALK OUTLINE

A company that focuses on being an innovative technology
provider while keeping a sustainable business model faces many
challenges that can be expressed as keeping proper equilibrium
between opposite excesses while continuously struggling to push
new approaches through their technology life cycle curve (and
being ultimately prepared to render its own technology obsolete
in the long term through the introduction of even further
advancements).

The first part of the talk considers the concrete case of Whitestein,
whose long lasting connection to Agent Technology need be
considered in the ever-changing business landscape. From the
company mission to the target markets of choice, to the product
portfolio and business partnerships, all these factors contribute to
depict a strategy seeking a delicate and multi-faceted balance to
deploy successful business through technological innovation.

The second part of the talk zooms in on the latest addition to
Whitestein’s product offering. LS/ABPM is an integrated
environment to support goal-oriented autonomic BPM, based on
Agent Technology. The characteristics of the Business Process
Management technical challenges, the market structure as well as
the strengths and weaknesses of the currently leading commercial
offers, all suggest ideas on the product scope, features, and most
importantly the differentiating and most innovative product traits,
and what is the role of Agent Technology in enabling and
supporting all the above.

Finally, a series of thoughts is presented, which were inspired by
the activity around LS/ABPM and the Whitestein Autonomic
Technology Platform (the overall software infrastructure that also
includes the LS/TS agent middleware) at large. These thoughts,
partly lessons learned, partly empirically motivated conjectures,
and partly wishes for the future, will be submitted to the audience
as input for reflection and discussion.

AT2AI-6 Working Notes

AT2AI-6: Addis A. et al.: From a Generic MultiAgent Architecture to MultiAgent Information Retrieval Systems

From a Generic MultiAgent Architecture to MultiAgent
Information Retrieval Systems

Andrea Addis
University of Cagliari
Piazza d’Armi,
1-09123, Cagliari, Italy
addis@diee.unica.it

ABSTRACT

The continuous growth of documents in digital form, to-
gether with the corresponding volume of daily updated con-
tents, makes the problem of retrieving information a chal-
lenging task. In this paper we present X.MAS, a generic
multiagent architecture explicitly devoted to implement in-
formation retrieval tasks. The proposed architecture has
been adopted in several applications. To put into evidence
how to bridge the gap from theory to practice, we illustrate
and discuss three relevant applications of X.MAS.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: Information
Search and Retrieval, Systems and Software

Keywords
Information Retrieval, MultiAgent Systems, Applications

1. INTRODUCTION

In the last fifteen years, Al researchers have concentrated
their efforts in the field of intelligent autonomous agents,
i.e., systems capable of autonomous sensing, reasoning and
acting in complex environments. Suitable single-agent ar-
chitectures have been devised to overcome the complexity
problems that arise while trying to give agents a flexible be-
havior [14], [13], [27], [1]. Let us briefly recall that an agent
architecture is essentially a map of the internals of an agent,
i.e., its data structures, the operations that may be per-
formed on them, and the corresponding control flows [36].
Furthermore, to allow cooperation and to implement suit-
able multiagent systems, several multiagent architectures
have been devised. From a general perspective, we iden-
tify two kinds of these architectures: general-purpose [18],
[26], [8] and application-oriented [11], [34], [35].

Although generic guidelines to build general-purpose ar-
chitectures are required, in our view it is important to con-
centrate the efforts in a specific application field in order to
bridge the gap between theoretical and pragmatical issues.
To this end, in this paper we present a generic multiagent
architecture explicitly devised to implement information re-
trieval tasks.

Jung, Michel, Ricci & Petta (eds.): AT2A1-6 Working Notes, From
Agent Theory to Agent Implementation, 6th Int. Workshop,
May 13, 2008, AAMAS 2008, Estoril, Portugal, EU.

Not for citation

Giuliano Armano
University of Cagliari
Piazza d’Armi,
[-09123, Cagliari, Italy
armano@diee.unica.it

Eloisa Vargiu
University of Cagliari
Piazza d’Armi,
1-09123, Cagliari, Italy
vargiu@diee.unica.it

The remainder of the paper is organized as follows: Sec-
tion 2 gives a brief introduction about agents in information
retrieval (theoretical foundations). Section 3 presents the ar-
chitecture from a conceptual (standard architectures) and a
technological point of view (off-the-shelf platforms). Then,
Section 4 illustrates three actual systems built upon the pro-
posed architecture (applications). Finally, Section 5 draws
conclusions and points to future work.

2. FUNDAMENTALS ON AGENTS AND IN-
FORMATION RETRIEVAL

Due to the increased availability of documents in digital
form and the consequential need to access them in a flexible
way, automated content-based document management tasks
have gained a main task in the information systems field [30].
In particular, web information retrieval is highly popular
and presents a technical challenge due to the heterogeneity
and size of the web, which is continuously growing (see [17],
for a survey).

In our opinion, it is very difficult for users to select con-
tents according to their personal interests, especially when
contents are frequently updated (e.g., news, newspaper arti-
cles, reuters, rss feeds, wikis, and blogs). Supporting users in
handling the enormous and widespread amount of informa-
tion (especially the one provided by the web) is becoming a
primary issue. To this aim, several online services have been
proposed that provide a personalization mechanism based on
keywords, which is often inadequate to express what the user
is really searching for. Moreover, users must often refine by
hand the results provided by the service.

Agents have been widely proposed as a solution to these
problems. An information agent is an agent that has access
to one or more information sources, and is able to store and
process information obtained from these sources in order to
answer queries posed by users and other information agents
[37]. The information sources may be of many types, in-
cluding web services, web sites, RSS-feeds, and traditional
databases.

In the literature, several centralized agent-based architec-
tures aimed to perform information retrieval tasks have been
proposed. Among others, let us recall NewT [32], Letizia
[21], WebWatcher [3], and SoftBots [12].

NewT [32] has been designed as a society of information-
filtering interface agents, which learn user preferences and
act on her/his behalf. These information agents use a keyword-
based filtering algorithm, whereas adaptive techniques are
relevance feedback and genetic algorithms. Letizia [21] is
an intelligent user interface agent able to assist a user while

AT2AI-6: Addis A. et al.: From a Generic MultiAgent Architecture to MultiAgent Information Retrieval Systems

browsing the Web. The search for information results as a
cooperative venture between the user and the software agent:
both browse the same search space of linked web documents,
looking for interesting ones. WebWatcher [3] is an informa-
tion search agent that follows web hyperlinks according to
user interests, returning a list of links deemed interesting.
In contrast to systems for assisted browsing or information
retrieval, SoftBots [12] accept high-level user goals and dy-
namically synthesize the appropriate sequence of Internet
commands according to a suitable ad-hoc language.

Despite the fact that a centralized approach could have
some advantages, in information retrieval tasks it may en-
compass several problems, in particular how to scale up the
architectures to large numbers of users, how to provide high
availability in case of constant demand of the involved ser-
vices, and how to provide high trustability in case of sensi-
tive information, such as personal data. To this end suitable
multiagent systems devoted to perform information retrieval
tasks have been proposed. In particular, Sycara [33] pro-
posed Retsina, a multiagent system infrastructure applied
in many domains, has been presented. Retsina is an open
MAS infrastructure that supports communities of heteroge-
neous agents. Three types of agents have been defined: in-
terface agents, able to display the information to the users;
task agents, able to assist the user in the management of
her/his information; and information agents, able to gather
relevant information from the selected sources.

Apart from Retsina, in the literature, several multiagent
systems have been proposed and implemented. Among oth-
ers, let us recall IR agents [19], CEMAS [6], and the co-
operative multiagent system for web information retrieval
proposed in [31].

Information Extraction ‘

Online Repositories ‘

Extracted Data/Information

H

|
'

Encoding and ‘

Selected Data/Information
Processing

+ User's Feedback

Figure 1: The abstract architecture.

IR agents [19] implement an XML-based multiagents model
for information retrieval. The corresponding framework is
composed of three kinds of agents: (i) managing agents,
aimed to extract the semantics of information and to per-
form the actual tasks imposed by coordinator agents, (ii)
interface agents, devised to interact with the users, and (iii)
search agents, aimed to discover relevant information on the
web. IR agents do not take into account personalization,
while providing information in a structured form without
the adoption of specific classification mechanisms. In CE-
MAS (Concept Exchanging Multi-Agent System) [6] the ba-

sic idea is to provide specialized agents for each main task,
the main tasks being: (i) exchanging concepts and links,
(ii) representing the user, (iii) searching for new relevant
documents matching existing concepts, and (iv) supporting
agent coordination. Although CEMAS provides personal-
ization and classification mechanisms based on a semantic
approach, the main drawback is that it is not generic, being
mainly aimed to support scientists while looking for com-
prehensive information about their topic area. Finally, in
[31] the underlying idea is to adopt intelligent agents that
mimic everyday-life activities of information seekers. To this
end, agents are also able to profile the user in order to an-
ticipate and achieve her/his preferred goals. Although the
approach is quite interesting, it is mainly focused on coop-
eration among agents rather then on information retrieval
issues.

3. X.MAS: THE PROPOSED GENERIC AR-
CHITECTURE

Focusing on the role of software agents, the following cate-
gories can be identified in a context of information retrieval:
(i) information agents, tailored to extract and handle in-
formation while accessing information sources[24], (ii) filter
agents, able to transform information according to user pref-
erences [23], (iii) task agents, able to help users to perform
tasks typically in cooperation with other agents [15], (iv)
interface agents, in charge of interacting with the user such
that s/he interacts with other agents throughout them [22],
and (v) middle agents, devised to establish communication
among requesters and providers [10].

3.1 The Abstract Architecture

From a theoretical point of view, an information retrieval
task involves three main activities: (i) extracting the re-
quired information, (ii) encoding and processing it accord-
ing to the specific application, and (iii) providing suitable
feedback mechanisms to improve the overall performances.
Figure 1 shows a generic architecture able to perform these
activities.

The information extraction module is aimed to extract
data from information sources through specialized wrappers.
In general, given an information source S, a specific wrap-
per Ws must be implemented, able to map each data Dg,
designed according to the constraints imposed by S, to a
suitable description O, which contains relevant information
in a structured form —such as title, author(s), description,
and images.

The encoding-and-processing module is aimed to encode
information that flows from external sources (i.e., the se-
lected information sources) and to progressively filter it to
the end user by retaining only relevant data. The actual
encoding strictly depends on the specific application (pre-
processing activities, such as feature selection, could be per-
formed to prepare the data to be processed). Data are pro-
cessed according to high-level procedures, which are inde-
pendent from the specific user. If needed, a personalized
process can be performed according to user needs and pref-
erences.

The user feedback module is devoted to deal with any
feedback optionally provided by the end-user. In general,
trivial —though effective— solutions can been implemented,
e.g. based on artificial neural networks (ANNs) or a k-NN

AT2AI-6: Addis A. et al.: From a Generic MultiAgent Architecture to MultiAgent Information Retrieval Systems

information

level

Midspanlevel []
Filter

level

Midspanlevel -5]
e A ¥ 1= Y
cholofc)

level

Mdspanlevel 0

Interface
level

‘§ controd

Figure 2: The concrete architecture.

classifiers.

3.2 The Concrete Architecture

An information retrieval system must take into account
several issues, the most relevant being: (i) how to deal with
different information sources and to integrate new informa-
tion sources without re-writing significant parts of it, (ii)
how to suitably encode data in order to put into evidence the
informative content useful to discriminate among categories,
(iii) how to control the unbalance between relevant and non
relevant articles (the latter being usually much more numer-
ous than the former), (iv) how to allow the user to specify
her/his preferences, and (v) how to exploit the user feedback
to improve the overall performance of the system.

The above problems are typically strongly interdepen-
dent in state-of-the-art systems. To better concentrate on
these aspects separately, we adopted a layered multiagent
architecture, able to promote the decoupling among all as-
pects deemed relevant. In particular, the functionalities of
the abstract architecture, described in the previous section,
have been implemented exploiting the X.MAS architecture.
X.MAS is a generic multiagent architecture, aimed to re-
trieve, filter and reorganize information according to user
interests. The X in X.MAS points out the generic nature
of the architecture, playing the role of a wildcard to be sub-
stituted with an identifier specific of the corresponding ap-
plication. The X.MAS generic architecture has been im-
plemented on top of the well known JADE [5] agent-based
infrastructure.

3.2.1 Macro-Architecture

The X.MAS architecture (depicted in Figure 2) encom-
passes four main levels: information, filter, task, and inter-
face. The communication between adjacent levels is achieved
through suitable middle agents, which form a corresponding
mid-span level.

At the information level, agents are entrusted with ex-
tracting data from the information sources. Each informa-
tion agent is associated to one information source, playing

the role of wrapper.

At the filter level, agents are aimed to select information
deemed relevant to the users, and to cooperate to prevent
information from being overloaded and/or redundant. In
general, two filtering strategies can be adopted: generic and
personalized. The former applies the same rules to all users;
whereas the latter is applied when a customized behavior is
required for a specific user.

At the task level, agents arrange data according to users
personal needs and preferences. In a sense, they can be
considered as the core of the architecture. In fact, they
are devoted to achieve user goals by cooperating together
and adapting themselves to the changes of the underlying
environment.

At the interface level, a suitable interface agent is associ-
ated with each different user interface. In fact, a user can
generally interact with an application through several inter-
faces and devices (e.g., pc, pda, mobile phones, etc.).

At mid-span levels, agents are aimed to establish commu-
nication among requesters and providers. Agents at these
architectural levels can be implemented as matchmakers or
brokers, depending on the specific application [10].

3.2.2 Micro-Architecture

X.MAS agents can implement several capabilities, depend-
ing on the actual application and on their specific role. In
particular, X.MAS agents, other than autonomy and flexi-
bility, can provide any subset of the following capabilities:
(i) personalization, to fulfill user interests and preferences,
(ii) adaptation, to adapt to the underlying environment, (iii)
cooperation, to interact with other agents in order to achieve
a common goal, (iv) deliberative capability, to reason about
the world model and to engage planning and negotiation,
possibly in coordination with other agents; and (v) mobil-
ity, to migrate from node to node in a local- or wide-area
network.

X.MAS agents are JADE agents capable of (i) interacting
exchanging FIPA-ACL messages, (ii) sharing a common on-
tology in accordance with the actual application, and (iii)
exhibiting a specific behavior according to their role. As
for agent internals, Figure 3 shows the micro-architecture
for agents belonging to each architectural level. Let us note
that each agent encompasses a scheduler aimed to control
the information flow between adjacent levels. Information
and interface agents embody information sources and a spe-
cific devices, respectively. Filter and task agents encompass
an actuator that depends on the actual application. Mid-
dle agents contain a dispatcher aimed to handle interactions
among requesters and providers.

4. BUILDING INFORMATION RETRIEVAL
SYSTEMS BY USING X.MAS

In order to highlight how to bridge the gap from theory to
practice by adopting X.MAS, three relevant systems are pre-
sented. The first is concerned with the problem of classifying
Wikipedia contents according to a predefined set of classes,
the second is focused on giving a support to professors and
students while interacting with a media asset management
system, and the third is devoted to address the problem of
monitoring boats in a marine reserve.

AT2AI-6: Addis A. et al.:

From a Generic MultiAgent Architecture to MultiAgent Information Retrieval Systems

Information Agent

o

Middle Agent

Interface Agent |

‘8

Figure 3: Agent internals.

4.1 WIKILMAS: X.MAS for Classifying
Wikipedia Contents

4.1.1 The Scenario.

As already pointed out in Section 2, supporting users in
handling the enormous and widespread amount of web in-
formation is becoming a primary issue. Currently, the most
overshadowing and noteworthy web information sources are
developed according to the collaborative-web paradigm [7],
also known as Web 2.0. It represents a paradigm shift in the
way users approach the web. Users (also called prosumers)
are no longer passive consumers of published content, but
become involved, implicitly and explicitly, as they cooper-
ate by providing their own content in an “architecture of
participation” [28].

Among others, Wikipedia !, an online encyclopedia based
on the notion that an entry can be added/edited by any
web user, has became an important benchmark for all In-
ternet users interested in searching for definitions and/or
references. Unfortunately, Wikipedia search engine allows
users to choose their interests among macro-areas (e.g. Arts,
History, and Science), which is often inadequate to express
what the user is really interested in. Moreover, such search
engine does not provide a feedback mechanism able to allow
the user to specify non-relevant items —with the goal of pro-
gressively adapting the system to her/his actual interests.

Using X.MAS, we developed a system explicitly aimed
to retrieve and classify Wikipedia contents according to a

Thttp://www.wikipedia.org/

predefined set of classes, i.e., those belonging to WordNet
Domains [25].

4.1.2 The Implementation.

To implement this specific application, X.MAS has been
customized as follows:

e Information level. Agents at this level are aimed to
deal with the huge information source provided by
Wikipedia. To this end a suitable wrapper has been
implemented, able to handle the structure of a doc-
ument by saving the informations about the corre-
sponding metadata (e.g. title, abstract, keywords, sec-
tion headers) and by surfing across the whole reference
links through the cooperation with other information
agents.

e Filter level. Filter agents are aimed to select informa-
tion deemed relevant to the users, and to cooperate to
prevent information from being overloaded and redun-
dant. A suitable encoding of the text content has been
enforced at this level to facilitate the work of agents
belonging to the task level. In particular, all non-
informative words such as prepositions, conjunctions,
pronouns and very common verbs are removed using
a stop-word list. After that, a standard stemming al-
gorithm [29] removes the most common morphological
and inflexional suffixes. Then, for each category, fea-
ture selection, based on the information-gain heuristics
[38], has been adopted to reduce the dimensionality of
the feature space.

e Task level. Task agents are devoted to identify rel-
evant Wikipedia documents, depending on user in-
terests. Agents belonging to this architectural level
are aimed to perform two kinds of actions: classify
any given input in accordance with the selected set of
classes, and decide whether it may be of interest to the
user or not. Each task agent has been trained by re-
sorting to state-of-the-art algorithms that implement
the k-NN technique, in its “weighted” variant [9]. Fur-
thermore, to express what the user is really interested
in, we implemented suitable composition strategies by
using extended boolean models [20]. In fact, typically,
the user is not directly concerned with “generic” topics
that coincide with the selected classes (such as Arts,
History, or Science). Rather, a set of arguments of
interest can be obtained by composing these generic
topics with suitable logical operators (i.e., and, or, and
not). In the proposed system, we adopted a quite gen-
eral soft boolean perspective, in which the combination
is evaluated using P-norms [16].

e [nterface level. Information agents are aimed to per-
form the feedback from the user —which can be ex-
ploited to improve the overall ability of discriminating
relevant from non relevant inputs. So far, a simple
solution based on the k-NN technology has been im-
plemented and experimented to deal with the problem
of supporting the user feedback. When a non-relevant
article is evidenced by the user, it is immediately em-
bedded in the training set of the k-NN classifier that
implements the feedback. A check performed on this
training set after inserting the negative example al-
lows to trigger a procedure entrusted with keeping the

AT2AI-6: Addis A. et al.: From a Generic MultiAgent Architecture to MultiAgent Information Retrieval Systems

number of negative and positive examples balanced. In
particular, when the ratio between negative and posi-
tive examples exceeds a given threshold (by default set
to 1.1), some examples are randomly extracted from
the set of “true” positive examples and embedded in
the above training set.

4.2 MAM.MAS: X.MAS for a Media Asset
Management System

4.2.1 The Scenario.

E-learning differentiates from the traditional learning in
its ability to train anyone, anytime, and anywhere, thanks
to the openness of the Internet. Without the temporal and
spatial limitation, one can have an independent and indi-
vidual learning space. Currently, several Digital Asset Man-
agement (DAM) systems, also called Media Asset Manage-
ment (MAM), have been proposed and devised [4]. As for
e-learning, such systems are aimed to store, manage, and
organize course materials, bibliography, and teacher notes.

Among other provided services, MAM systems must sup-
ply suitable support during the insertion phase. In partic-
ular, classification techniques might be devised to improve
such systems to suitably organize contents and to help users
in managing such data.

Using X.MAS, we developed a system aimed to support
users in inserting multimedia contents in a MAM system.
Being interested in handling university courses, typically or-
ganized in a hierarchy of classes, suitable hierarchical clas-
sification techniques has been studied. In particular, the
current version of the system implements a hierarchical text
categorization approach and is able to deal with text docu-
ments. Let us note that any multimedia document could be
processed if a suitable textual description is given. In our
experiments the system classifies data according to the tax-
onomy related to university courses, i.e., the one concerned
with the bachelor’s degree in electronic engineering. Figure
4 illustrates a portion of the adopted taxonomy.

— s

(/" Computer Science
)

{ an
_ Industrial Engeneering

Electronic Engineering { Computer Scierice | (tectrical Engineering

Computer ", Slectrio o,
rogramming | Analysle

Solving

Figure 4: A portion of the adopted taxonomy.

4.2.2 The Implementation.

As for the implementation, X.MAS has been customized
as follows:

e Information level. Input documents are the files pro-
vided by teachers during the insertion phase. Such
documents can be simple-text-, formatted-, pdf-files,
or multimedia contents together with their textual de-
scription. Information agents are able to handle all

these kinds of documents by extracting the correspond-
ing information.

o ['ilter level. As in WIKI.MAS, filter agents are aimed
to select information deemed relevant to the users, and
to cooperate to prevent information from being over-
loaded and redundant. Suitable encoding techniques
have been enforced: all non-informative words are re-
moved using a stop-word list; a standard stemming al-
gorithm removes the most common morphological and
inflexional suffixes; and, for each category, feature se-
lection, based on the information-gain heuristics, has
been adopted to reduce the dimensionality of the fea-
ture space.

o Task level. Task agents perform the hierarchical text
categorization, resorting to a progressive filtering tech-
nique as described in [2]. In particular, each task agent
has been trained by resorting to state-of-the-art algo-
rithms that implement the wk-NN technique, whereas
the progressive filtering is provided by the cooperation
of the corresponding agents.

e [nterface level. Interface agents are devoted to inter-
act with the user within the MAM in order to support
her /him while inserting documents. Further agents are
aimed to perform user feedback. So far, a simple so-
lution based on an ANN has been implemented. This
solution consists of training an ANN with a set of ex-
amples classified as “of interest to the user”. When
the amount of feedback provided by the user has tres-
passed a given threshold, the ANN is trained again
—after updating the previous training set with the in-
formation provided by the user.

4.3 SEA.MAS: X.MAS for Monitoring Boats
in Marine Reserves

4.3.1 The Scenario.

Setting up a marine reserve involves issues concerning how
to enforce access monitoring, with the goal of avoiding intru-
sions by not authorized boats, also considering that typically
marine reserves are located in areas not easily accessible.

Currently, intrusion detection in marine reserves is carried
out by adopting radar systems or by resorting to suitable
cameras activated by movement sensors.

Ee are currently developing with X.MAS a system aimed
to monitor boats in marine reserves. The corresponding sce-
nario involves authorized boats, equipped with GPS+GSM
devices, as well as not authorized boats. Boats are tracked
by a digital radar that detects their positions. In this way,
not authorized boats are easily identified comparing radar
signals with those received from GPS+GSM devices.

4.3.2 The Implementation.

As for the implementation, X.MAS is being customized as
follows:

e Information level. Each information agent encapsu-
lates a specific information source. T'wo kinds of wrap-
pers will be implemented to retrieve data from the de-
vices and the radar, respectively.

e Filter level. Filter agents are devoted to collect the
data retrieved by the information agents. In particu-
lar, they disregard redundant information, as signals

AT2AI-6: Addis A. et al.: From a Generic MultiAgent Architecture to MultiAgent Information Retrieval Systems

detected more than once by the same device (caching)
or from different devices (information overloading).

o Task level. Each task agent corresponds to a boat.
Information provided by filter agents allows to know
exactly boat positions. In so doing, authorized and
not authorized boats can be easily detected. The main
tasks of the agents belonging to this architectural level
are: (i) to follow a boat position during its navigation,
also dealing with any temporary lack of signal; (ii)
to promptly identify not authorized boats alerting the
interface agents; and (iii) to handle messages coming
from the interface level in order to notify the involved
devices.

e Interface level. A suitable interface agent allows users
to interact with the system. Final users are the system
administrator and staff operators.

S. CONCLUSIONS AND FUTURE WORK

In this paper X.MAS, a generic architecture designed to
support the implementation of applications g manage infor-
mation among different and heterogeneous sources, has been
presented. To put into evidence how to bridge the gap from
theory to practice by adopting X.MAS, three relevant appli-
cations have been briefly described: the first concerned with
the problem of classifying Wikipedia contents according to
a predefined set of classes, the second focused on giving a
support to professors and students while interacting with a
media asset management system, and the third devoted to
monitor boats in a marine reserve.

As for the future work, we are investigating how to im-
prove the intelligent capabilities of agents with more com-
plex forms of proactive and deliberative capabilities. More-
over, the possibility to implement further applications using
X.MAS is currently under study.

Acknowledgments

The case study related to the implementation of a Wikipedia
information retrieval system has been supported by the Ital-
ian Ministry of Education, under the project “DART - Dis-
tributed Architecture for Semantic Search and Personalized
Content Retrieval”.

The case study related to the implementation of a sup-
port for a multimedia asset management system has been
supported by Regione Autonoma della Sardegna, under the
project “SOFTA - Online Services of University Courses and
Education”.

The case study related to the implementation of a sys-
tem for monitoring boats in marine reserves is supported
by Regione Autonoma della Sardegna, under the project “A
Multiagent System for Monitoring Intrusions in Marine Re-
serves”.

6. REFERENCES

[1] G. Armano, G. Cherchi, and E. Vargiu. An agent
architecture for planning in a dynamic environment.
Lecture Notes in Computer Science, 2175:388-394,
2001.

[2] G. Armano, F. Mascia, and E. Vargiu. Using
taxonomic domain knowledge in text categorization
tasks. International Journal of Intelligent Control and

[14

(15]

Systems, 12(2):150-157, 2007. Special Issue on
Distributed Intelligent Systems.

R. Armstrong, D. Freitag, T. Joachims, and

T. Mitchell. Webwatcher: A learning apprentice for
the world wide web. In AAAI Spring Symposium on
Information Gathering, pages 6-12, 1995.

D. Austerberry. Digital Asset Management. Focal
Press, 2006.

F. Bellifemine, G. Caire, and D. Greenwood.
Developing Multi-Agent Systems with JADE (Wiley
Series in Agent Technology). John Wiley and Sons,
2007.

M. Bleyer. Multi-Agent Systems for Information
Retrieval on the World Wide Web. PhD thesis,
University of Ulm, Germany, 1998.

J. Burdman. Collaborative Web Development:
Strategies and Best Practices for Web Teams.
Addison-Wesley Longman Ltd., 1999.

D. Camacho, R. Aler, D. Borrajo, and J. Molina. A
multi-agent architecture for intelligent gathering
systems. AI Communications, The European Journal
on Artificial Intelligence, 18(1):17[”}19, 2005.

W. Cost and S. Salzberg. A weighted nearest neighbor
algorithm for learning with symbolic features.
Machine Learning, 10:57-78, 1993.

K. Decker, K. Sycara, and M. Williamson.
Middle-agents for the internet. In Proceedings of the
15th International Joint Conference on Artificial
Intelligence (IJCAI 97), pages 578-583, 1997.

F. Dorca, C. Lopes, and M. Fernandes. A multiagent
architecture for distance education systems. In
Proceedings of the 3rd IEEE International Conference
on Advanced Learning Technologies, pages 368-369,
2003.

O. Etzioni and D. Weld. Intelligent agents on the
internet: fact, fiction and forecast. IEEE Expert,
10(4):44-49, 1995.

I. Ferguson. TouringMachines: An Architecture for
Dynamic, Rational, Mobile Agents. PhD thesis, lare
Hall, University of Cambridge, UK, 1992.

M. Georgeff and A. Lansky. Reactive reasoning and
planning. In Proceedings of the Sizth National on
Artificial Intelligence (AAAI-87), pages 677682, 1987.
J. Giampapa, K. Sycara, A. Fath, A. Steinfeld, and
D. Siewiorek. A multi-agent system for automatically
resolving network interoperability problems. In
Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent
Systems, pages 1462-1463, 2004.

G. Golub and C. V. Loan. Matriz Computations.
Baltimore: The Johns Hopkins University Press, 1996.
L. Huang. A survey on web information retrieval
technologies. In Technical report, ECSL, 2000.

C. A. Iglesias, J. C. Gonzalez, and J. R. Velasco. Mix:
A general purpose multiagent architecture. In In M.
Wooldridge, J. P. Muller, and M. Tambe, editors,
Intelligent Agents 11, Springer-Verlag, pages 251-266,
1995.

W. Jirapanthong and T. Sunetnanta. An xml-based
multi-agents model for information retrieval on www.
In Proceedings of the 4th National Computer Science

AT2AI-6: Addis A. et al.: From a Generic MultiAgent Architecture to MultiAgent Information Retrieval Systems

20]

21]

24]

25]

(28]

29]

(30]

(34]

(35]

and Engineering Conference (NCSEC2000), 2000.

J. Lee. Properties of extended boolean models in
information retrieval. In Proceedings of the 17th
Annual international ACM SIGIR Conference on
Research and Development in information Retrieval,
pages 182-190, 1994.

H. Lieberman. Letizia: An agent that assists web
browsing. In C. S. Mellish, editor, Proceedings of the
Fourteenth International Joint Conference on
Artificial Intelligence (IJCAI-95), pages 924-929,
Montreal, Quebec, Canada, 1995. Morgan Kaufmann
publishers Inc.: San Mateo, CA, USA.

H. Lieberman. Autonomous interface agents. In
Proceedings of the ACM Conference on Computers
and Human Interface (CHI-97), pages 67-74, 1997.
E. Lutz, H. Kleist-Retzow, and K. Hoernig. Mafia an
active mail-filter-agent for an intelligent document
processing support. ACM SIGOIS Bulletin,
11(4):16-32, 1990.

P. Maes. Agents that reduce work and information
overload. Communications of the ACM, 37(7):31-40,
1994.

B. Magnini and G. Cavaglia. Integrating subject field
codes into wordnet. In Gavrilidou M., Crayannis G.,
Markantonatu S., Piperidis S. and Stainhaouer G.
(Eds.) Proceedings of LREC-2000, Second
International Conference on Language Resources and
Evaluation, pages 1413-1418, 2000.

P. Marcenac and S. Giroux. Geamas: A generic
architecture for agent-oriented simulations of complex
processes. International Journal of Applied
Intelligence, 1998.

J. Mueller. A cooperation model for autonomous
agents. In In J.P Mueller, M. Wooldridge and N.R.
Jennings (eds) Intelligent Agents 111, LNAI, Vol.
1198. Springer-Verlag, Berlin Heidelberg New York,
pages 245-26, 1997.

T. O’Reilly. What is Web 2.0, Design Patterns and
Business Models for the Next Generation of Software.
O’ Reilly, 2005.

M. Porter. An algorithm for suffix stripping. Program,
14(3):130-137, 1980.

F. Sebastiani. Machine learning in automated text
categorization. ACM Computing Surveys (CSUR),
34(1):1-55, 2002.

K. Shaban, O. Basir, and M. Kamel. Team consensus
in web multi-agents information retrieval system. In
Team Consensus in Web Multi-agents Information
Retrieval System, pages 68—73, 2004.

B. Sheth and P. Maes. Evolving agents for
personalized information filtering. In Proceedings of
the 9th Conference on Artificial Intelligence for
Applications (CAIA-98), pages 345-352, 1993.

K. Sycara, M. Paolucci, M. van Velsen, and

J. Giampapa. The RETSINA MAS infrastructure.
Technical Report CMU-RI-TR-01-05, Robotics
Institute Technical Report, Carnegie Mellon, 2001.
S. Walczak. A multiagent architecture for developing
medical information retrieval agents. Journal of
Medical Systems, 27(5):479-498, 2003.

D. Wei and A. B. Abrahams. A multiagent

architecture for semantic web resources. In Proceedings
of IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, pages 289-292, 2005.
M. Wooldridge. Intelligent agents. In G.dWeiss (ed)
Multiagent Systems, MIT Press, Berlin Heidelberg
New York, 1999.

M. Woolridge. Introduction to Multiagent Systems.
John Wiley and Sons, Inc., 2001.

Y. Yang and J. O. Pedersen. Feature selection in
statistical learning of text categorization. In
Proceedings of the 14th International Conference of
Machine Learning ICMLY, pages 412-420, 1997.

AT2AI-6 Working Notes

10

AT2AI-6: Almuhaideb A. et al.: Comparative Efficiency and Implementation Issues of Itinerant Agent Language
on Different Agent Platforms

Comparative Efficiency and Implementation Issues of
Itinerant Agent Language on Different Agent Platforms

Abdullah Almuhaideb™® Kutila Gunasekera'
1Faculty of Information Technology
Monash University
Melbourne, Australia

Arkady Zaslavsky' Seng Wai Loke?

Department of Computer Science and Computer Engineering

La Trobe University
Melbourne, Australia

aalmuhaidob@kfu.edu.sa, {kutila.gunasekera, arkady.zaslavsky}@infotech.monash.edu.au,
S.Loke@latrobe.edu.au

ABSTRACT

An itinerary scripting language provides a tool to accelerate the
development of mobile agent applications. The main purpose of
this paper is to discuss research challenges of itinerant mobile
agents (ITAG) and describe the migration of ITAG to JADE, the
popular FIPA-compliant agent platform. The migration process
was based on two major steps: the migration of agent
communications and agent tasks (behaviors). The ITAG Engine
has been extracted to provide an easy migration to any new agent
platform. In our experiments the results show that the current
ITAGII (using JADE) has better performance and stability
compared to ITAGII (using Grasshopper). The paper discusses
the experiments and comparisons in detail.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
— Multiagent systems; C.2.4 [Computer-Communication
Networks]: Distributed Systems

General Terms
Algorithms, Measurement, Performance, Design, Languages,
Experimentation, Theory

Keywords
Itinerary Language, Itinerary Agent (ITAG), JADE, Grasshopper,
Agent Platforms, Scalability, Applications, Agent

Communication, Agent, Messaging

1. INTRODUCTION

Mobile agents are defined as a future framework of distributed
electronic services and are used in data mining, electronic
commerce and network management [1]. All stages of a business
transaction, such as negotiating and signing contracts can be
carried out using mobile agents. A mobile agent can be described
as a software entity which is capable of moving from one location

3Abdullah Almuhaideb is a staff member at the Department of Network
Computing, King Faisal University in AlAhsa, Saudi Arabia. This work
was done while he was visiting Monash University.

Jung, Michel, Ricci & Petta (eds.): AT2AI-6 Working Notes, From Agent
Theory to Agent Implementation, 6th Int. Workshop,May 13, 2008,
AAMAS 2008, Estoril, Portugal, EU.

Not for citation

to another and continuing its execution. ITAG (ITinerary AGents)
is a scripting language and prototype system previously developed
by us [2, 3, 4]. An itinerary scripting language (for mobile agents)
aims to make developing agent applications easier. It allows the
developer to script together mobile agents from existing
components by specifying what the agent should do, at which
location and when.

The purpose of this paper is to extend the Itinerary Language and
port the current ITAG system which runs on Grasshopper agent
platform to the popular FIPA (Foundation for Intelligent Physical
Agents)-compliant agent platform JADE [5]. We also developed a
visual tool which allows users to easily create and execute their
own test cases and demonstration environments for ITAG.

There are a number of reasons behind choosing JADE. One of
these reasons is that JADE is open-source, continuously
maintained and well supported [6]. Since ITAG aims to support
mobile devices, the existence of JADE-LEAP (Lightweight
Extensible Agent Platform) [6], a lightweight release of JADE for
mobile devices, was also a consideration.

The rest of this paper is organized as follows. In section 2, an
overview of the ITAG system will be given. Section 3 will discuss
the migration process from Grasshopper to JADE. In section 4, we
will present new features of ITAGIII. In section 5, the
experiments and result will be evaluated. Some related work will
be discussed in section 6. Finally, conclusions and future work of
this paper will be presented in section 7.

2. ITAG SYSTEM OVERVIEW
2.1 ITAG: The Itinerary Scripting Language

ITAG is an executable implementation of the itinerary algebra in
the form of a scripting language described in [2, 4]. We first
briefly outline the algebra below. We assume an object-oriented
model of agents, where an agent is an instance of a class given
roughly by:

mobile agent = state + action + mobility

We assume that agents have the capability of cloning, which is,
creating copies of themselves with the same state and code. Also,
agents can communicate to synchronize their movements, and the
agent's code can execute at each location it visits.

11

AT2AI-6: Almuhaideb A. et al.: Comparative Efficiency and Implementation Issues of Itinerant Agent Language
on Different Agent Platforms

Let A, O and P be finite sets of agent, action and place symbols,
respectively. Itineraries (denoted by /) are now formed as follows
representing the null activity, atomic activity, parallel, sequential,
nondeterministic, conditional nondeterministic behavior, and have
the following syntax:

T=01A (g)L I) 1A 1) I(T:p 1)

where A€ A ,ae 0] , PE P . ®isan operator which, after a

parallel operation causing cloning, recombines an agent with its
clone to form one agent, and Il is an operator which returns a
boolean value to model conditional behavior. We specity how @
and Il are used but we assume that their definitions are
application-specific.

We assume that all agents in an itinerary have a starting place

(which we call the agent's home) denoted by € P . Given an
itinerary I, we shall use agents(I) to refer to the agents mentioned
inl.

Agent Movement (A",). A, means “move agent A to place p and
perform action a”. This expression is the smallest granularity
mobility abstraction. It involves one agent, one move and one
action at the destination.

4‘”73 4‘”73

Parallel Composition (“II”). Two expressions composed by are
executed in parallel. For instance, (A, I Bbq) means that agents A
and B are executed concurrently. Parallelism may imply cloning
of agents. For instance, to execute the expression (A", | Abq),
where p # ¢, cloning is needed since agent A has to perform
actions at both p and ¢ in parallel. When cloning has occurred,
decloning is needed, i.e. clones are combined using an associated
application specific operator (denoted by @ as mentioned earlier).

@ 9

Sequential Composition (“.”). Two expressions composed by the
operator “.” are executed sequentially. For example, (A%, . Abq)
means move agent A to place p to perform action a and then to

place g to perform action b.

Independent Nondeterminism (“I”). An itinerary of the form (I | J)
is used to express nondeterministic choice: “I don't care which but
perform one of I or J”. If agents(I) N agents(J) # 0, no clones are
assumed, i.e. I and J are treated independently. It is an
implementation decision whether to perform both actions
concurrently terminating when either one succeeds (which might
involve cloning but clones are destroyed once a result is
obtained), or trying one at a time (in which case order may
matter).

@,

Conditional Nondeterminism (*:”). Independent nondeterminism
does not specify any dependencies between its alternatives. We
introduce conditional nondeterminism which is similar to short-
circuit evaluation of boolean expressions in programming
languages such as C. An itinerary of the form / : ; J means first
perform I , and then evaluate II on the state of the agents. If II
evaluates to true, then the itinerary is completed. If II evaluates to
false, the itinerary J is performed (i.e., in effect, we perform /. J).
The semantics of conditional nondeterminism depends on some
given I1.

2.2 Itinerary Language Examples and

Implementation

We give an example using agents to vote. An agent V, starting
from home, carries a list of candidates from host to host visiting
each voting party. Once each party has voted, the agent goes home
to tabulate results (assuming that home provides the resources and
details about how to tabulate), and then announces the results to
all voters in parallel (and cloning itself as it does so). Assuming
four voters (at places p, g, r, and s), vote is an action accepting a
vote (e.g., by displaying a graphical user interface), tabulate is the
action of tabulating results, and announce is the action of
displaying results; the mobility behavior is as follows:
Vvotep v vateq v Vater v Vawx v tabulateh (Vannauncep Il
Vv annaunceq Il 14 annauncer Il Vv annaunces)
Implementation: To allow the programmer to type the itinerary
expressions into the computer, we provide an ASCII syntax and a
Controlled English (limited natural language) version. The
translations are given in Table 1. When the operators are used
without op, we assume a pre-specified system default one, i.e.
using op is an optional clause. A“, . Abq. A°, can be described as
follows: “(move A to a do p) then (move A to b do q) then (move
A to ¢ do r)." Apart from the above basic elements of the
language, we define the following five phrases that map down to
more complex expressions:

1. A%, is translated as return A do a.
2.A%, A, A% AY is translated as

tour A to p,g, r,s in series do a.
3. A% A, NAY, T A% is translated as

tour A to p, g r,s inparallel do a.
4. A% 1A%, 1A% 1A% is translated as

tour A to one of p,¢g, s do a.
5.A% A% A% 1 A% is translated as

tour A if needed to p, g rs do a.

Table 1. Translations

Symbol ASCII Controlled English
AY, [A,p,a] Move AtoP doa
Then
n {op} Otherwise using op
| | Or
lle #{op} In parallel with using op

Similarly, we also have A“, iy A% : q A% : g A% translated as
tour Aif needed top,q r, sdoausinglIl

Using the phrases, the voting itinerary can be concisely described
as follows:

(tour V to p,q,r,s in series do vote)

then (return V do tabulate)

12

AT2AI-6: Almuhaideb A. et al.: Comparative Efficiency and Implementation Issues of Itinerant Agent Language
on Different Agent Platforms

then (tour in

announce)

V to p,q,r,s parallel do

ITAG implementation is in the Java programming language,
previously built on top of Grasshopper (ITAG and ITAGII) and
now JADE (ITAGIII) agent toolkits. In all implementations, the
user first types in itinerary scripts into an applet (running in a
Web browser). Then, the itinerary script is parsed into a binary
tree representation and executed by an interpreter. Execution is as
follows: the interpreter translates the actions specified in the script
into commands which are then forwarded to agents which are
initially at a place (the home). These agents on receiving the
commands are then launched into the agent network to do their
work. Figure 1 shows an example of the ITAG demo user
interface. We explain the ITAG system architecture in the next
section.

3 able Agents ierary Langage Broject - Wicrosut Infernet xplorer

Flie Eol Ven Fooies s Heb

Q- © FRG Lot Jyreos @ Q-5 -

It 3

ks | € Bt Chercues Focech st ecu e agl v =

Demo

Output Agert Status St 21

Dal: 23112006 2 830 £61 E Time Main-Conais” Conaire~t Cotaingr3

Home

Do e Aess sehb27-0nrer 11947223 [sertrirg
Downloads [ESSSERSIES E Fniyaion comp efe
Demo 5 et szl
donz resu=tue
Report) vedagent
Credits Aailable Commands 1 agetmnirg
[rest Cas 2 vl spraons) [z rimotg
rriyaton conolle
Agenk Location Hethod Operator g alon cmp ee
PETFII
wonerags| fainerd[< wakesds| [Lol s
E| e resube
a3 shouesi= —
Lin Corti ko = [Honz resur=tne
|| 17 x o crbined aes
KINiD Rliniz IO E sgertmoing
iy o comp e
Enteryourconnmian et chuskes s
onz esul=he
i ‘.
“henowrotkerigent
Zontainar-3 Confairer-4 in parallel diny vGetna
“hen e ity Va Conteingr devg shovesuts [~
CaretPostion: 104 Fonerd
ITAG Language:
| e, earfesuls]IWotke AgEn S 3 il
‘ Hharhcent Cartainer-4) showRzsuts]
CaretPosition: 152 Brecie] ol

Vo mathava e fava Pl nsel edtorun s wxle

Figure 1. An example of ITAG demo user interface in action

2.3 ITAG System Architecture

The ITAG system is broken down into a number of
distinguishable modules that handle different functionalities of the
system. Figure 2 below illustrates these different modules and
their interactions with each other.

Users of the ITAG system interact with it through the User
Interface. The UI allows users to configure an itinerary using a
limited natural language format. The UI also contains a separate
area which shows the results of itinerary execution (Agent status
and Output panes in Figurel). The UI itself does not understand
the ITAG language and cannot execute an itinerary. A user can
configure an itinerary in the limited natural language format in the
User Interface and have it converted to an itinerary language
statement. This conversion is done by the ITAG Parser module.

When the user requests the itinerary to be executed, the itinerary
is passed on to the Controller Agent for execution.

ITAG Parser is part of the ITAG API and is independent of the
underlying agent platform. It parses a user configured itinerary
from its user-friendly limited natural language format to the
itinerary language format (ASCII format).

User
Update user defined
methods and operators

Web Server

[~

User Interface

ITAG Parser

A
ltinerary Lesults Load application
v methods over HTTP
Controller Agent Commands
ITAG Engine < Worker Agent
Responses

Figure 2. System Architecture

The ITAG Engine is the core of ITAG and contains the logic of
the Itinerary Language. It also forms part of the ITAG API and is
independent of the underlying agent platform. The engine
provides the necessary components to execute an itinerary and the
Controller Agent uses the ITAG Engine to understand and execute
an itinerary. The Engine takes as input an itinerary. As output the
engine makes method calls to carry out the tasks specified in the
itinerary.

The ITAG system consists of two types of agents: Controller
Agents and Worker Agents. Worker Agents are created and
controlled by Controller Agents. During the execution of an
itinerary Worker Agents maybe created and destroyed afterwards.
A system may consist of multiple Controller Agents. These two
types of agents are described below.

The Controller Agent gets as input an itinerary from the User
Interface. Its main functionality is executing this itinerary by
driving worker agents accordingly with the help of the ITAG
Engine. The Controller Agent is the controller and executor of an
itinerary.

The Worker Agents carry out application-specific useful
functionality requested by users from the ITAG system. A worker
is a simple agent controlled by another (controller) agent. It only
responds to commands from the controller agent and is not aware
of itineraries or the ITAG language. The worker agent is able to
do the following tasks when requested by its controller:

e move or copy itself to different locations

e execute a method (by downloading its class files from a
pre-defined location)

e store any results it gathers by executing various methods
in its “pocket”

e combine “pockets” with other worker agents
e destroy itself

The web server provides a place to host the User Interface (e.g.
applet) and the user defined method and operator classes.
Methods are application specific code to be executed by ITAG
agents (i.e. worker agents) which are represented as actions in the
itinerary language. They contain useful functionality written by
application developers and added to the system dynamically.

13

AT2AI-6: Almuhaideb A. et al.: Comparative Efficiency and Implementation Issues of Itinerant Agent Language
on Different Agent Platforms

Operators (represented by @ and II in the itinerary language) can
also be dynamically added to the web server for use by the ITAG
system.

3. MIGRATION PROCESS FROM

GRASSHOPPER TO JADE PLATFORM

The migration of ITAG from Grasshopper to JADE consists of
two main stages. The first is porting the agent communication and
the second, agent tasks (behaviors). The communication and
behavior mechanisms of JADE lead to ease of development and
better performance in comparison to Grasshopper.

3.1 Agent Communication

Agent communication which is a fundamental feature of an agent
platform describes how two agents converse. In Grasshopper, the
communication between agents is through their proxies. But in
JADE, agents communicate through message passing as
asynchronous agent messages [5]. Proxies do not exist in JADE;
instead, an agent searches the current location of its target by
querying the AMS (Agent Management Service) according to the
FIPA specifications. The Agent Management Service gives JADE
a better communication hub compared to Grasshopper. The region
server in Grasshopper could become a bottleneck, as it must
update every proxy just before being used [7]. Based on our
implementation we found that JADE has an excellent control over
cloned agents in terms of keeping references of these agents and
destroying them at the end of their tasks whereas in Grasshopper
some cloned agents could be left without being killed after task
completion.

3.2 Agent Tasks (Behaviors)

In JADE, the agent is allowed to have just a single Java thread
per-agent [5]. Inside this thread multiple behaviors can be added
using a round-robin non-preemptive scheduling policy [8].
Grasshopper makes use of the more complicated alternative of
implementing a multi-threaded system to handle, for example,
socket connections and communication processes. The JADE
behaviors improve agent performance as the switching between
behaviors is far faster than switching between Java threads.
Another advantage of the JADE behaviors against multi-threaded
systems is its elimination of all synchronization issues between
parallel behaviors accessing the same resources since all
behaviors are executed by the same Java thread which result in a
performance enhancement as well. [5, 8, 9]

4. ITAGIII NEW FEATURES

With ITAGIII, an improved GUI has been introduced to provide
simplicity to the system. The first screen that a user encounters in
the demo system lists the existing applications in the server that
an ITAG agent is capable of executing. An application, in ITAG,
is a collection of methods that collaborate together to provide a
complete service to the user. Also an intermediate page has been
introduced as an option in case an application may require further
user input to run this application. For example, an intermediate
page has been introduced in “make an appointment” application
in order to collect an appointment preferred times of the user.

Also in ITAGIII, the problem of nondeterministic activity (“I”)
implementation has been fully solved and full control of the clone

agents has been achieved. The implemented semantics carry out
all activities in parallel and select the first one to finish (others are
discarded). The complexity of killing other agents and threads was
the reason for non-implementation in the previous version of
ITAG under Grasshopper. (i.e. The original agent could be killed
under nondeterministic activity but with the clone agents left
alive).

Another feature of ITAGIII is the ITAG Engine which has been
extracted from ITAGII version. The ITAG Engine provides for
easy development of an ITAG system on any new mobile agent
platform. The Controller Agent for the new agent platform has to
implement an interface itagIII.engine.AgentDealings
which contains methods representing the output commands of the
ITAG Engine. We give the AgentDealings interface below
followed by figure 3 which shows the ITAG Engine and its
relation to other components.

public interface AgentDealings {
public boolean go(String agentId,
String tempLocation) throws Throwable;
public boolean exec(String agentId,
String method, String
dynamicpath) throws Throwable;
public String cloning(String agentId)
throws Exception;
public void combine (String source,
String destination, int ativityNum)
throws Exception;
public Vector getAgentPocket (
String source)throws Exception;
public void showAgentPocket (
String agentId)throws Exception;
public void removeAgent (String agentName)
throws Exception;
public String yourLocation (
String agentName) throws Exception;
public boolean existAgent (
String agentId);
public boolean existLocation (
String agentId);

Controller Agent

] -
g b O |Agent Logic Commands to
Ergie P g {(JADE Worker Agent
ngine Pd .
0 specific)

Figure 3. ITAG Engine and its relation to other ITAG system
components

S. COMPARISON OF ITAGII AND ITAGIII
PERFORMANCES

The aim of this experiment is to compare the performance of the
two versions of ITAG system on JADE (ITAGII) and
Grasshopper (ITAGII) agent platforms.

5.1 Experiment Set-up

5.1.1 Test Scenarios
The basic test scenario is explained in this section. First, we give
below an itinerary encapsulating all the test cases.

move WorkerAgent to Home doing clearResults
then tour WorkerAgent to [one of]
Location-1, Location-2, Location-3

14

AT2AI-6: Almuhaideb A. et al.: Comparative Efficiency and Implementation Issues of Itinerant Agent Language
on Different Agent Platforms

[in series|in parallel|if needed]
doing getInfo

then move WorkerAgent to Home doing
showResults

The controller agent communicates first with the worker agent to
return home and run the clearResults method, which will clear the
worker agent’s pocket. Then the controller agent communicates
with the worker agent to move to Location-1, Location-2 and
Location-3 running the getlnfo method. getlnfo method will
retrieve the date and time of the location of the agent as well as
the machine name and IP address. Also getInfo method returns
true or false randomly in order to test nondeterministic and
conditional nondeterministic activities. Finally the controller
agent communicates with the worker agent to return home running
the showResults method. This method will display the agent’s
pocket in the user interface as well as writing the result to a log
file.

Different test scenarios are realized through change of parameters,
which are explained below.

® Number of destinations - The most likely scenario for an
agent is to travel to a number of locations. Therefore, in our
test we examine the worker agent in a different number of
locations starting with two and increasing up to six
locations.

e Type of activities — The four types of ITAG activities to be
tested are: sequential, parallel, nondeterministic and
conditional nondeterministic.

5.1.2 Test Environment and Measurement

The experiment is repeated for every activity, with the locations
on the same host and on different hosts. Due to limitations with
ITAGII (under Grasshopper), the system was not tested for
nondeterministic activity, and also the system could not be tested
with the different locations on different hosts. The testing
environments for a number of locations located on different hosts
were four PC’s: one hosted the Controller Agent and the JADE
main container and the other three hosted the six locations with
two containers for every host. Table 2 shows hardware and
software configuration of the test PC's. All PC's were connected to
a 100Mbps network. To gain accurate results, each experiment
was repeated ten times and the average taken. The performance
was measured for every activity based on the number of locations
and the average time taken to complete the test.

Table 2. Hardware and Software of the testing environment

Processor Intel Pentium 4 CPU 3.00 GHz
Memory 1GB (SDRAM)
Operating System Windows XP Professional

Version 2002 Service Pack 2
Sun JDK 1.5.0_12

Java version

JADE version 3.5

Grasshopper version | 2.2.4

5.2 Results

This section presents the results based on ITAG system activities.
Each activity section will contain two figures. The first one will

compare ITAGII and ITAGIII by plotting the average time versus
number of locations in the itinerary. All locations for this test are
on the same host. The second figure shows a similar graph but
compares ITAGIII (JADE based agents) with the locations
physically distributed on four different hosts and on the same
host.

5.2.1 Sequential Activity

The result of this experiment shows that ITAGIII has a better
performance than ITAGII. As figure 4 illustrates, an ITAGIII
agent was consistently able to finish its itinerary task faster than
ITAGII. The performance of ITAGII degrades rapidly with
increasing number of locations compared to ITAGIII. For
example, with four locations we see ITAGIII is seven times faster
and with six locations it is six times faster.

Sequential Activity

——ITAGIIl (JADE) —=—ITAGII (Grasshopper) ‘

80

»
he] 70 _/-/
c 60
O 50
g 40 ——
» 30 —
&L
@ 20
g 10 P —
= o : ‘ ‘
2 3 4 5 6
Locations

Figure 4. Sequential activity, comparing ITAG system with
JADE and Grasshopper based agents on the same host
When comparing ITAGIII under JADE based agents with
different number of locations on the same host and on different
hosts (Figure 5) we see no significant variation in the time taken.
Since the experiments were conducted on a high-speed LAN with
low traffic, communication overheads were negligible. This
indicates that ITAGIII does not incur an extra overhead when the
agents communicate and move between multiple machines. As
future work we intend to conduct experiments in heterogeneous
wide-area network environments using agents with larger

workloads.
Sequential Activity
‘ —~ JADE same host —~= JADE different hosts ‘
13
12 ~
~11
210 =
89
83 = =
> —
E 7 —=
F g _
5| =
4 :
2 3 4 5 6
Locations

Figure 5. Sequential activity, comparing ITAG system with
JADE based agents on the same host and on different hosts

15

AT2AI-6: Almuhaideb A. et al.: Comparative Efficiency and Implementation Issues of Itinerant Agent Language
on Different Agent Platforms

5.2.2 Parallel Activity

The parallel activity scenario test in figure 6 shows that, as in the
sequential activity, that ITAGIII has a better performance than
ITAGII (six times faster on 3 locations). However, on ITAGII the
agent was unable to continue its tasks with more than 3 locations
to be visited in parallel. This is due to ITAGII’s issues with
managing multiple clones which was previously explained. Also
this indicates that ITAGIII is more stable, scalable and efficient
than ITAGII.

Parallel Activity

—~ITAGIII (JADE) - ITAGII (Grasshopper)

w
o

n N
o o

Time(seconds)
@

\

|

o

Locations

Figure 6. Parallel activity, comparing ITAG system with
JADE and Grasshopper based agents on the same host

Figure 7 shows that ITAGIII has the same performance with the
locations on the same host and on different hosts, which support
the same conclusion from the sequential activity.

Parallel Activity
—+-JADE same host -= JADE different hosts ‘

1

10 "
0 9
£ =
o7
@6 —
Q
ES —
= 3

2 -

2 3 4. 5 6
Locations

Figure 7. Parallel activity, comparing ITAG system with
JADE based agents on the same host and on different hosts

5.2.3 Nondeterministic Activity

In this test, the worker agent clones itself based on the number of
locations and sends them to the different locations to execute the
tasks. When one of the agents finishes its task that agent’s result is
taken and all the clones destroyed. We can see from figure 8 that
ITAGIII on different machines has a slightly better and stable
performance than on the same machine. We believe this behaviour
could be due to the distribution of the computation load between
multiple CPUs with a fast network connecting them. A similar
argument is put forward in [8].

Nondeterministic Activity

— JADE same host -= JADE different hosts

, //\\/ E———
) —
2 2
8
§1.5
g
g

0.5

0

2 3 . . :

Locations

Figure 8. Nondeterministic activity, comparing ITAG system
with JADE based agents on the same host and on different
hosts

5.2.4 Conditional Nondeterministic Activity

When running this test multiple times the number of locations the
worker agent travels to (in sequence) fluctuates based on the result
returned by the getlnfo method. For example, the agent travels
from one location to another as long as the getInfo method returns
false, otherwise the agent will skip the rest of locations and return
home to show the result. In the graphs below we show the average
times taken to complete the test. Figure 9 supports the previous
test results and shows that ITAGIII has better performance than
ITAGIL

Conditional Nondeterministic Activity

—~ITAGIIl (JADE) = ITAGII (Grasshopper)

5 i .J*/\
0
2 3 4 5 6
Locations

Figure 9. Conditional Nondeterministic activity, comparing
ITAG system with JADE and Grasshopper based agents on
the same host

In previous tests we saw that the performance of JADE on same
host versus multiple hosts is similar, but in figure 10 we do not
see this relationship because of the random behavior explained
above.

16

AT2AI-6: Almuhaideb A. et al.: Comparative Efficiency and Implementation Issues of Itinerant Agent Language
on Different Agent Platforms

Conditional Nondeterministic Activity

—~JADE same host = JADEdifferent hosts

gm
s 9
o 8
8 7 —_—
T 6 e < -~
E 5 -
A -

3 M

2

2 3 4 5 6
Locations

Figure 10. Conditional Nondeterministic activity, comparing
ITAG system with JADE based agents on the same host and on
different hosts

6. RELATED WORK

In this section we first briefly look at several itinerary languages
found in literature. Lu and Xu defined a mobile agent itinerary
language (MAIL) [10] which has been implemented as a feature
in the Naplet [11] mobile agent system. Their work however is
limited to a single mobile agent platform (Naplet) while ITAG can
be easily implemented on any mobile agent platform by using the
ITAG Engine. Performance figures for MAIL based agents were
also not available for comparison with ITAG.

Rech et al. in [12, 13, 14] describe a flexible itinerary that can be
adjusted at run-time to ensure greater fault tolerance. In ITAG

with the activity Aal the agents have some flexibility by specifying
the place of execution as a result of some function “/”. Also, a
branch of ITAG [15] with the concept of “Goals” introduces a
degree of flexibility to the itinerary.

Finally, we consider the Itinerary Graph [16] system. In their
work the migration strategies which are used to perform the
mobile agent’s actions are sequential, parallel and selective. The
selective strategy is similar to ITAG’s Conditional Non-
determinism. The lack of a strategy equivalent to Independent
Non-determinism is a limitation in Itinerary Graphs.

In terms of platform comparisons, we find that previous work
such as [7, 8, 9] give general discussions of the performance and
efficiency of JADE and Grasshopper. However, in this paper we
compare them in a more specific manner through the
implementation of ITAG and its four behaviours, namely
sequential, parallel, Independent Non-determinism and
Conditional Non-determinism.

7. CONCLUSIONS AND FUTUREWORK

This paper describes an implementation of ITAG (ITinerary
AGent) system based on the theory of itinerary scripting language
which aims to minimize the effort in mobile agent applications
development. A description of the itinerary language has been
given with examples as well as descriptions of the implementation
of ITAG on JADE. The ITAG Engine is the fundamental
component of the ITAG implementation which can be ported to
any mobile agent platform. The experimental results demonstrate
an evidently better performance of the new ITAGIII under JADE
platform compared with ITAGII under Grasshopper. Under the

tested situations, there were no noticeable differences in
performance between JADE based agents on the same host and on
different hosts. In our future work, we aim to extend the itinerary
language with more behaviors as well as enhancing the ITAG
demo system with more applications.

8. ACKNOWLEDGMENTS

The work reported in this paper has been funded in part by the
Australian Research Council’s Research Network on Enterprise
Information Infrastructure through the Taskforce on Context-
Aware Computing (EII-CAC). We also acknowledge the travel
assistance by King Faisal University, AlAhsa, Saudi Arabia.

9. REFERENCES

[1] Esparza, O., Fernandez, M. and Soriano, M. 2003. Protecting

mobile agents by using traceability techniques. In

Proceedings of the International Conference on Information

Technology: Research and Education 2003, 264-268.

Loke, S.W., Schmidt, H. and Zaslavsky, A. 1999.

Programming the Mobility Behaviour of Agents by

Composing Itineraries. In The 5th Asian Computer Science

Conference (ASIAN'99), (Phuket, Thailand), Springer-

Verlag, 214-226.

Loke, S.W., Zaslavsky, A., Yap, B. and Fonseka, J.R. 2001.

An Itinerary Scripting Language for Mobile Agents in

Enterprise Applications. In Proceedings of the 2nd Asia-

Pacific Conference on Intelligent Agent Technology (IAT

2001), (Maebashi, Japan), 124-128.

Yap, B. and Fonseka, J.R. 2001. ITAG: Itinerary Agent,

DSTC, Monash University, 29.

Bellifemine, F.L., Caire, G. and Greenwood, D. 2007.

Developing multi-agent systems with JADE. John Wiley,

Chichester, England ; Hoboken, NJ.

Leszczyna, R. 2004. Evaluation of agent platforms,

Technical report, European Commission, Joint Research

Centre,Institute for the Protection and security of the Citizen,

Ispra, Italy

Trillo, R., Ilarri, S. and Mena, E. 2007. Comparison and

Performance Evaluation of Mobile Agent Platforms. In Third

International Conference on Autonomic and Autonomous

Systems (ICAS'07), IEEE Computer Society, 41.

Burbeck, K., Garpe, D. and Nadjm-Tehrani, S. 2004. Scale-

up and performance studies of three agent platforms. In IEEE

International Conference on Performance, Computing, and

Communications, 857-863.

Kusek, K.J.G.J.M. 2006. A Performance Analysis of Multi-

Agent Systems. International Transactions on Systems

Science and Applications ITSSA), I, No. 4. 335 — 341.

[10] Lu, S. and Xu, C. 2005. A formal framework for agent
itinerary specification, security reasoning and logic analysis.
In 25th IEEE International Conference on Distributed
Computing Systems Workshops. 580-586.

[11] Cheng-Zhong, X. 2002. Naplet: a flexible mobile agent
framework for network-centric applications. In Proceedings
International, IPDPS 2002, Parallel and Distributed
Processing Symposium, 219-226.

[12] Rech, L., Montez, C. and de Oliveira, R. 2006. A New
Model for the Itinerary Definition of Real-Time Imprecise
Mobile Agents. In 2006 IEEE International Conference on
Information Reuse and Integration, 123-126.

(2]

(3]

(4]
(5]

(6]

(7]

(8]

(9]

17

AT2AI-6: Almuhaideb A. et al.: Comparative Efficiency and Implementation Issues of Itinerant Agent Language
on Different Agent Platforms

[13] Rech, L., Montez, C. and de Oliveira, R. 2006. A Clone-Pair
Approach for the Determination of the Itinerary of Imprecise
Mobile Agents with Firm Deadlines. In ETFA '06. IEEE
Conference on Emerging Technologies and Factory
Automation, 9-15.

[14] Rech, L., de Oliveira, R.S. and Montez, C. 2005. Dynamic
determination of the itinerary of mobile agents with timing
constraints. In IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, 45-50.

[15] Toan, P., Loke, S.W. and Harland, J. 2003. Adding
flexibility using structured goals: the case of itinerant mobile
agents. In IEEE/WIC International Conference on Intelligent
Agent Technology. IAT 2003, 562-565.

[16] Bo, Y., Da-You, L., Kun, Y. and Wang, S.-S. 2003.
Strategically migrating agents in itinerary graph. In
International Conference on Machine Learning and
Cybernetics, 1871-1876.

18

AT2AI-6: Braubach L. et al.: A Universal Criteria Catalog for Evaluation of Heterogeneous Agent Development
Artifacts

A Universal Criteria Catalog for Evaluation of
Heterogeneous Agent Development Artifacts

Lars Braubach

Alexander Pokahr

Winfried Lamersdorf

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg
Vogt-KélIn-Str. 30, D-22527 Hamburg, Germany
{braubach|pokahr|lamersdorf}@informatik.uni-hamburg.de

ABSTRACT

The research discipline of multi-agent systems is character-
ized by a high degree of heterogeneity. This heterogeneity
leads to a vast amount of options (e.g. different architec-
tures and languages) how to employ agent technology but
is also one major source of difficulties for its adoption. Peo-
ple interested in using multi-agent systems depend on solid
survey articles, which clarify and evaluate these different op-
tions and explain in which situations which choices should
be made. A survey should also propose viable classification
means for helping readers to understand which development
artifacts broadly exhibit similar properties. To date, in most
cases multi-agent system surveys do without classifications
and only address one specific type of artifact such as agent
languages or tools. Often, only the characteristics of the rep-
resentatives are described without evaluating them. In this
work a universal criteria catalog will be presented that has
been defined abstractly enough for being usable for a wide
variety of agent development artifacts. It will be shown how
this abstract catalog can be further refined with respect to
the chosen area of investigation. In addition to the cata-
log its general usage as part of a survey will be explained
and a blueprint for survey conduction will be presented. To
demonstrate its usefulness cutouts of extensive evaluations,
performed in the areas of agent architectures, languages,
methodologies, tools and platforms, will be presented.

1. INTRODUCTION

The high heterogeneity of the multi-agent systems (MAS)
research field leads to many options for realizing agent appli-
cations. As many of the available solutions (be it methodolo-
gies, platforms or other things) are suitable only in specific
application contexts it is very important to have guidelines
at hand for the selection of the right option with respect
to the given problem [9]. One viable instrument for people
interested in agent technology consists in studying surveys
and evaluations about specific agent artifacts such as agent
architectures or languages. Regrettably, most existing sur-
veys do not contain evaluations of the described artifacts and
available comparisons of artifacts suffer from ad-hoc classi-

Jung, Michel, Ricci & Petta (eds.): AT2A1-6 Working Notes, From
Agent Theory to Agent Implementation, 6th Int. Workshop,
May 13, 2008, AAMAS 2008, Estoril, Portugal, EU.

Not for citation

fications resp. selections as well as from non-standardized
evaluation criteria. Especially, divergent criteria make it
hard to appraise and compare evaluation results, because it
remains unclear if the considered criteria are relevant and if
there are others not discussed at all.

To improve this situation in this paper a universal criteria
catalog is presented that has been deduced from established
standards and is sufficiently generic for being utilized for
the evaluation of arbitrary agent artifacts. The usage of
the catalog fosters several important aspects. Firstly, eval-
uations of the same artifact type become comparable mak-
ing visible the advances in the multi-agent research field,
e.g. platform surveys from nowadays and from 5 years ago
could show in which areas (e.g. operating ability) progress
has been achieved. Secondly, evaluations of different arti-
fact types become comparable. This will allow identifying
how the state-of-the-art with respect to different artifacts
is related and e.g. in which area research should be urged.
Thirdly, the criteria catalog has been conceived to be us-
able in different scenarios. This only requires conceiving a
suitable weighting scheme, which emphasizes the different
criteria according to their importance with respect to the
overall evaluation objective.

Besides the criteria catalog itself it is also sketched what
else needs to be done to obtain significant evaluation results.
Therefore, a survey blueprint is presented highlighting all
important aspects that a survey (including an evaluation
part) should possess and also in which order they should
roughly be performed. Additionally, an evaluation process
is proposed, that describes, how to apply the criteria catalog
to a concrete evaluation setting, e.g. considering the artifact
type that is to be evaluated.

The rest of this paper is structured as follows. In section 2,
we give an overview over types of artifacts related to the de-
velopment of agent-based systems. Section 3 introduces the
universal criteria catalog, which is proposed for the evalua-
tion of such artifacts. An abstract evaluation process is de-
scribed in section 4. To illustrate the catalog usage, excerpts
of evaluations, performed in the area of agent architectures
and programming languages, are presented in sections 5 and
6, respectively. In section 7 we discuss the pros and cons of
the presented approach. Section 8 concludes the paper with
a summary and an outlook.

2. ARTIFACTS FOR MAS DEVELOPMENT
Agent technology has been applied to and further devel-

19

AT2AI-6: Braubach L. et al.: A Universal Criteria Catalog for Evaluation of Heterogeneous Agent Development
Artifacts

Deployed Applications

run on
Applications Agent Platforms
execute
used to build used to build
Application Development Platform Development
4 N
[Tools][Languages] [Languages
Standards
[Techniques] [Architectures
Standards
[Methodologies] [Theories]
[Domains] [Disciplines]
N v

Figure 1: MAS Development artifacts

oped in many entirely different fields, such as robotics, busi-
ness process management, or social simulation. The various
unrelated backgrounds of people involved in agent research
have led to a high diversity of the research area, which is at
the same time a strength and a weakness of agent technol-
ogy as a whole. The motivation for the work presented in
this paper is rooted in the availability of numerous artifacts
— conceptual (e.g. design approaches) as well as tangible
(e.g. software products) — for supporting the development
of a vast variety of agent-based software systems. Due to
the diversity of the field, it is commonly not apparent to an
agent developer, which types of artifacts are required for a
given software development problem and how to select suit-
able candidates from the available representatives of each
required artifact type.

To illustrate the landscape of potentially relevant arti-
facts, an overview of the most important artifact types play-
ing a role in MAS development is shown in Fig.1 (from 8,
23]). In this figure it is assumed that an agent application
runs on an agent platform, which in turn is used to execute
agent applications (see Deployed Applications). For the de-
velopment of both artifacts different kinds of additional ar-
tifacts are necessary (see Application Development vs. Plat-
form Development). For the application development espe-
cially methodologies, modelling techniques, tools and pro-
gramming langauges are essential whereas the platform de-
velopment relies on agent theories that are concretized to
architectures and agent languages. Moreover, application
development should be rooted in some kind of application
or problem domain and the development of agent platforms
is often based on ideas from other disciplines, such as philos-
ophy or biology. Finally, different kinds of standards apply
to different artifact types and ensure e.g. that agent plat-
forms can communicate with each other or that applications
follow the guidelines of a specific domain.

Given such a landscape with many choices for each of the
artifact types, agent developers as well as agent researchers
need suitable instruments for finding well-performing solu-
tions that fit to their individual software project context.
The universal criteria catalog proposed in this paper is one
such instrument, as it not only allows to compare repre-
sentatives of the same artifact type, but also to contrast
evaluation results regarding different artifacts.

3. CRITERIA CATALOG

In this section it is described what comprises the proposed
universal criteria catalog, how it was deduced from existing
standards and how it relates to other work in the field of
agent surveys and evaluations.

In general there are two opposing requirements for the
criteria catalog. On the one hand, the catalog should be
universal and apply to all possible kinds of agent develop-
ment artifacts (cf. 2). On the other hand, the catalog should
be highly concrete to allow meaningful results, when eval-
uating specific types of artifacts for specific settings. The
first requirement, i.e. the universality of the catalog, is es-
sential for achieving comparability of evaluation results by
providing a stable set of criteria, which can also be used in
future investigations. Moreover, applying a single universal
set of criteria to many different types of artifacts is the best
way to ensure the completeness of the criteria catalog.

On the other hand, having concrete criteria, as mandated
by the second requirement, is the precondition for obtain-
ing profound and accurate evaluation results. Detailed and
clearly defined criteria contribute to the objectiveness of an
evaluation, as they prevent unconscious or ad-hoc assess-
ments. A concrete and detailed criteria catalog also allows
for adapting the evaluation to a specific setting, by weight-
ing different criteria according to their need. When e.g. an
agent platform is searched as a teaching vehicle, one would
apply different ratings to criteria as one would do in an in-
dustrial software project.

3.1 Foundations

Before introducing our approach allowing to adequately
meet both opposing requirements, we give a short overview
of related and preceding work in the area of evaluation crite-
ria and evaluating agent development artifacts. Our work is
based on existing standards such as ISO 9126 and ISO 9241
[17, 18] and on evaluations of agent-oriented artifacts such as
development methodologies or programming environments
[14, 33, 11, 9]. The ISO 9126-1 standard defines six general
criteria for evaluating software product quality: function-
ality, reliability, usability, efficiency, maintainability, porta-
bility. These criteria (called characteristics) are subdivided
into more specific subcharacteristics (e.g. fault-tolerance as
part of reliability). The standard motivates, that subcharac-
teristics are further refined by attributes, which can be ver-
ified or measured. Those attributes are specific to concrete
types of software and not defined in the standard. Moreover,
the set of ISO 9241 specifications describes guidelines for the
ergonomics of human system interaction that can e.g. be
used for the further refinement of certain (sub)characteristics.

Besides existing standards, another source for relevant
evaluation criteria are the existing surveys in the area of
agent-oriented development artifacts. Unfortunately, most
of these surveys focus on one specific type of artifact and
therefore do not consider the universality of the applied cri-
teria. Nevertheless, the surveys are helpful for identifying
criteria that are considered relevant by agent developers.
E.g. Sturm and Shehory [33] propose the criteria categories
concepts and properties, notations and modeling techniques,
process, and pragmatics, refined into numerous subcriteria,
for evaluating agent-oriented methodologies. For evaluat-
ing agent development software, such as agent platforms
or development environments, Eiter and Mascardi [14] in-
troduce the categories agent attitudes, software engineering

20

AT2AI-6: Braubach L. et al.: A Universal Criteria Catalog for Evaluation of Heterogeneous Agent Development
Artifacts

support, agent and MAS implementation, technical issues,
and economical aspects, together with specific characteris-
tics for each category. This work forms the basis of our
criteria catalog as described next.

3.2 Criteria Catalog Proposal

To meet the requirements of a universal yet concrete cri-
teria catalog, we adopt the ISO approach of broad crite-
ria categories, refined into more detailed, but still univer-
sal subcriteria. Basically, the catalog proposal distinguishes
between functional and non-functional requirements. Func-
tional requirements are directly related to the scope of op-
eration, whereas non-functional requirements consider the
quality of a given artifact and its provided functions. In
the criteria catalog non-functional requirements have been
further decomposed into the categories usability, operating
ability and pragmatics, thereby subsuming and generalizing
the six main criteria of ISO 9126-1. Similarly, the subcri-
teria are obtained from a unification and generalization of
criteria found in standards and existing surveys. In the fol-
lowing the top-level and subcriteria of the catalog will be
presented in more detail:

Function: The function encompasses all functional proper-
ties of an artifact. Which concrete functional requirements
are important highly depends on the kind of researched ar-
tifact, e.g. in the context of programming languages other
aspects are considered than in the context of architectures.
The detailed criteria can be deduced asking the following
typical questions:

® Which are the base concepts of the artifact?

o What does the artifact enable and which restrictions exist
(power, missing concepts, capabilities)?

o [s the function of the artifact adequate in the given context
(for which contexts was it conceived/is it usable)?

o [s the function of the artifact adequate with respect to the
developer’s knowledge and capabilities (suitable for begin-
ners/experts only)?

Usability: The usability of an artifact refers to its suitabil-
ity for the construction of agent applications. The degree of
usability is evaluated according to the following aspects:

e Simplicity/intuitivity: How simple are the underlying
artifact’s mechanisms (simplicity vs. power)? Is the arti-
fact intuitive, i.e. can the developer use the artifact in an
understandable and anticipatable way?

e Learnability /familarity: What learning curve has the
artifact? Is the developer already familiar with the artifact
or its underlying mechanisms from another context?

o Individualization: Can the artifact be tailored towards
the user and/or the context?

o Extensibility: Can the artifact be extended with new
functionalities?

o Software engineering principles: Does the artifact re-
spect well-known principles such as modularization, refac-
toring, verification and/or does it facilitate the reusability
of elements in other contexts?

Operating ability: The operating ability of an artifact
encompasses all aspects that are relevant while the artifact
is executed (used), i.e. which properties does the artifact
exhibit during its operation? The operating ability’s quality
is measured using the following aspects:

o Performance: How efficient is the artifact with respect to
space- and/or time-critical operations?

o Robustness: How tolerant is the artifact with respect to
(partial) breakdowns?

e Stability: How does the artifact behave if executed during
a longer time period?

e Scalability: How does the artifact behave when applied
to varying problem sizes?

Pragmatics: Pragmatic aspects refer to external factors
that are neither related to the construction nor to the op-
eration of the artifact. Nonetheless, pragmatic aspects can
exert an important influence on the evaluation of the arti-
fact under consideration (e.g. a software), as they determine
to a high degree if an artifact can be used in practice. In
detail, pragmatic aspects are subdivided into the following
criteria:

e Installation/adoption: How easily can the artifact be
installed?

e Documentation/examples/support: Is documentation,
example code and support available for the artifact? What
quality do they have?

e Popularity: How big is the user community? Are field
reports available?

o Maturity: How mature is the artifact conceptually as well
as technologically?

o Technical boundary conditions: How easily can the
artifact be embedded into existing IT landscapes? How
well does the artifact fit to the technological mainstream?

e Costs: Which costs are related with the artifact (purchase,
construction, operation, working time, training, etc.)?

To conclude, this section has presented a universal criteria
catalog, which is based on established ISO-standards and
consists of the four main categories: function, usability, op-
erating ability and pragmatics. It is general enough to be
used for the evaluation of all important agent development
artifacts and provides enough detailed requirements for pro-
ducing meaningful and comparable evaluations as explained
in the next sections.

4. USAGE OF THE CATALOG

The criteria catalog has been used as a foundation for
extensive research in the field of multi-agent systems and
was specifically used by the authors to describe and evalu-
ate agent architectures, languages, methodologies, platforms
and tools [8, 23]. In this section it will be shown how the
catalog can be embedded as part of a survey with respect
to a specific development artifact. Therefore, a blueprint of
such a survey will be sketched and later on example surveys
in the selected areas of agent architectures and languages
will be presented. Conducting a survey naturally requires
incorporating related work as much as possible with respect

21

AT2AI-6: Braubach L. et al.: A Universal Criteria Catalog for Evaluation of Heterogeneous Agent Development
Artifacts

to other surveys as a whole and also with respect to all im-
portant parts of a survey as explained next.

The survey blueprint we propose consists of the following
logical steps: artifact definition, classification, selection, cat-
alog refinement, evaluation and summarizing results. Start-
ing point of each survey should be a discussion of the mean-
ing of the selected artifact. In this respect the important
definitions from literature should be discussed and it should
be made clear (if the notion is not unambiguously defined)
why a certain definition forms the foundation of the further
explorations. Thereafter, the state-of-the-art should be de-
scribed. For this purpose, in a first step classifications have
to be taken from literature or newly conceived and evaluated
with respect to the research objective.

A good classification serves two purposes: firstly, it should
help identifying structures in the research field giving the un-
familiar reader an initial orientation and secondly it should
facilitate the selection of specific representatives for a de-
tailed evaluation as representatives within the same category
have similar properties. Given that a lot of individual repre-
sentatives are usually available a detailed discussion of all of
them is often neither feasible nor desired and it is sufficient
to select prototypical representatives from each important
category. As last preparing step for the description of the
state-of-the-art it is necessary to perform the already men-
tioned catalog refinement with respect to the given research
artifact. In many cases it should be sufficient to elaborate
the meaning of the functional criteria of the catalog as the
non-functional aspects are quite stable and rather indepen-
dent of the artifact type. Thereafter, the selected individual
representatives should be explained and evaluated with re-
spect to the criteria catalog. Finally, the individual results
should be condensed by abstracting away from details and
calculating key data. The formula for aggregating the results
can vary according to the research objective and should be
defined in beforehand of the evaluation (e.g. as part of the
catalog refinement step).

The proposed survey blueprint can be tailored to a con-
crete evaluation scenario by introducing specific evaluation
scales. In the following, as an example a generic scheme
will be explained that is easy to apply and additionally fos-
ters objective evaluation results. The proposed scheme ex-
hibits a neutral weighting with regard to the criteria, and in-
tends that the evaluation will be done in three steps. Firstly,
each individual subcharacteristic of the criteria catalog (such
as simplicity/intuitivity) should be rated on a coarse scale
(4+1/-1/0 standing for yes/no/undefined resp. good/bad/neu-
tral). Such a coarse evaluation scale (e.g. instead of values
from 0 to 10) speeds up the evaluation process and also im-
proves objectiveness, because the decision if a criterion is
fulfilled or not is less prone to be influenced by personal
taste. To add further details, each decision should be jus-
tified by a meaningful textual description of the relevant
reasons, which allows readers of the evaluation to follow or
scrutinize the decisions.

In a second step, the rating of a main characteristic (such
as usability) can be calculated as a sum of the individual
results. As the number of subcriteria differs for the main
characteristics, these summary values should be normalized
to a common scale (e.g. from -2 to +2 meaning from very
weak to very strong). As final step, the overall evaluation re-
sult can be determined as mean of the main characteristics,
assuming for a generic evaluation, that all main character-

istics are equally important.

S. ARCHITECTURE SURVEY

In the following a cutout of the agent architecture evalu-
ation from [8] will be presented. The presentation here will
highlight how the proposed blueprint in general and criteria
catalog in particular can be used for conducting a survey.

Even though there are several surveys that target agent
architectures such as [30, 36] nearly all of them focus on a de-
tailed description and possibly classification of the individual
representatives, whereas none focuses on an exhaustive eval-
uation and comparison of the representatives (in [30] at least
some selected properties are compared). One reason for this
might be that architectures are abstract and in connection
with the development of MAS it seems more obvious to eval-
uate agent platforms, because these artifacts will directly be
used. However, agent platforms employ agent architectures
and therefore inherit a good deal of their properties. This
means that architecture evaluations can e.g. help to identify
the underlying conceptual limitations of agent platforms.

5.1 Architecture Survey: Artifact Definition

Bass et al. [2] define: “The software architecture of a
program or computing system is the structure or structures
of the system, which comprise software elements, the exter-
nally visible properties of those elements, and the relation-
ships among them.” It therefore has the basic task of making
structures of elements and their relationships visible.

In the area of multi-agent systems it is broadly distin-
guished between internal agent architectures and multi-agent
(or social) architectures. An internal agent architecture tack-
les the question of what comprises an agent, i.e. which build-
ing blocks can be used for its construction and how these
concepts are related. On the other hand, a social agent ar-
chitecture tries to describe how coordination between agents,
e.g. in the sense of teamwork, can be conceptualized.

5.2 Architecture Survey: Classification

Different kinds of classifications have been proposed for in-
ternal architectures. The most influential scheme is the one
of Wooldridge and Jennings [36], who introduced a distinc-
tion between reactive, deliberative and hybrid architectures.
In our work [8] we preferred a more general classification
scheme that relates architectures to the discipline and the-
ory from which they originated (see Fig.2). In general, ar-
chitectures have not been invented per se but rely on a more
abstract description in form of an agent theory. This means
the scheme basically distinguishes four different categories
according to the disciplines philosophy, psychology, biology
and sociology from which they have been influenced. These
base categories are further refined towards the relatively ab-
stract descriptions in the form of agent theories such as the
Unified Theories of Cognition (UTC) [22] and the Belief-
Desire-Intention Model (BDI) [7]. Most architectures have
been conceived as an interpretation and concretization of
such a theory.

5.3 Architecture Survey: Selection

The selection of representatives then excluded social archi-
tectures and also those, which are not intended as foundation
for application construction (e.g. psychologically inspired
architectures such as ACT-R that are used for experimen-
tation only). Concretely, the Subsumption [10], BDI (here

22

AT2AI-6: Braubach L. et al.: A Universal Criteria Catalog for Evaluation of Heterogeneous Agent Development
Artifacts

Joint

Responsibility ‘
JACK
Simple Teams
Sib on | Cohen's
ubsumption : Jointintentions
Architecture Ferber's ! ! - STEAM
g AGR Grosz's
SharedPlans
Brook's >
| Taskmodel / . Hubner's
Subsumption i
P Sociology MOISE+
Biolo i ‘
Concremess Dignum's
OperA
Architectures Theories Disciplines
Psychology .
Dérner's MicroPSI
PSI
Philosophy
Newell's \carus
uTC
Bratman's Andreson's SOAR
BDI ACT Architecture

PRS
Architecture

Rao's Abstract
Interpreter

Figure 2: Architecture overview

specifically PRS) [26], Soar [19], AOP [32], 3APL [12] and
Taskmodel (e.g. [13]) architectures have been evaluated in
the context of the criteria catalog.

5.4 Architecture Survey: Catalog Refinement

The catalog refinement with respect to internal agent ar-
chitectures needs to define what functionality is required
from an agent. Therefore, it is necessary to agree upon a
generally accepted agent definition. We used the strong no-
tion of agency as defined in [36] for that purpose. It stresses
the following agent properties: autonomy, reactivity, proac-
tivity, social abilities and mentalistic notions. Other abil-
ities that go beyond this definition (such as learning) are
not considered as required in our evaluation and can only
influence it positively.

5.5 Architecture Survey: Evaluation

The descriptions of the individual architectures and their
evaluation with regard to the criteria catalog cannot be pre-
sented in full length here due to the space limitations (see
[8] for the whole survey). To get an impression of how the
catalog is used for the evaluation of an artifact instance the
detailed evaluation of one representative with respect to one
main characteristic will be further illustrated. For this pur-
pose the usability of the Soar architecture will be discussed:

Simplicity/intuitivity (=): The basic principles of the
Soar architecture are simple and have been formulated in
terms of a few hypotheses (esp. the physical symbol sys-
tem and the problem space hypothesis). Foundation of the
behavior control is the search within problem spaces, which
relies on the intuitive concepts of beliefs and goals. The in-
tuitivity is yet reduced by the fact that only one solution
context can be active at the same time which is not in line
with the parallel goal achievement behavior of humans.

Learnability /familarity (-): The learnability of the ar-
chitecture is rather low because the architecture concepts
cannot directly be used for the realization of agents, i.e. in-

stead of goals the developer has to deal with different kinds
of low-level production rules. Developers with a solid back-
ground on rule-based approaches will have advantages in
learning Soar.

Individualization (-): The architecture does not allow
being tailored neither towards the user nor to the context.

Extensibility (-): Extensibility has not been integrated
at the architectural level of Soar. Therefore, extensions have
to be built at the application level, which e.g. has been suc-
cessfully done for a teamwork approach in [34]. Extensions
that aim at enhancing the available base mechanisms such
as the knowledge representation or learning method are far
more difficult to realize and require a deep understanding of
the architecture.

Software engineering principles (=): Soar supports
the modular software development by separation of the over-
all problem into individual problem spaces. This allows for
constructing the different functionalities of an application
rather independently of each other. Nevertheless, it does not
provide true reusability of software artifacts among different
application contexts as tight coupling between functionali-
ties exists due to direct connections of problem spaces via
common beliefs.

The rating for the usability of the Soar architecture is
therefore calculated as weak (-)! and underlines that im-
provements in this direction could further enhance the ac-
ceptance of the approach.

5.6 Architecture Survey:
Summarizing Results

The result table is depicted in Fig. 3 and shows the evalu-
ations of the four main characteristics for all analyzed archi-
tectures as well as their overall results. It reveals that none
of the architectures was able to achieve very good valuations
in all of the criteria. With respect to the different criteria

LCalculated as (0+(-D)+(-1)+(-
1)-40)/5%2=1.2

normalized sum:

23

AT2AI-6: Braubach L. et al.: A Universal Criteria Catalog for Evaluation of Heterogeneous Agent Development

Artifacts
Internal Agent Architectures Disciplines Theories Architectures Languages
Subsumption BDI Soar AOP 3APL Taskmodel
S Function , N N , N shohams | | [] aop || [J] aoP
2 AOP [\ |7 Architecture | "| Languages
(é Usability + + - - = = \
‘T Operating Ability + ++ ++ + + +) 3APL 3APL Lan-
3 Philosophy * Architecture % >}Jguage F:r:ily
o Pragmatics - + + - - - /
Result =(0,3) ‘ +(1,3) ‘ +(08) ‘ -(-05) ‘ =(0.3) ‘ +(0,5) Bramans 1L L. prs 1| | prs
BDI | " Architecture | "| Languages
Legend ++ very strong +strong =neutral -weak --very weak
L1 Newers || [LI L] soar
’ Psychology [1 uTC 1 Soar] 1 Language
Figure 3: Architecture evaluation results
Task- | | || APl-based
’ model [\ ["| Approaches
it is conspicuous that the operating ability of all architec- \
tures is high or even very high meaning that all architectures ‘ Ersllegy } =]| s Srook‘? } =]| SAub?:mF:tion \.{ AModelir;g
. . . ubsumption rchitecture roaches
can be implemented efficiently. In contrast, the other crite- 2 2
ria have produced mixed results. In most architectures the | _JI = U _JI ol U _]I Socal
function can be further improved and exhibits weaknesses ‘ Sociology ¥ tpeqries [T || Architectures [T || Languages

with respect to the required properties of the strong notion
of agency. The same applies for the usability which is not
as good as it is often claimed for the agent paradigm, i.e.
even though the paradigm provides intuitive metaphors, it
does not automatically lead to understandable and software-
technically sound architectures. Pragmatic aspects mainly
depend on the number and quality of available software im-
plementations, which is best for widely used approaches such
as the Taskmodel, BDI and Soar.

Considering the overall results, BDI, Soar and Taskmodel
architectures have attained good evaluations, whereby the
BDI architecture is the only architecture without obvious
weaknesses. Nonetheless, all architectures can be improved
especially with respect to the function and usability.

6. LANGUAGE SURVEY

This section recapitulates an evaluation of agent-oriented
programming languages performed in [23]. Existing surveys
of agent-oriented programming languages such as [36, 5, 4,
24] have been taken into account primarily for reviewing
existing categorizations, e.g. with regard to the language
type (e.g. logic-based vs. procedural) [5, 4], the design
approach (new language vs. extension of existing language)
[24], or aspects of the agent architecture (e.g. deductive,
practical, reactive or hybrid reasoning) [36]. This review
made sure that the scope of the planned survey would be
broad enough to incorporate all relevant work in the area.
Moreover specific evaluations, e.g. of logic based [21] or BDI-
style languages [20] were investigated as part of the process
of finding suitable refinements of the criteria catalog (i.e.
the refinement should make sure that aspects of existing
evaluations are considered).

6.1 Language Survey: Artifact Definition

In general, a programming language is commonly agreed
to be an artificial language that can be used to instruct ma-
chines. E.g. the ACM SIGPLAN group [1] defines program-
ming languages as “[...] languages that permit the specifica-
tion of a variety of different computations, thereby provid-
ing the user with significant control (immediate or delayed)
over the computer’s operation.” In the area of agent-based
systems, programming languages are used for a number of
different purposes. We adopt the scheme proposed by Fer-
ber [15], which introduces subgroups of agent-oriented lan-

Figure 4: Language overview

guages, such as communication languages and knowledge
representation languages. In our evaluation, we focused on
languages for describing the behavior of agent systems.

6.2 Language Survey: Classification

The classification of agent languages is straightforward, as
it is based on the previously presented classification of agent
architectures with regard to their origin (see Fig.4). E.g.
the PRS language category is introduced for languages im-
plementing a PRS-like architecture as originating from the
philosophical BDI model. It is noteworthy that the language
type “API-based approach” has been identified as the com-
mon way to implement the Taskmodel architecture, where
“API-based” means that instead of conceiving a new lan-
guage only a programming library for an existing language
(e.g. Java) is provided.

6.3 Language Survey: Selection

During the selection process, social languages have been
excluded (c.f. Fig.4), as the focus of our investigation was
on programming constructs for individual agents. Moreover,
the Subsumption architecture category has no correspon-
dence in the language survey. Moreover, graphical modeling
approaches (e.g. [16]) were excluded, restricting the scope
of the survey to text-based programming languages. From
each of the remaining five categories — AOP, 3APL, PRS
(=BDI), Soar, API-based (=Taskmodel) — the most promi-
nent representatives, based on academic as well as industrial
recognition, have been selected for further investigation. For
some categories such as PRS languages, where a large num-
ber of representatives exists, a pre-analysis of the field has
been performed to identify existing relationships (cf. Fig.5).

Investigated PRS languages are AgentSpeak(L) as imple-
mented in the academic Jason interpreter [6] and the lan-
guages of the commercial JACK agent toolkit (JAL) [35]
and the academic Jadex framework [25]. In the area of AOP
languages, the original work on Agent-0 [32] has been con-
sidered, as well as the languages employed in the commercial
AgentBuilder (RADL) [27] and the academic Agent Factory

24

AT2AI-6: Braubach L. et al.: A Universal Criteria Catalog for Evaluation of Heterogeneous Agent Development

Artifacts
1986 PRS
|

: v ¥
1993 | PRS-CL dMARS 1
1994 UM-PRS AgentSpeak
1995 i) v
1996 PRS-Lite C-PRS l AgentSpeak(L)
1998 JACK
1999 JAM!
2001 Agentis
2002 AgentSpeak(XL) <
2003 v Jadex Nuinscript
2004 Spark OpenPRS l Coo-AgentSpeak <——> Jason l

v v v v

Figure 5: PRS-like systems and relations

toolkits (AF-APL) [29]. The JADE platform [3] and the
Living Systems Technology Suite (LS/TS) from Whitestein
Technologies [28] have been selected as representatives of
API-based approaches. For 3APL and Soar, the most re-
cent incarnations (at that time), as described in [12] and
[19], have been evaluated.

6.4 Language Survey: Catalog Refinement

The refinement of the criteria catalog introduces relevant
areas of functionality for programming languages. The func-
tionality of a programming language is represented by its
programming constructs. Based on general programming
language literature (e.g. [31]) and existing evaluations of
agent-oriented programming languages (e.g. [21, 20]) three
basic functional criteria have been identified: concept ab-
straction, control flow abstraction, and safety. These criteria
are briefly explained in the following. For a more detailed
explanation see [23].

Concept Abstraction: Concept abstraction means the
introduction of programming constructs for some kind of
high-level concept (e.g. abstract data types, procedures or
— in the agent world — goals or commitments). Concept
abstraction is subdivided into data abstraction, behavior ab-
straction, and functionality abstraction, which respectively
denote the availability of programming language constructs
for representing data (e.g. objects), behavior (e.g. activi-
ties), and functionality (e.g. modules).

Control Flow Abstraction: One main requirement for
an agent-oriented programming language is to provide con-
structs for specifying independent or interrelated sequences
of activities, i.e. control flow abstraction. Subcriteria for
control flow abstraction are concurrency, dynamic behav-
tor, and dynamic ezecution. Concurrency constructs (e.g.
threads and semaphores) allow to specify (quasi-) parallel
activities and synchronization points between them. Dy-
namic behavior means the ability of an agent to dynamically
select among different actions when requested to perform
some task. Finally, with concepts for dynamic execution
(e.g. event or exception handlers), behaviors can be acti-
vated in a dynamic (runtime-dependent) way.

Safety: Safety subsumes built-in functionality of a pro-
gramming language aimed at reducing the number of pro-
gramming errors and can be subdivided into error preven-
tion and error recognition functionality. Error prevention
reduces possible sources for errors by design (e.g. local
name spaces prevent name conflicts, automatic garbage col-

lection reduces memory management errors). Error recog-
nition functionality, on the other hand, aims at detecting
errors early in the development process. E.g. with static
typing, many errors can be detected at compile time, which
would otherwise occur at runtime, and asserts allow to eas-
ily find errors at runtime, which might otherwise stay unde-
tected while leading to incorrect results.

6.5 Language Survey: Evaluation

The evaluation process for languages follows the generic
evaluation scheme already applied to the architectures, i.e.
coming to yes / no decisions about individual subcriteria,
which are then summarized to produce the overall score.
The results for each of the subcriteria have been obtained
in analytical and empirical evaluations. To evaluate crite-
ria such as simplicity/intuitivity, example applications have
been implemented with all of the languages. Among these
applications, some simple benchmarks, initially implemented
for evaluating platform performance (e.g. memory consump-
tion and time needed for creating/destroying a given num-
ber of agents) were also useful for evaluating the language
constructs available for these common tasks. As an exam-
ple, the evaluation of the functionality of the JACK agent
language (JAL) is presented next:

Concept Abstraction (4): JAL is based on Java and
therefore allows data to be represented in an object-oriented
fashion. A slight drawback is the fact, that the internal
reasoning of JACK requires some data to be represented in
a simple relational model, which does not fit well with the
object-oriented abstraction. Behavior abstraction is nicely
supported by the notion of plans, as well as functionality
abstraction is provided by the so called capability concept.

Control Flow Abstraction (=): The control flow of a
BDI agent is driven by the practical reasoning process con-
sisting of the steps goal deliberation and means-end reason-
ing. The PRS approach, as implemented in JACK, focuses
on means-end reasoning, i.e. selecting plans for achieving
goals or reacting to events. While the language therefore
provides very good control flow abstraction in this area, the
first step of practical reasoning, i.e. the selection of goals
to pursue, is not directly supported. This part of the agent
behavior therefore needs to be implemented in a manual,
ad-hoc fashion by the agent developer.

Safety (4): The new constructs that JAL introduces as
extensions to the Java language have been designed to allow
for compile-time consistency checks and therefore support

25

AT2AI-6: Braubach L.

et al.: A Universal Criteria Catalog for Evaluation of Heterogeneous Agent Development

Artifacts

Programming Languages

AOP PRS 3APL Soar API-based
2 Function - + = = +
2
9] Usability = + = . -
5
"§ Operating Ability + ++ = ++ +
©
I Pragmatics = + = + +
Result =(0,0) +(1,3) =(0,0) +(0,5) +(0,8)
Legend ++ very strong +strong =neutral -weak --veryweak

Figure 6: Language evaluation results

the safety of the language. Moreover, Java constructs for

runtime checks, such as asserts, can be used in JAL as well.
As a result, JAL is attested a good (+) functionality

score,? while identifying also some areas for improvement.

6.6 Language Survey: Summarizing Results

One aim of the survey was comparing programming ap-
proaches abstracting away from concrete language imple-
mentations. Therefore, the results of the individual repre-
sentatives, such as AgentSpeak or JAL, have been used to
compose a unified result for each approach. To avoid that
deficiencies of a single representative weaken the score of an
approach as a whole, for each main criteria such as function
or usability, the best value has been selected instead of the
average.

The accumulated scores of the evaluation are shown in
Fig.3. PRS languages are rated best, followed by API-
based approaches and Soar. This result might also be in-
fluenced by the fact that these are the language families,
where ongoing commercial development takes place. An-
other indication for the importance of commercial develop-
ment is that the winners achieve their best scores in the area
of operating ability. Nevertheless, it can be seen that still
many areas for improvement exist, e.g. the continued inte-
gration of agent-oriented concepts into useful programming
language constructs to further improve the functionality of
agent-oriented programming languages.

7. DISCUSSION

The criteria catalog proposed in this paper has proven use-
ful in a number of evaluations (see [8, 23]) and in this respect
could be used in isolation for aiding some future evaluations.
Nevertheless, to be of value to the research community as a
whole and to achieve the ultimate goal of comparable eval-
uations, the criteria catalog needs to be picked up by agent
researchers. Hence, in this section we give an overview of
the pros and cons of the approach and argue in favor of its
adoption.

The main objectives of the universal criteria catalog are
twofold. For individual analysts, the availability of a widely
accepted criteria catalog should ensure the completeness of
the investigations and largely simplify the task of producing
meaningful evaluation results. For the research community
as a whole, the adoption of a universal catalog would lead
to a better comparability of independently conducted evalu-

2Calculated as normalized sum: (140+41)/3*2=41.3

ations. This comparability would on the one hand apply to
evaluations concerning similar artifact types. For example,
evaluations of agent systems such as JADE, Jadex, Jason,
etc. often reflect a special viewpoint of the investigator as
some researcher might be more interested in agent architec-
tures, while others are interested in programming languages
or execution platforms. Applying universal criteria in all of
these evaluations would therefore facilitate comparisions to
a great extent. On the other hand, also the comparability
of evaluations concerning quite different artifact types (e.g.
methodologies vs. platforms) would contribute to an assess-
ment of the level of maturity of the different areas of the
research field.?

The approach taken in this proposal follows a multi-staged
process, in which 16 universal criteria (grouped in the areas
function, usability, operating ability and pragmatics) can be
refined or interpreted with respect to other criteria, that are
specific to an evaluation. This approach allows to recast cri-
teria of existing evaluations by subordinating each specific
criterion to an adequate universial criterion and then com-
paring the cumulated results of different evaluations. More-
over, the approach does not exclude any criteria that are
considered relevant by some researcher, because the catalog
does not prescribe the usage of some subset of commonly
used criteria, but instead the idea is that any relevant crite-
rion can be used as an interpretation or refinement of some
more abstract criterion. Finally, in addition to the catalog
itself, the proposed steps for an evaluation (definition, clas-
sification, selection, refinement, evaluation, summary) foster
different forms of reusability across evaluations. Besides the
criteria refinement, e.g. an existing classification could be
reused and applied to a new (or extended) set of artifacts
or an existing evaluation can be newly summarzied by us-
ing a different weighting scheme according to a new problem
setting.

We believe that, even though our proposed selection of
universal criteria might leave room for discussion, the gen-
eral idea is the only way to meet the objectives outlined
above. As an alternative one might consider using separate
criteria catalogs for each artifact type or for every single
evaluation, but this would impair the desired comparability.
Moreover, this alternative does not offer many advantages,
as the universal catalog is meant to be general enough to
cover arbitrarily detailed refinements of criteria. Another
alternative would be not to have only a few universal crite-
ria, but to have a catalog of virtually all possible criteria.
We think that such an approach, although perfectly viable
in higly standardized domains, can not be applied to the
area of agent technology, due to the high diversity of the
field. For example, some researchers might be interested in
details (like commitment strategies) that are not available
in some examined artifacts (e.g. the subsumption architec-
ture) leading to exceedingly oversized evaluations cluttered
with many “does not apply” ratings. Again, for specialized
evaluations, such detailed criteria can also be incorporated
in our approach by performing a suitable criteria refinement.

During our work, we considered a number of objections
against the approach, which we would like to rebut in the
following. Objections can relate to the catalog as a whole

3We e.g. found in our evaluations that the methodologies
could not achieve as high overall ratings as agent architec-
tures, which indicates that agent architectures are more ma-
ture than agent methodologies.

26

AT2AI-6: Braubach L. et al.: A Universal Criteria Catalog for Evaluation of Heterogeneous Agent Development
Artifacts

(incomplete, not enough focused on agents), to the crite-
ria itself (too abstract), and to the steps of the evaluation
process (refinement leading to arbitrariness or divergence,
cumulated ratings omit important information).

Catalog completeness. Thanks to an extensive analysis
of available standards and existing surveys, we think
that our criteria catalog is quite complete in the sense
that all criteria that we found could be subordinated
to some of our abstract criteria and that the identified
criteria apply to all kinds of artifacts.* Nevertheless,
we do not claim the total completeness of the approach
and would appreciate sensible extensions or enhance-
ments in order to adapt the catalog to further artifact
types.5

Catalog focus. Although devised for the area of agent tech-
nology, the catalog indeed does not contain criteria
that exclusively focus on agents. As stated above, this
is a result of the diversity of the research field and
has to be remedied by suitable catalog refinements for
the subarea of interest. On the other hand, this can
also be seen as an advantage, because it would allow
to compare artifacts from agent technology to other
solutions from competing areas, such as object orien-
tation, SOA and web services. Nevertheless, since the
catalog has not (yet) been applied to these areas, we
do not make claims regarding the significance of such
cross-area comparisons in this paper.

Criteria abstractness. It is true that the quest for uni-
versality harbors the danger of criteria becoming too
abstract and therefore meaningless. In our work, we
have applied the presented criteria catalog to five dif-
ferent artifact types and a total of 27 representatives
(4 methodologies, 6 architectures, 6 programming lan-
guages, 6 development tools, 5 platforms). In these
evaluations, we found all criteria quite helpful. Even
though they are indeed partly abstract, they encour-
age investigators to think in a systematic way about
the qualities of the examined artifacts and lead to new
insights and useful results about the objects of inves-
tigation.

Evaluation comparability. Regarding the steps of the eval-

uation process, the different taylorings, refinements
and choices that are necessary in each step (e.g. re-
garding the artifact classification or the evaluation func-
tion) bear some potential for divergence and arbitrari-
ness. But this is also (and even more so) true for any

4The refinement of the criteria catalog was most challeng-
ing with respect to methodologies, as usability and operating
ability here relate purely to the construction of a MAS and
not to its operation. For the dintinction of both, different
viewpoints have been introduced [8]. Usability is evaluated
from an individual perspective of a developer where it is
mainly of interest how good he can use the artifact, whereas
operating ability is considered from a organizational per-
spective where it is relevent which advantages and disadvan-
tages for a company exist when applying the methodology
in their projects.

For example, we have considered security (i.e. robustness
against attacks) as a separate criterion in the operating abil-
ity area. As we found that nearly none of the researched
agent artifact types (besides a few agent platforms) ad-
dresses security we decided to exclude this aspect in most of
our investigations.

other evaluation that is e.g. performed on the basis of
ad-hoc selections. Using the proposed process, compa-
rability can be at least partially established, because
the choices during the process are made explicit as part
of the evaluation and should therefore be well moti-
vated instead of being of implicit, ad-hoc nature.

Evaluation scheme. The proposed evaluation scale has been
conceived for a general evaluation of agent artifacts
without consideration of some special (e.g. applica-
tion) focus. Hence, the resulting values are only gen-
eral indications of an artifacts maturity and for any
concrete setting a different evaluation scheme should
be applied, which focuses on those qualities that are
required for the problem in question.

8. CONCLUSION

This paper has tackled the question how a developer can
choose among the many development options when imple-
menting an agent application. One key aspect here is to un-
derstand that agent technology currently offers many prob-
lem-specific solutions that address only certain types of ap-
plication domains. We argue that one important founda-
tion for making accurate choices is the availability of well-
defined and comparable surveys and evaluations of artifacts
such as platforms or methodologies. Therefore, we have pro-
posed a new universal criteria catalog for evaluating many
different kinds of agent artifacts. This is possible because
the criteria catalog is two-staged, consisting of an abstract
artifact-agnostic stage and additionally an artifact-specific
stage, which needs to be refined with respect to the con-
crete artifact type. The general applicability of the criteria
catalog has been proven by cutouts of two extensive evalu-
ations in the area of agent architectures and programming
languages, but was also successfully employed for method-
ologies, platforms and tools [8, 23].

Besides the criteria catalog it has also been shown how it
can be used as one part in a complete survey. For this pur-
pose the integral ingredients of a survey have been identified
and their coarse ordering has been defined. In a first step the
definition of the artifact has to be explained for establishing
a common discussion basis. Thereafter an overview of the
available representatives should be given and a selection of
artifact instances should be performed by applying a mean-
ingful classification. The main part of the survey should
then present the selected representatives and evaluate them
against the in beforehand refined criteria catalog. Finally,
the detailed results should be summarized and coarsened to
deduce also globally valid statements.

In future work we want to employ the criteria catalog to
perform individualized surveys that try to reason about the
degree of usefulness of artifact instances with respect to spe-
cific application scenarios (e.g. which agent platforms are
specifically suited for the transportation domain and why).
Additionally, we plan to investigate the applicability of the
presented criteria catalog regarding other non agent-related
artifact types (such as component-based approaches). Fi-
nally, a main objective and hope of the paper is that other
researchers pick-up the universal criteria catalog for their
planned investigations. This would lead to many positive
effects especially with respect to the completeness of the
used criteria and the comparability with other evaluations.

27

AT2AI-6: Braubach L. et al.: A Universal Criteria Catalog for Evaluation of Heterogeneous Agent Development
Artifacts

9.
[

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

ACM SIGPLAN. Bylaws of the special interest group
on programming languages of the association for
computing machinery. ACM, 2003.

L. Bass, P. Clements, and R. Kazman. Software
architecture in practice. Addison-Wesley, 2005.

F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi.
JADE - A Java Agent Development Framework. [5],
pages 125-147.

R. Bordini, L. Braubach, M. Dastani, A. El Fallah
Seghrouchni, J. Gomez-Sanz, J. Leite, G. O’Hare,

A. Pokahr, and A. Ricci. A survey of programming
languages and platforms for multi-agent systems.
Informatica, 30:33—-44, 2006.

R. Bordini, M. Dastani, J. Dix, and A. El Fallah
Seghrouchni. Multi-Agent Programming: Languages,
Platforms and Applications. Springer, 2005.

R. Bordini, J. F. Hiibner, and R. Vieira. Jason and
the Golden Fleece of Agent-Oriented Programming,.
[5], pages 3-37.

M. Bratman. Intention, Plans, and Practical Reason.
Harvard Univ. Press, 1987.

L. Braubach. Architekturen und Methoden zur
Entwicklung verteilter agentenorientierter
Softwaresysteme. PhD thesis, Univ. Hamburg, 2007.
L. Braubach, A. Pokahr, and W. Lamersdorf. Tools
and Standards. In S. Kirn, O. Herzog, P. Lockemann,
and O. Spaniol, editors, Multiagent Systems.
Intelligent Applications and Flexible Solutions, pages
503-530. Springer, 2006.

R. A. Brooks. How to build complete creatures rather
than isolated cognitive simulators. In Architectures for
Intelligence. Lawrence Erlbaum Associates, 1989.

M. Casagni and M. Lyell. Comparison of two
component frameworks. In Proc. of ICSE’03, pages
341-351. IEEE Computer Society, 2003.

M. Dastani, B. van Riemsdijk, and J. J. Meyer.
Programming Multi-Agent Systems in 3APL. [5],
pages 39-67.

S. A. DeLoach. Specifying agent behavior as
concurrent tasks. In AGENTS’01. ACM Press, 2001.
T. Eiter and V. Mascardi. Comparing environments
for developing software agents. The Furopean Journal
on Artificial Intelligence, pages 169-197, 2002.

J. Ferber. Multi-Agents Systems - An Introduction to
Distributed Artificial Intelligence. Addison-Wesley,
1999.

M. Griss, S. Fonseca, R. Cowan, and R. Kessler. Using
UML State Machine Models for More Precise and
Flexible JADE Agent Behaviors. In AOSE. Springer,
2003.

International Organization for Standadization (ISO).
Software engineering — Product quality — Part 1:
Quality model, ISO/IEC 9126-1:2001 edition, 2001.
International Organization for Standadization (ISO).
Ergonomics of Human-System Interaction-

Part 110: Dialogue Principles, ISO 9241-110:2006
edition, 2006.

J. F. Lehman, J. Laird, and P. Rosenbloom. A gentle
introduction to Soar, an architecture for human
cognition. Technical report, University of Michigan,

20]

(25]

[26]

27]

(28]

29]

2006.

V. Mascardi, D. Demergasso, and D. Ancona.
Languages for programming BDI-style agents: an
overview. In Proc. of WOA’05. Pitagora Editrice,
2005.

V. Mascardi, M. Martelli, and L. Sterling. Logic-based
specification languages for intelligent software agents.
CoRR, cs.A1/0311024, 2003.

A. Newell. Unified Theories of Cognition. Harvard
University Press, 1990.

A. Pokahr. Programmiersprachen und Werkzeuge zur
Entwicklung verteilter agentenorientierter
Softwaresysteme. PhD thesis, Univ. Hamburg, 2007.
A. Pokahr, L. Braubach, and W. Lamersdorf.
Agenten: Technologie fiir den mainstream? In it -
Information Technology. Oldenbourg, 11 2005.

A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A
BDI Reasoning Engine. [5].

A. Rao and M. Georgeff. BDI Agents: from theory to
practice. In Proc. of ICMAS’95, pages 312-319. MIT
Press, 1995.

Reticular Systems. AgentBuilder User’s Guide, version
1.3 edition, 2000.

G. Rimassa, D. Greenwood, and M. E. Kernland. The
Living Systems Technology Suite. In In Proc.
ICAS’06, 2006.

R. Ross, R. Collier, and G. O’'Hare. AF-APL -
Bridging Principles and Practice in Agent Oriented
Languages. In Proc. of ProMAS’04, pages 66—88.
Springer, 2005.

M. Scheutz and V. Andronache. The apoc framework
for the comparison and evaluation of agent
architectures. In AAAT Workshop. AAAT Press, 2004.
R. Sebesta. Concepts of Programming Languages.
Addison Wesley, 2005.

Y. Shoham. Agent-Oriented Programming. Artificial
Intelligence, 60(1), 1993.

A. Sturm and O. Shehory. A Framework for
Evaluating Agent-Oriented Methodologies. In Proc. of
AOIS’ 03, pages 94-109. Springer, 2004.

M. Tambe. Towards Flexible Teamwork. Art.
Intelligence Research, 7, 1997.

M. Winikoff. JACK Intelligent Agents: An Industrial
Strength Platform. [5].

M. Wooldridge and N. Jennings. Agent theories,
architectures, and languages: A survey. In Proc. of
ATAL 1994, pages 1-39. Springer Verlag, 1995.

28

AT2AI-6: Dasgupta A. and Ghose A.: Implementing reactive BDI agents with user-given constraints and objectives

Implementing reactive BDI agents with user-given
constraints and objectives

Aniruddha Dasgupta
Decision Systems Lab
School of Computer Science and Software
Engineering
University of Wollongong
Wollongong, NSW 2522, Australia

ad844@uow.edu.au

ABSTRACT

CASO is an agent-oriented programming language based
on AgentSpeak(L), one of the most influential abstract lan-
guages based on the BDI (Beliefs-Desires-Intentions) archi-
tecture. For many applications, it is more convenient to let
the user provide in real time, a more elaborate specification
consisting of constraints and preferences over possible goal
states. Then, let the system discover a plan for the most de-
sirable among the feasible goal states. CASO incorporates
constraints and objectives into the symbolic approach of re-
active BDI model which lead to better expressive capabili-
ties as well as more efficient computation. Jason is a fully-
fledged interpreter for a much improved version of AgentS-
peak(L). In this work we modify Jason to incorporate the
operational semantics of CASO. CASO also uses ECLiPSe,
an open source constraint solver, to apply constraint solving
techniques. Our preliminary results show that CASO can
be used as a powerful multi agent programming language in
solving problems in complex application domains.

1. INTRODUCTION

Agent-oriented programming is highly suited for appli-
cations which are embedded in complex dynamic environ-
ments, and is based on human concepts, such as beliefs,
goals and plans. This allows a natural specification of so-
phisticated software systems in terms that are similar to
human understanding, thus permitting programmers to con-
centrate on the critical properties of the application rather
than getting absorbed in the intricate detail of a complicated
environment. One of the most popular and successful frame-
work for Agent technology is that of Rao and Georgeff [11],
in which the notions of Belief, Desire and Intention or BDI
are central. Beliefs represent the agent’s current knowledge
about the world, including information about the current
state of the environment inferred from perception devices
and messages from other agents, as well as internal infor-
mation. Desires represent a state which the agent is trying
to achieve. Intentions are the chosen means to achieve the
agent’s desires, and are generally implemented as plans and

Jung, Michel, Ricci & Petta (eds.): AT2AI-6 Working Notes, From
Agent Theory to Agent Implementation, 6th Int. Workshop,
May 13, 2008, AAMAS 2008, Estoril, Portugal, EU.

Not for citation

Aditya K.Ghose
Decision Systems Lab
School of Computer Science and Software
Engineering
University of Wollongong
Wollongong, NSW 2522, Australia

aditya@uow.edu.au

post-conditions. As in general an agent may have multiple
desires, an agent can have a number of intentions active at
any one time. These intentions may be thought of as run-
ning concurrently, with one chosen intention active at any
one time. Besides these components, the BDI model in-
cludes a plan library, namely a set of "recipes” representing
the procedural knowledge of the agent, and an event queue
where both events (either perceived from the environment or
generated by the agent itself to notify an update of its belief
base) and internal subgoals (generated by the agent itself
while trying to achieve a desire) are stored. Usually, BDI-
style agents do no adopt first principles planning at all, as
all plans must be generated by the agent programmer at de-
sign time. The planning done by agents consists entirely of
context-sensitive subgoal expansion, which is deferred until
a point in time at which the subgoal is selected for execution.
The BDI model provides that all the knowledge of a rational
agent about the world is organized in statements that are its
beliefs. An agent’s desires depict some states of the world
that the agent "would like” to be realized. In the multi-agent
systems (MAS) community each agent is given the mandate
to achieve defined goals. To do this, it autonomously selects
appropriate actions, depending on the prevailing conditions
in the environment, based on its own capabilities and means
until it succeeds, fails, needs decisions or new instructions
or is stopped by its owner.

In this paper present an implementation our design of CASO
agent [7], discussing in more detail: (a) the requirements
specification with respect to CASO; (b) an implementation
of the CASO design; (c) some example exploring the CASO
design and and finally (d) the strengths and weaknesses of
our design. From an implementation point of view the ex-
istence of special libraries or dedicated programming lan-
guages that provide data and control structures for manip-
ulating agent specific properties allows for an easy imple-
mentation of agent models. The remainder of this article is
organized as follows. Section 2 gives a brief introduction of
popular BDI language AgentSpeak(L) [10] as well as talks
briefly about Jason [5], an interpreter of AgentSpeak(L);
section 3 discusses ECLiPSe [2], a constraint programming
toolkit respectively; section 4 describes the language CASO
and gives an overview of its operational semantics; section
5 describes the implementation details; section 6 gives an
example of using CASO and section 7 provides some ex-
perimental results. Finally, the last section describes some
related work and gives concluding remarks.

29

AT2AI-6: Dasgupta A. and Ghose A.: Implementing reactive BDI agents with user-given constraints and objectives

2. AGENTSPEAK(L)

AgentSpeak(L) is an agent framework/language with ex-
plicit representations of beliefs and intentions for agents.
This agent programming language was initially introduced
by Rao [10]. AgentSpeak(L) is a programming language
based on a restricted first-order language with events and
actions. The behaviour of the agent (i.e., its interaction
with the environment) is dictated by the programs written
in AgentSpeak(L). The beliefs, desires, and intentions of the
agent are not explicitly represented as modal formulas. In-
stead, designers can ascribe these notions to agents written
in AgentSpeak(L). The current state of the agent, which is
a model of itself, its environment, and other agents, can be
viewed as its current belief state; states which the agent
wants to bring about based on its external or internal stim-
uli can be viewed as desires; and the adoption of programs
to satisfy such stimuli can be viewed as intentions.
AgentSpeak(L) agent is described as a set of
(E,B,P,I,A,Sg,So,Sr) where:

e F is a set of events.

e B is a set of base beliefs.

e P is a set of plans.

e] is a set of intentions.

e A is a set of atomic actions.

o Sg selects an event from the set E.

e So selects a plan from the set P.

e St selects an intention from the set I.

The alphabet of the formal language consists of variables,
constants, function symbols, predicate symbols, action sym-
bols, connectives, quantifiers, and punctuation symbols. Apart
from firstorder connectives, AgentSpeak(L) uses ! (for achieve-
ment), ? (for test), ; (for sequencing), and « (for impli-
cation). There are two types of goals in AgentSpeak(L).
An “achievement goal” (a predicate prefixed with “1”), states
that the agent wishes to achieve a state of the world in which
the associated predicate is true. A “test goal” (a predicate
prefixed with “?”), states that the agent wishes to test if
the associated predicate is a true. Events in AgentSpeak(L)
might be external or internal. External events represent the
changes in the state of the world that should be handled by
the agent. On the other hand, internal events are triggered
from within the agent as a result of executing a plan. An
agent must have pre-designed plans in its plan library to
handle the incoming internal or external events. Plans are
the central concept to the abilities of an agent. They are
means that enable an agent to respond to the changes in its’
environment.

One of the most popular fully-fledged interpreter of AgentS-
peak(L) is Jason. Jason has many extensions making up
for a very expressive programming language for cognitive
agents. It implements the operational semantics of that
language, and provides a platform for the development of
multi-agent systems, with many user-customisable features.
Jason is implemented in Java (thus multi-platform) and is
available Open Source, distributed under GNU LGPL.

3. ECLIPSE: A CONSTRAINT SOLVER

Constraint satisfaction is a powerful computational paradigm

which proposes techniques to find assignments for problem
variables subject to constraints on which only certain com-
binations of values are acceptable. The success and the
increasing application of this paradigm in various domains
mainly derive by the fact that many combinatorial problems
can be expressed in a natural way as a Constraint Satisfac-
tion Problem (CSP), and can subsequently be solved by ap-
plying powerful CSP techniques.
ECLiPSe is a software system for the cost-effective devel-
opment and deployment of constraint programming appli-
cations, e.g. in the areas of planning, scheduling, resource
allocation, timetabling, transport etc. It is also ideal for
teaching most aspects of combinatorial problem solving, e.g.
problem modelling, constraint programming, mathematical
programming, and search techniques. It contains several
constraint solver libraries, a high-level modelling and con-
trol language, interfaces to third-party solvers, an integrated
development environment and interfaces for embedding into
host environments.

4. CASO: A REACTIVE BDI LANGUAGE

The concept of using constraints and explicit objectives in
a high-level agent specification language like Agentspeak(L),
yields significant advantages in terms of both expressivity
and efficiency as shown in our previous work in [8]. The
improvised technique applies constraint and objective di-
rected solving on the context section of a BDI agent’s plan
specification in order to determine an application plan to
fire. CASO (Constraint AgentSpeak(L) with Objective)
is a programming language based on the popular BDI lan-
guage AgentSpeak(L)which incorporates constraints and ob-

jectives into the symbolic approach of BDI model. CASO

incorporates Constraint Solving and Optimization (CSOP)
techniques where the optimization is based on the objective
function (softgoal).

In CASO, one can express agents’ goals quantitatively - for

example, agents can have some utility (objective) function
which needs to be maximized.

Incorporating constraints
into a reactive BDI agent programming language can lead to
better expressive capabilities as well as more efficient com-

putation (in some instances). More interestingly, the use of

constraint-based representations can make it possible to deal

with explicit agent objectives (as distinct from agent goals)
that express the things that an agent may seek to optimize

at any given point in time. CASO also incorporates efficient

option selection (selecting the best plan to use to deal with
the current event) with parametric look-ahead techniques,

i.e., techniques where the extent of look-ahead style delib-

eration can be adjusted. The typical CASO execution cycle

is characterized by the following steps:

1. observe the world and the agent’s internal state, and
update the event queue consequently;

2. generate possible new plan instances whose trigger event
matches an event in the event queue (relevant plan
instances) and whose precondition (beliefs and con-
straints in plan body) is satisfied (applicable plan in-
stances); plan selection is based on the satisfiability of
the current set of constraints as well as the one which
maximizes the current objective(using look-ahead tech-
niques);

30

AT2AI-6: Dasgupta A. and Ghose A.: Implementing reactive BDI agents with user-given constraints and objectives

3. select for execution one instance from the set of appli-
cable plan instances;

4. push the selected instance onto an existing or new in-
tention stack, according to whether or not the event is
a (sub)goal;

5. select an intention stack, take the topmost plan in-
stance and execute the next step of this current in-
stance: if the step is an action, perform it, otherwise,
if it is a subgoal, insert it on the event queue.

Informally, an agent program in CASO consists of a set of
beliefs B, a set of constraints C, an objective function O,
a set of events E, a set of intention I, a plan library P, a
constraint store CS, an objective store OS and three selec-
tion functions Sg, Sp, S to select an event , a plan and an
intention respectively to process and n, and n; are the two
parameters which denote the number of steps to look-ahead
for plan and intentions selection respectively.

Definition: A CASO agent program is a tuple
{B,P,E,I,C,0,S0,SE,Sr,np,n;,CS,0S} where

e B is a set of Beliefs.
e P is agent plan repository, a library of agent plans.

e F is set of events (including external and internal).

1 is a set of intentions.

C is a set of constraints.
e (O is an objective function.

e Sp is a selection function which selects an event to
process from set E of events.

e So is a selection function which selects an applicable
plan to a trigger t from set P of plans.

e S is a selection function which selects an intention to
execute from set I of intentions

o (S is a constraint store which stores constraints which
come as events.

e 0S is an objective store which stores the objective func-
tion which comes as an event.

e n, is an integer which denotes the number of steps
required to look-ahead for plan selection.

e n; is an integer which denotes the number of steps re-
quired to look-ahead for intention selection.

In CASO, a constraint directed improvisation is incorpo-
rated into the computation strategy employed during the in-
terpretation process. Constraint logic programming (CLP)
combines the flexibility of logic with the power of search
to provide high-level constructs for solving computationally
hard problems such as resource allocation.

Formally, a language CLP(X) is defined by

e constraint domain X,
e solver for the constraint domain X and

o simplifier for the constraint domain X

A CASO plan p is of the form t : by Nba A+ Aby A1 A
c2 N+ NCm < Sq1,892,- - ,S9k where t is the trigger; each
b; refers to a belief; each c; is an atomic constraint; each sq4
is either an atomic action or a subgoal.

For brevity we will use BContezt(p) to denote the belief
context of plan p. Thus

BContext(p) =bi ANba A+ Aby

Similarly, we will use CContezt(p) to denote the constraint
context of plan p. Thus

CContext(p) =c1 Aca A+ Acm

Transition of agent program to process events depends on
the event triggers. An event trigger, ¢, can be addition(+)
or removal(-) of an achievement goal(+!g;) or a belief(£b;).

4.1 Informal Semantics

The CASO interpreter manages set of events, a constraint
store, a objective store and a set of intentions with three se-
lection functions. Intentions are particular courses of actions
to which an agent has committed in order to handle certain
events. Kach intention is a stack of partially instantiated
plans. Events, which may start off the execution of plans
that have relevant triggering events, can be external when
originating from perception of the agentsS environment (i.e.,
addition and deletion of beliefs based on perception are ex-
ternal events) ; or internal, when generated form the agentSs
own execution of a plan (i.e., as subgoal in a plan generates
an event of the type addition of an achievement goal).

In the latter case, the event is accompanied with the inten-
tion which generated it (as the plan chosen for that event
will be pushed on top of that intention). External events
create new intentions, representing separated focuses of at-
tention for the agentSs acting on the environment.

The constraint store is initialized by the relevant constraints
whenever a trigger contains a constraint in its context. At
every cycle of the interpreter, the constraint store is en-
hanced with new constraints when applicable selected plan
is executed. These incremental constraints collecting pro-
cess eventually leads to a final consistent constraints set.
Constraint solving is applied to the context of each plan
to determine applicable plans as well as to generate solu-
tions for subsequent actions. Similarly, the objective store
contains the set of objective functions that need to be max-
imized (or minimized) which are part of the event context
and is similarly updated at each cycle. Plan Selection is de-
scribed in detail in the next subsection.

At every interpretation cycle of an agent program, CASO
updates a list of events, which may be generated from per-
ception of the environment, or from the execution of inten-
tions (when subgoals are specified in the body of plans).
It is assumed that beliefs are updated from perception and
whenever there are changes in the agents beliefs, this im-
plies the insertion of an event in the set of events. On top
of the selected intention there is a plan, and the formula in
the beginning of its body is taken for execution. This im-
plies that either a basic action is performed by the agent
on its environment, an internal event is generated (in case
the selected formula is an achievement goal denoted by !g;),
or a test goal is performed (which means that the set of
beliefs has to be checked). If the intention is to perform a
basic action or a test goal denoted by ?g;, the set of inten-
tions needs to be updated. In the case of a test goal, the

31

AT2AI-6: Dasgupta A. and Ghose A.: Implementing reactive BDI agents with user-given constraints and objectives

belief base will be searched for a belief atom that unifies
with the predicate in the test goal. If that search succeeds,
further variable instantiation will occur in the partially in-
stantiated plan which contained that test goal (and the test
goal itself is removed from the intention from which it was
taken). In the case where a basic action is selected, the
necessary updating of the set of intentions is simply to re-
move that action from the intention (the interpreter informs
to the architecture component responsible for the agent ef-
fectors what action is required). When all formulae in the
body of a plan have been removed (i.e., have been executed),
the whole plan is removed from the intention, and so is the
achievement goal that generated it (if that was the case).
This ends a cycle of execution, and CASO starts all over
again, checking the state of the environment after agents
have acted upon it, generating the relevant events, and so
forth.

4.2 Plan selection with parametric look-ahead

After Sg has selected an event, CASO has to unify that

event with triggering events in the heads of plans. This gen-
erates a set of all relevant plans. The constraints (if any)
that are included in the constraint part of the context are
put in the constraint store. The context part of the plans
is unified against the agents beliefs. Constraint solving is
now performed on these relevant plans to determine whether
the constraint(s) in the context of the plan is (are) consis-
tent with the constraints already collected in the constraint
store . This results in a set of applicable plans(plans that
can actually be used at that moment for handling the chosen
event).
The objective store maintains a set of objective function
which may be present in the event context. At each in-
terpreter cycle, the objective store is also updated with an
objective function for maximizing (or minimizing).

Given plans p1 and p2 in the plan library, and given a
current constraint store C and a current objective store O,
p1 <opt p2 if and only if: OptSol(C UCContext(p1),0S) >
OptSol(C U CContext(p2),0) .

OptSol(Constraints, Objective) denotes the value of the

objective function when applied to the optimal solution to
the problem denoted by the pair (Constraints, Objective).
We assume of course that C'U CContext(p1) and
C U CContext(pz2) are solvable.
Optimization techniques are now applied by the optimizer
to each of the applicable plan to determine an optimal solu-
tion. In effect we are solving a 'Constraint Satisfaction Op-
timisation Problem’ (CSOP) which consists of a standard
"Constraint Satisfaction Problem’ (CSP) and an optimisa-
tion function that maps every solution (complete labelling
of variables) to a numerical value. So now chooses this op-
timal solution from that set, which becomes the intended
means for handling that event, and either pushes that plan
on the top of an existing intention (if the event was an inter-
nal one), or creates a new intention in the set of intentions
(if the event was external, i.e., generated from perception of
the environment). One of the properties of CASO is that
since CSOP is solved at various steps using a solver, all the
beliefs and constraints must be global variables. Plan selec-
tion is defined as follows:

Given a trigger t and a set of applicable plans AppPlans(t)
fort, a planp € AppPlans(t) is referred to as an O-preferred
plan if and only if: p <opt p; for all p; € AppPlans(t).

The agent program is also responsible for making sure that
the objective store is consistent at any point of time. Dur-
ing each cycle of the interpreter, new objectives are added
into the objective store and hence a consistency checker is
used to maintain consistency. Formally a consistent objec-
tive store is defined as below.

Given an objective store OS and a new objective f, the
result of augmenting OS with f, denoted by OS5}, is defined
as y(MaxCons(OS U f)) where v is a choice function and
MazCons(X) is the set of all C X such that

1. x is consistent and

2. there exists no x’ such that v+ C ' C X and ' is
consistent

The new objective store is now given by v(MaxCons(OSU
0O)NOS) where 7 is the choice function, OS is the objective
store and O is the negation of the objective O.

Selection of O-preferred plan can be further enhanced by
using np the look-ahead parameter form plan selection. In
case np=0, no look-ahead is performed and maximizing the
objective function on the set of applicable plans would re-
sult in an O-preferred plan as described earlier. However, if
np > 0 then a look-ahead algorithm (used for choosing the
next move in a two-player game) is performed to select the
O-preferred plan.

We assume that the agent is trying maximize its objective
function and the environment may change in the worst pos-
sible way which would minimize the objective function. The
goal of the agent would be to select a plan which would max-
imize the minimum value of the objective function resulting
from the selection of plans which may occur due to the set of
new possible events that may come from the environment.
We follow the definition of goal-plan tree given in [13] to de-
compose the set of plans into a tree structure. In CASO,
goals are achieved by executing plans and each goal has at
least one plan, if not many, that can be used to satisfy the
goal. Each plan can include sub-goals, but need not have
any. The leaf nodes of the tree are plan-nodes with no chil-
dren (i.e., no sub-goals).

Each goal-plan tree consists of - a number of ’AND’ nodes
which are subgoals that must be executed sequentially for
the goal to succeed; and a number of ’'OR’ nodes which are
subgoals any one of which must be executed for the goal to
succeed. Given a set of applicable plans, an agent would
always try to achieve this objective at every decision step.
However, there could be unforeseen situations which may
result in the agent changing its normal course of action at
any of these decision points. Thus the strategy for the agent
is to compute in advance the worst case scenario that may
occur due to the change in the highly dynamic environment.
Figure 1 shows the tree decomposition for plan P depicting
all possible choices (OR nodes). The numbers corresponding
to the leaf nodes are the values of the optimization function
(say, f) which we are trying to maximize. Using the LookA-
headPlanSelection look-ahead algorithm shown in Algorithm
1, we obtain the value of 3 at the root node which suggest
that the agent should follow plan P2.

32

AT2AI-6: Dasgupta A. and Ghose A.: Implementing reactive BDI agents with user-given constraints and objectives

P

2=Maz (2, 3)

Plan
P1
2=Min (2, 5

Plan
P2

3=Min (3, 4

Plan Plan Plan Plan
P11 P12 P13 P14
Maximize (f) =2 Maximize (f) =5 Mazimize (f) =3 Mazimize (f) =4
Figure 1: Plan Tree
S. IMPLEMENTING CASO

Belief s
Constraints

Beliefs

Extermal Events
Beliefs
Internal Enems
Eve s
selected |mention

Relevant
Fhns

Beliefs

G preferred 5
Pz

Inte nd. "f Inte ntions

e /
7

— Pl
U 80

applicable plans

corstrim Enecute
saluer Intention

Update Intention

Figure 2: Operational Semantics of CASO

In this section we give some more details on the imple-
mentation of a CASO interpreter, which is clearly depicted
in Figure 2 (modified from [5]). The pictorial description of
such interpreter, greatly facilitates the understanding of the
interpreter. In the figure, sets (of beliefs, events, plans, and
intentions) are represented as rectangles. Diamonds repre-
sent selection (of one element from a set). Circles repre-
sent some of the processing involved in the interpretation
of CASO programs. The 3-d box represents the ECLiPSe
CLP solver that is plugged into the system which is respon-
sible for the option selection function based on the set of
objectives and beliefs and/or constraints.

5.1 ECLIiPSe plug-in for option selection func-
tion

As mentioned in earlier sections, we use ECLiPSe for op-
tion selection function So. A CASO agent has a set of
constraints/beliefs in its belief base and a set of objective
functions at any point in time during the execution cycle.
When an agent tries to select a plan from a possible set of
applicable plans, it invokes the ECLiPSe constraint solver to
determine the O-preferred plan. The ability for an user to
add and remove objectives is a unique feature of a CASO
agent which is not embedded inside the selection functions.
Beliefs in CASO are written as ECLiPSe CLP programs

Algorithm 1 LookAheadPlanSelection(int n, state S, Ob-
jectiveStore OS, ConstraintStore CS)

1: Generate goal-plan tree up to n levels from current state
S comprising of subgoals of AND and OR nodes with
subplans.

: Start from the root node.

Let constraint store at node p = ¢,.

Let o, denote the value of objective function at node p.

: For each node p in the goal plan tree set ¢, « CS

: if node p has child nodes p1,p2--- , pk in an AND struc-
ture then

7: Apply constraint solving at each pi with the current

constraint store ¢p; and the set of constraints for pi to
obtain op;.

8 Set cpit1 < cpi forall ¢ > 1.

9: Initialize constraint store for all child nodes of each p;

DTy

with Cpi -

10: end if

11: if node p has child nodes pl,p2--- ,pk in an OR struc-

ture then

12: Compute the objective function and update the con-
straint store for each pi.

13: Initialize constraint store for all child nodes of each p;
with Cpi -

14: end if

15: while n # 1 do

16: Propagate minimum value of objective function up to
each parent node starting from the leaf node.

17 n=n-1.

18: end while

19: Propagate the maximum value of its children for state
S.
At state S, the best plan is the child with the maximum

value.

20:

as shown in figure 3 below where Vars represent the set
of variables. Constraints are defined on the variables as
shown below. In the example below, let us assume that
the belief resource_available() is a part of the agent belief
base. As per CASO, this belief is stored as in a file re-
source_available.ecl. In this example, when the predicate
resource_available() is executed as a query, the solver would
solve the optimization as per the objective shown in the
figure and generate a solution. The solver first calls the
eplex (External CPLEX Solver Interface) library which al-
lows an external Mathematical Programming (MP) solver
to be used by ECLiPSe. eplex is one of the most widely
distributed, scaleable and efficient packages incorporating a
linear constraint solver. A problem in ECLiPSe is modeled
by a set of simultaneous equations: an objective function
that is to be minimized or maximized, subject to a set of
constraints on the problem variables, expressed as equali-
ties and inequalities. The eplex library allows for the user
to write programs that combines MP’s global algorithmic
solving techniques with the local propagation techniques of
Constraint Logic Programming. The result of the objec-
tive function along with the instantiated variables (Vars)
is stored in an output file resource_available.txzt. A CASO
agent may not have any objective function initially in which
case there would be no function to minimize and the solver
may choose to instantiate the variables with a possible set
of variable instantiation based on the set of constraints. In

33

AT2AI-6: Dasgupta A. and Ghose A.: Implementing reactive BDI agents with user-given constraints and objectives

case the objective comes externally from the environment,
the file resource_available.ecl is modified and specific objec-
tive function is written into the file. When the objective
changes, i.e. a new objective comes to the objective store,
this file is re-written with the new objective function. The
text file (resource_available.txt), containing the output from
the ECLiPSe solver is read by So and if there are several
applicable plans to pursue, So would choose the plan which
produces the highest value of the objective function and is
then pushed as an intention. In case there are actions asso-
ciated with plan whose parameters are part of the ECLiPSe
CLP, the variable values are also pushed along with the in-
tention.

Belief:

resource_available() :-

Vars = [A1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3),
Vars :: 0..inf,

integers(Vars),

(A1 4+ A2 + A3 = 21),

(B1 + B2 + B3 = 40),

(C1 4+ C2 + C3 = 34),

(D1 4+ D2 + D3 = 10),

(A1 4+ B1 + C1 + D1 =< 50),
(A2 + B2 + C2 + D2 =< 30),
(A3 + B3 + C3 + D3 =< 40).

Optimization function:

optimize(max(1*Al + 7*A2 + 200*A3 + 8*B1
+ 5*B2 + 2*B3 + 5*C1 + 5*C2

+ 1*C3 + 6*D1 + 4*D2 + 1*D3))

Figure 3: CASO Belief and Objective function writ-
ten in ECLiPSe CLP style

5.2 Modifying Jason

We are not going into the details of our modifications but
we only describe the important changes to Jason in this sec-
tion. Since we have kept the essence of Jason interpreter,
the only notable change we did has been with regards to
the new operational semantics that has been described ear-
lier. In particular, our main modifications to Jason are the
following:

e CLP-style beliefs (with constraints and objectives) are
now written in a separate file that can be modified
by an external event when a new objective is added
or deleted. The ECLiPSe solver reads this file and
generates output.

e TransitionSystem.java which is part of the asSeman-
tics package on Jason, is modified to call the external
ECLiPSe solver and does the new file handling oper-
ation. It also implements the look-ahead function for
option selection which can be added as a parameter.

Any application that can be deployed in Jason can also be
deployed in CASO with the added benefit of application of
an objective function that can be user defined which can
change with every interpretation of CASO execution cycle
by an external event.

6. EXAMPLE: USING CASO IN REAL-TIME
DECISION MAKING FOR BIOMASS SUP-
PLY CHAIN

Our implementation of CASO as described earlier, can be

shown by the following example where we try to describe
the benefit of using CLP in agent paradigm. The example
is chosen from a supply chain system where we describe the
optimizations carried out by a single agent.
The supply chain considerations and costs of using biomass
fuel on a large scale for electricity generation at power sta-
tions is quite complex and is made up of a range of different
activities which is described in detail in [1]. The activi-
ties can include ground preparation and planting, cultiva-
tion, harvesting, handling, storage, in-field /forest transport,
road transport and utilisation of the fuel at the power sta-
tion. Moreover, the options for supplying the end user with
biomass fuel of the right specification, in the right quantity
at the right time from resources which are typically diverse
and often seasonally dependent. Also, given the typical lo-
cations for biomass fuel sources (i.e. on farms and in forests)
the transport infrastructure is usually such that road trans-
port will be the only potential mode for collection of the fuel.
In order to supply biomass from its point of production to
a power station the following activities are necessary:

e Harvesting of the biomass in the field/forest.

e In-field/forest handling and transport to move the biomass

to a point where road transport vehicles can be used

e Storage of the biomass. Many types of biomass will
be harvested at a specific time of year but will be re-
quired at the power station on a year round basis, it
will therefore be necessary to store them. The storage
point can be located on the farm/forest, at the power
station or at an intermediate site.

e Loading and unloading road transport vehicles. Once
the biomass has been moved to the roadside it will
need to be transferred to road transport vehicles for
conveyance to the power station. At the power station
the biomass will need to be unloaded from the vehicles.

e Transport by road transport vehicle using heavy goods
vehicles for transport to the power station is used due
to the average distance from farms to power station,
and the carrying capacity and road speed of such ve-
hicles.

e Processing of the biomass to improve its handling effi-
ciency and the quantity that can be transported. This
can involve increasing the bulk density of the biomass
(e.g. processing forest fuel or coppice stems into wood
chips) or unitising the biomass (e.g. processing straw
or miscanthus in the swath into bales). Processing can
occur at any stage in the supply chain but will often
precede road transport and is generally cheapest when
integrated with the harvesting

Figure 4 describes the various options faced in the Biomass
SCM. The figure shows that there are several decision points
in the SCM which affect the final outcome. As an example,
trees grown on farmland on a short rotation coppice basis
can either be harvested as five meter whole sticks or cut and
immediately processed into wood chips. Different harvesting

34

AT2AI-6: Dasgupta A. and Ghose A.: Implementing reactive BDI agents with user-given constraints and objectives

ON-FARM
STORAGE
TRANSSORT OF
S INTERMEDIATE
CHIPS TO
INTERMEDIATE STRORARE
STORE

ROAD
TRANSPORT
— OF CHIPS TO
POWER STATION

DIRECT CUT
& CHIP
HARVESTING

INFIELD
CHIP
TRANSPORT

CENTRALISED
CHIPPING AT
POWER
STATION

ROAD
TRANSPORT
OF STICKS TO ||
POWER STATION

UNLOAD
STICKS IN

INFIELD ON-FARM

STORAGE ROAD

TRANSPORT
OF CHIPS TO
POWER STATION|

STICK
FIELD TRANSPORT

ON-FARM
CHIPPING

CHIP ON
HEADLAND

IN-FIELD CHIP
TRANSPORT

UNLOAD
STICKS ON

n

STORAGE
ON
HEADLAND

HEADLAND ROAD
TRANSPORT
OF CHIPS TO

POWER STATION

IN-FIELD STICK
[TRANSPORT TO
ACCESS POINT

ON-FARM
CHIPPING

ROAD
TRANSPORT
OF STICKS TO
POWER STATION

\4

Figure 4: Decision making in Biomass Supply Chain

machinery is required for each of these harvesting systems.
While sticks can be stored on the edge of fields without ex-
periencing decomposition, chips need to be stored on at least
a hard standing, and in a covered environment if decomposi-
tion is to be prevented. Therefore, the storage requirements
for the two products are very different. Similarly, sticks
and chips require very different transport systems in terms
of both handling (i.e. loading and unloading vehicles) and
suitable transport vehicle bodies for carrying them.. The
easiest and most cost effective harvesting system can result
in the need for expensive storage systems and can even lead
to an inability to supply fuel of the desired quality to the
power station.

The SCM as shown in the figure can be represented by a
CASO agent program (Figure 5) which has several plans
at its disposal and can choose one of the possible alternate
plans based on the current set of constraints as well as the
current objective that the SCM is trying to optimize. If we
look into Plan#1, we can see that one of the subgoals of stick
harvesting is to either chip on field or transport the sticks
as denoted by fieldChipOrTransport(). These two subgoals
are further elaborated in plans Plan#2 and Plan#3 where
two possible course of action could take place depending on
whether transport to power station is available or chipping
on farm is possible. These two possible options are denoted
by transportAvailable ToPowerStationFromField() and chip-
pingPossibleOnFarm() as two beliefs which can be written
in ECLiPSe style CLP and is shown in Figure 6. For the
sake of simplicity, let us assume that the objective function
(minimize cost) is given by:

optimize(man(50*StickDelivery TrucksReqd +

60*LoadingRobotReqd + 75*StickAsseblersReqd + 50*ChipDe-

livery TrucksReqd + 70*ChippingMachineReqd +
65*ChipLoadersReqd)).

The numbers denote the $ cost and the variables (shown in
figure 6) denote the quantity of each resource required. The
first 3 variables are related to stick transport and the last
3 are related to chipping on field. If we look carefully into
the two beliefs, we see that when the agent tries to select
either of plans Plan#2 and Plan#3 in figure 5, it evaluates
the context of each plan as given by beliefs Belief#1 and Be-
lief#2 in figure 6, and finds out that both plans can equally
be selected as all constraints are satisfied. However, once the

Plan #1:

+IstickHarvesting : field AvailableToUnload|()
—unloadInField(); inField Transport();onFarmStorage();
!fieldChipOrTransport().

Plan #2:

+! fieldChipOrTransport():
transportAvailableToPowerStationFromField()
—tranportSticksToPowerStationFromField();
centralized Chipping();

Plan #3:

+! fieldChipOrTransport(): chippingPossibleOnFarm()
«—onFarmChipping();
transportChipsToPowerStationFromField().

Plan #4:

+IstickHarvesting : headland AvailableToUnload()
—unloadOnHeadland(); storeOnHeadland();
theadlandChipOrTransport().

Plan #b5:

+!headlandChipOrTransport() : chipPossibleOnHeadland|()
—chipOnHeadland(); inFieldChipTransport();
transportChipsToPowerStationFromHeadland().
Plan #6:

+!headlandChipOrTransport() :
transportAvailableToAccessPoint()
—inFieldStickTransport ToAccessPoint();
laccessPointChippingOrTransport().

Plan #T7:

+laccessPointChippingOrTransport():
chipPossibleAtAccessPoint/()

«—onFarmChipping();
transportChipsToPowerStationFromAccessPoint ().
Plan #8:

+laccessPointChippingOrTransport():
transportAvailableToPowerStation()
—transportSticksToPowerStationFromA ccessPoint().

Figure 5: Plans related to a CASO Stick Harvesting
Agent

objective function is taken into consideration, the solution
obtained from evaluating Belief#1 gives a value of 245 of the
objective function and that from Belief#2 gives a value of
185. Based on the current scenario, the agent would choose
Plan#1 as it gives lower cost. Tables 1 and 2 show the value
of the objective function together with the value of the vari-
ables. Now, if the objective function changes at any point,
the result obtained may be different and the agent would
then choose a different plan based on the circumstances. As
an example, the current objective is a function of cost but
it can equally be made into a function of time. Thus, if
the consideration is to minimize the amount of time that is
required to carry out either of the two plans without any re-
gards to the cost, a new objective function (minimize) could
be written which is a function of time. The value of the
variables are passed to the intention stack in the CASO in-
terpreter cycle, and are used to initialize the parameters as
described earlier. Also, the above example showed only 1-
step look-ahead - however, one can easily go to reasonable
desired depth of the decision tree (AND/OR goal-plan tree),
and obtain all possible values of the objective function. The
agent would then choose the plan that would be the best out

35

AT2AI-6: Dasgupta A. and Ghose A.: Implementing reactive BDI agents with user-given constraints and objectives

BELIEF #1
transportAvailableToPowerStationFromField():-

% integer variables

Vars = [StickDeliveryTrucksReqd, LoadingRobotReqd,
StickAsseblersReqd],

integers(Vars),

J%constants
StickDeliveryTrucksAvail=2,
LoadingRobotAvail =2,
StickAsseblersAvail =2,

Z%inequality constraints
% enough trucks for transportation
StickDeliveryTrucksReqd <=StickDeliveryTrucksAvail,

%enough Tobots for loading sticks onto truck
LoadingRobotReqd <=LoadingRobotAvail,

%enough persons to assemble the sticks
StickAsseblersReqd <=StickAsseblersAvail,

%at least 3 robots + stick assemblers are required
LoadingRobotReqd + StickAsseblersReqd >=3,

%at least 1 delivery truck is required
StickDeliveryTrucksReqd >=1,

Zequality constraints:total number of resources required
StickDeliveryTrucksReqd + LoadingRobotReqd + Stick-
AsseblersReqd =4

BELIEF #2

chippingPossibleOnFarm/():-

%integer variables

Vars = [ChipDeliveryTrucksReqd, ChippingMachineReqd,
ChipLoadersReqd],

integers(Vars),

Y% constants

ChipDelivery TrucksAvail =2,
ChippingMachineAvail =2,
ChipLoadersAvail =2,

Zinequality constraints

% enough trucks for transportation
ChipDeliveryTrucksReqd <=ChipDeliveryTrucksAvail,
Y%enough chipping machines

ChippingMachineReqd <=ChippingMachineAvail,
%enough persons to load the sticks into chipping machine
ChipLoadersReqd <=ChipLoadersAvail,

%at least 1 machine, 1 loader and 1 delivery truck are
required

ChippingMachineReqd => 1,

ChipLoadersReqd >=1,

ChipDelivery TrucksReqd >=1,

Zequality constraints :total number of resources required
ChipDeliveryTrucksReqd + ChippingMachineReqd +
ChipLoadersReqd =4

Figure 6: Partial Set of beliefs related to a CASO
Stick Harvesting Agent

Belief#1
StickDeliveryTrucksReqd =1
LoadingRobotReqd =2
StickAsseblersReqd =1
Objective =245

Table 1: Value of variables and objective function
for Belief#1

Belief#2
ChipDeliveryTrucksReqd =1
ChippingMachineReqd =1
ChipLoadersReqd =1
Objective =185

Table 2: Value of variables and objective function
for Belief #2

of all possible worst cases as described in earlier section. It
should also be noted here that the we are currently depict-
ing only one agent in a multi-agent scenario which is doing
decision making. However, this can easily be extended to a
fully fledged MAS where several agents interact with each
other and take their own decisions for optimizing their own
objectives.

7. EXPERIMENTAL RESULTS

We ran a series of experiments to find out how the quickly
the system could find the optimal plan. Our goal is to show
that with a reasonable number of look-ahead steps and with
moderate number of plans/actions, the CASO agent would
be reactive enough (i.e., perform plan selection in real-time).
The experiments were conducted on Intel dual-core machine
using complex set of constraints with linear objective func-
tions which were basically solved by the ECLiPSe solver.
For any given CASO program, the following parameters can
greatly affect the way plan selection is done:

1. The branching factor of the goal-plan tree (i.e., the
number of OR nodes that are present for each plan).

2. The look-ahead depth (or level) of the goal-plan tree
up to which CSOP technique will be applied.

3. The number of constraints for each plan.

4. The number of variables in the CASO program. Note
that the list of variables in the program has to be glob-
ally defined.

We randomly generated CASO programs and tested the plan
selection function by fixing some parameters and varying
other parameters as given above.

Experiment 1 Given a plan in a CASO program with mul-
tiple subplans, we calculated the time taken to find
the optimum plan among the choices by fixing the
branching factor, number of constraints per plan and
the number of variables for a given objective function
and varying the depth of look-ahead. We set branch-
ing factor = 8, number of constraints/plan = 2 and
number of variables =5.

36

AT2AI-6: Dasgupta A. and Ghose A.: Implementing reactive BDI agents with user-given constraints and objectives

Experiment 2 Given a plan in a CASO program with mul-
tiple subplans, we calculated the time taken to find the
optimum plan among the choices by fixing the look-
ahead depth, the branching factor, number of con-
straints per plan variables and varying the number of
variables. Note that for this experiment, we generated
a number of CASO programs with the same set of plans
having same head and body, but different context (dif-
ferent set of variables). Also, we used similar objective
function with lesser variables. We set branching factor
= 3, number of constraints/plan = 2 and look-ahead
depth =3.

Experiment 3 Given a plan in a CASO program with mul-
tiple subplans, we calculated the time taken to find the
optimum plan among the choices by fixing the look-
ahead depth, the branching factor, number of variables
and the same objective function and varying the num-
ber of constraints per plan. Note that for this experi-
ment, we generated a number of CASO programs with
the same set of plans having same head and body, but
different context (different number of constraints per
plan). We set branching factor = 3, look-ahead depth
= 8 and number of variables =5.

Experiment 4 Given a plan in a CASO program with mul-
tiple subplans, we calculated the time taken to find
the optimum plan among the choices by fixing the
look-ahead depth, number of variables, the number
of constraints per plan and the same objective func-
tion and varied the branching factor. Note that for
this experiment, we generated a number of CASO pro-
grams with different set of plans. We set look-ahead
depth = 3, number of variables =5 and number of con-
straints/plan = 2.

2000 000
1880 = . #
1200 i
1850 -
o o
= 10 g amo /
1760 =
@ =
S o E M0
IS =]
/ 100
16850
1600 o /,,__——-
1560 oo
1500 €0 T T T |
1 2 3 4 5 1 M 3 K 5
Condraints per plan Lok-ahead Depth
1®% 12000 3
1 s 11000
. 10000
9000
10
s . 800D
= . g om0
E =
E B 6000
1z
E £ soo0 —
= oz 4000
1 3000
1z 2000 —
116 1000 {——
0

11+
1 z 3 + & 2 3 4 §

Wariables Branching Factor

Figure 7: Graphs showing experimental results

Figure 7 depict the results for each of the above ex-

periments. As we can see that with increasing depth
for the same set of plans, the time taken to find the
optimal plan increases. Similar trend is noted when
the number of number of variables or constraints per
plan is increased although the difference is not that
significant as with varying depth. Finally, if branching
factor is increased the time taken to find the optimal
plan increases as more combinations have to be gen-
erated. It is to be noted here though that for every
run, we are generating a different set of plans (a dif-
ferent CASO program), solving LP for each of these
programs is quite different each time and there is no
consistency among them. Thus, for some CASO pro-
grams, it might be such that finding a solution may be
faster with a higher branching factor than one with a
lower factor. for this reason, we randomly generated
100 CASO programs with different branching factors
keeping all other parameters constant and found that
on an average, with an increase in the branching factor,
the time taken to find the optimal plan also increases
(Figure 7).

Overall we can see that the times take (in ms.) are
quite small and we can select an optimal very quickly
using ECLiPSe together with Jason in our implemen-
tation of CASO.

8. RELATED WORK AND CONCLUSION

Decision agents can be designed to provide interactive de-
cision aids for end-users by eliciting their preferences and
then recommending matching products. In [6] constraint
logic programming and data model approach is used within
BDI agent framework. However, this work speaks of BDI
agents in general and does not integrate with any BDI pro-
gramming language. AgentSpeak(XL) programming lan-
guage [4] integrates AgentSpeak (L) with the TAEMS sched-
uler in order to generate the intention selection function. It
also describes a precise mechanism for allowing programmers
to use events in order to handle plan failures which is not
included in AgentSpeak(L). This work, however, adds prior-
ity to the tasks. Some related theoretical work on selecting
new plans in the context of existing plans is presented in [9].
Another related work on detecting and resolving conflicts be-
tween plans in BDI agents is presented in [14]. The "degree
of boldness” of an agent is defined in [12] which represents
he maximum number of plan steps the agent executes be-
fore re-considering its intentions. However in this case it is
assumed that the agent would backtrack if the environment
changes after it has started executing the plans.

Our implementation of CASO provides the user with the
flexibility of adding explicit objectives and constraints to
achieve final goals. CASO uses a modified version of Jason,
the well-known BDI AgentSpeak(L) interpreter, together
with another open-source constraint solver ECLiPSe thereby
combining reactive combining agent programming with con-
straint solving techniques. CASO is based on the strong
theoretical foundations of BDI and in the simple example
described in earlier section, we can see that CASO can in-
deed be deployed in many agent application domains like
supply chain, health care etc. as well as used in the design
and simulation of such applications where several types of
decision making and optimizations may be required. More-
over, the time taken to select a particular plan in real-time is
very small (with a reasonable look-ahead depth) and is only

37

AT2AI-6: Dasgupta A. and Ghose A.: Implementing reactive BDI agents with user-given constraints and objectives

depended on the constraint-solver that we use. In future
we plan to extend CASO to incorporate user preferences as
c-semiring [3] and implement the design to create a more ro-
bust and powerful MAS which can be deployed in complex
applications.

9.
1]

2]

[9]

[10]

[11]

[12]

[13]

[14]

REFERENCES

J. Allen, M. Browne, A. Hunter, J. Boyd, and

H. Palmer. Logistics management and costs of biomass
fuel supply. MCB UP Ltd., 1998.

K. R. Apt and M. Wallace. Constraint Logic
Programming using Fclipse. Cambridge University
Press, 2007.

S. Bistarelli, U. Montanary, and F. Rossi.
Semiring-based constraint satisfaction and
optimisation. In Journal of ACM. ACM Press, 1997.
R. Bordini, A. Bazzan, R. Jannone, D. Basso,

R. Vicari, and V. Lesser. AgentSpeak(XL):Efficient
intention selection in BDI agents via decision-theoretic
task scheduling. ACM Press, 2002.

R. Bordini, J. Hubner, and M. Wooldridge.
Programming Multi-Agent Systems in AgentSpeak
Using Jason. John Wiley & Sons, Ltd, 2007.

S. Chalmers and P. M. D. Gray. Bdi agents and
constraint logic. In AISB Journal Special Issue on
Agent Technology, 2001.

A. Dasgupta and A. K. Ghose. Dealing with objectives
in a constraint-based extension to agentspeak(l). In
Proc. of the Pacific Rim International Workshop on
Multi-Agents, 2005.

A. Dasgupta and A. K. Ghose. Caso: A framework for
dealing with objectives in a constraint-based extension
to agentspeak(l). In Proc. of the 2006 Australasian
Computer Science Conference, 2006.

J. Horty and M. Pollack. Evaluating new options in
the context of existing plans. In Artifical Intelligence,
2001.

A. Rao. Agentspeak(l): Bdi agents speak out in a
logical computable language. In Agents Breaking
Away: Proceedings of the Tth European WS on
Modelling Autonomous Agents in a Multi-Agent
World. Springer-Verlag: Heidelberg,Germany, 1996.
A. Rao and M. Georgeff. BDI Agents: from theory to
practice. San Fransisco, USA, 1995.

M. Schut and M. Wooldridge. Intention
reconsideration in complex environments. In
Proceedings of International Conference on
Autonomous Agents, Varcelona, Spain, 2000.

J. Thangarajah. Managing the concurrent execution of
goals in intelligent agents. In Phd. Thesis. RMIT,
2004.

J. Thangarajah, L. Padhgam, and M. Winikoff.
Detecting and avoiding interference between goals in
intelligent agents. In G. Gottlob and T. Walsh, editors,
Proceedings of the International Joint Conference on
Artificial Intelligence. Academic Press, 2003.

38

AT2AI-6: Fortino G. et al.: Modeling Multi-Agent Systems through Event-driven Lightweight DSC-based Agents

Modeling Multi-Agent Systems through Event-driven
Lightweight DSC-based Agents

Alfredo Garro
DEIS

Giancarlo Fortino
DEIS
Universita della Calabria,
Via P. Bucci cubo 41c
87036 Rende (CS) Italy,
+39.0984.494063

g.fortino@unical.it

Via P. Bucci cubo 41c
87036 Rende (CS) ltaly,
+39.0984.494795

garro@unical.it

ABSTRACT

To date several agent models and related programming
frameworks have been introduced for developing distributed
applications in terms of multi-agent systems in open and dynamic
environments. Among them, those based on lightweight
architectures, asynchronous messages/events and state-based
programming such as Jade, Bond and Actors have demonstrated
great effectiveness for modeling open and distributed software
systems. In this paper, we propose the Event-driven Lightweight
Distilled StateCharts-based Agent (ELDA) model which is based
on the same basics of the aforementioned agent models and
frameworks, and further enables a more effective design through
(1) Statecharts-based specification of the agent behavior, (ii)
multiple coordination spaces for local/remote inter-agent and
agent/non-agent-component interactions, and (iii) a coarse-
grained strong agent mobility. A MAS based on the ELDA model
can be easily designed through the ELDA meta-model and
programmed through the ELDAFramework, a Java-based
implementation of the meta-model. MAS programming is
supported by the ELDATool, an Eclipse-based visual tool which
also automates code generation. A simple yet effective case study
is provided to exemplify the proposed model and its related tools.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques —
State diagrams. D.2.6 [Software Engineering]: Programming

Environments — Integrated environments. 1.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence — Multiagent
systems.

General Terms
Design, Languages.

Keywords
Agent Models, Statecharts, Events, Multi-coordination, Mobility.

1. INTRODUCTION

The agent paradigm is one of the mainstream paradigms for the
modeling and implementation of complex software systems,

Jung, Michel, Ricci & Petta (eds.): AT2AI-6 Working Notes, From
Agent Theory to Agent Implementation, 6th Int. Workshop,
May 13, 2008, AAMAS 2008, Estoril, Portugal, EU.

Not for citation

Universita della Calabria,

Wilma Russo
DEIS
Universita della Calabria,
Via P. Bucci cubo 41c
87036 Rende (CS) Italy,
+39.0984.494691

w.russo@unical.it

Samuele Mascillaro
DEIS
Universita della Calabria,
Via P. Bucci cubo 41c
87036 Rende (CS) ltaly,
+39.0984.494754

s.mascillaro@unical.it

especially in open and dynamic environments. As advertised by a
manifesto for agent technology [18] agents can be seen as both a
design metaphor and a source of technology. In particular, from
the design metaphor perspective, several agent models and related
frameworks have been to date introduced [26]. Such agent models
basically can be classified in two large groups: (i) models based
on intelligent agent architectures [18, 21] ranging from reactive
agents (e.g. Brook’s subsumption architecture) to deliberative
agents (e.g. BDI agents); (ii) models based on the mobile active
object concept encompassing mobile agent architectures [5, 24].
Models of the first group are mainly oriented to problem-solving,
planning and reasoning systems whereas models of the second
group are more oriented to distributed computation in open and
dynamic environments like the Internet.

In the context of the Internet computing, agent models and
frameworks based on lightweight architectures, asynchronous
messages/events and state-based programming such as Jade [3],
Bond [4], and Actors [2], have demonstrated great effectiveness
for modeling and programming agent-based distributed
applications.

This paper proposes the Event-driven Lightweight Distilled
StateCharts-based Agent (ELDA) model which aims at modeling
multi-agent systems (MASs) in the context of open and dynamic
computing environments. The ELDA model is based on the same
fundamentals of the aforementioned models/frameworks and also
introduces new enabling features which allow for a more effective
development of MASs. These new features result as an
enhancement of basic characteristics provided by two previously
defined models (the MAO model [8] and the MC model [11]) and
their integration. In particular with reference to the three models
(Behavioral, Interaction and Mobility) on which the ELDA model
is centered:

- The Behavioral and Mobility models are mainly based on
characteristics derived from the MAO (Mobile Active
Object) model, which allows for a multi paradigm approach
to the construction of distributed applications in highly
dynamic distributed environments. In particular, modeling
of the agent behavior is based on the Distilled StateCharts
(DSC) formalism and agent migration relies on a coarse
grain strong mobility model.

- The Interaction model is an extension of the MC (Multi-
Coordination) model, which is based on high-level events
unifying access to and exploitation of underlying
coordination spaces and agent server resources.

39

AT2AI-6: Fortino G. et al.: Modeling Multi-Agent Systems through Event-driven Lightweight DSC-based Agents

Moreover, the paper presents the ELDA meta-model which
effectively supports the modeling of multi-agent systems (MAS)
based on the ELDA model. A MAS designed through the
proposed meta-model can be seamlessly coded by using the
ELDAFramework, a Java implementation of the meta-model. The
coding phase is facilitated by the ELDATool, an Eclipse-based
visual tool which supports graphical programming of the agent
behavior and automatic generation of code according to the
ELDAFramework. Finally, to exemplify agent programming a
case study concerning distributed information retrieval based on
coordinated set of agents is also described.

The remainder of this paper is organized as follows. Section 2
presents the ELDA model by describing the Behavioral,
Interaction, and Mobility models, and discusses its distinctive
features. In section 3 the ELDA meta-model is described by using
a views-based approach. Section 4 describes the case study
whereas section 5 discusses related work. Finally conclusions are
drawn and on-going research briefly delineated.

2. THE ELDA MODEL

The Event-driven Lightweight Distilled Statecharts-based Agent
(ELDA) model is based on the concept of event-driven
lightweight agent which is a single-threaded autonomous entity
interacting through asynchronous events, executing upon reaction,
and capable of migration. In particular, an event-driven
lightweight agent is represented by the following tuple: <Id, Beh,
DS, TC, EQ>, where, Id is the unique identifier of the agent, Beh
is the agent behavior, DS is the data space or world knowledge of
the agent, TC is the single thread of control supporting agent
execution, and EQ is the event queue containing the incoming
events targeting the agent.

The ELDA model relies on the Behavioral, Interaction and
Mobility models. The Behavioral model allows for the
specification of the agent behavior through the definition of agent
states, transitions among states, and agent reactions (i.e. atomic
actions attached to transitions). In particular, the agent behavior is
defined to react to a specific set of events and a reaction can
produce computations, and/or generation of one or more events,
or a migration. The Interaction model, which is based on
asynchronous events, enables multi-coordination among agents
and between agents and non-agent components through the
exploitation of multiple coordination structures. The Mobility
model is based on a coarse grain strong mobility model which
allows for agent transparent migration (both autonomous and
passive) and easy programming of the migration points.

These models are founded on the Distilled StateCharts (DSCs)
formalism [12] which is derived from the Statecharts formalism
[15], a visual formalism that gained valuable success in the
Software Engineering community mainly due to its appealing
graphical features and the means it offers for the modeling of
complex software systems. Statecharts, formerly introduced by
Harel, were included in UML [22] and currently are the most used
formalism for modeling the behavior of object-oriented reactive
systems [16]. In the following sections these models are presented
in detail.

2.1 The Behavioral Model

The behavior of ELDA agents is specified through DSCs [12]
which are obtained from Statecharts as follows: (i) deriving some
basic and advanced characteristics from Statecharts (deriving
process), (i) imposing some constraints on Statecharts
(constraining process), and (iii) augmenting Statecharts with some
features (augmenting process). In particular:

- Deriving process. DSCs derive the following characteristics
from Statecharts:

o Structure based on a higraph consisting of rounded
rectilinear blobs representing states, linked together
with transitions.

o Transitions based on the ECA rule: E[C]/A, when
E(vent) occurs and C(ondition) holds, the transition
fires and A(ction) is atomically executed.

o OR decomposition of states in hierarchies of states. The
enclosing state is called composite state,the nested
states are called substates and a state without nested
states is called simple state.

o Inter-level state transitions that can originate from or
lead to nested states on any level of the hierarchy.

o History entrance pseudostates allow entering the
substate which was most recently visited. With respect
to the composite state on which the pseudostates
appear, shallow history indicates that history is applied
only at the level of the composite state whereas deep
history applies the same rule recursively to all levels of
the state hierarchy of the composite state.

o Default entrances indicate the substate of a composite
state to be entered when a transition targets its border.

o Default history entrances indicate the substate of a
composite state to be entered in absence of history.

- Constraining process. DSCs impose the following
constrains:

o Each DSC has an enclosing top state.

o States do not include activity, entry and exit actions. So
activity is only carried out under the form of atomic
actions labeling transitions.

o Transitions (apart from default entrances and default
history entrances) are always labeled by an event.

o Each composite state has an initial pseudostate from
which the default entrance originates, which can only
be labeled by an action.

o Run-to-completion execution semantics: an event can
be processed only if the processing of the previous
event has been fully completed. The sequence of
operations which starts from fetching an event from the
event queue to its complete processing is called run-to-
completion step.

- Augmentation process. DSCs augment Statecharts with the
following features:

o Events are implicitly and asynchronously received
through an event queue.

o To explicitly and asynchronously emit events the
action language provides the primitive
generate (<event> (<parameters>)), where
event is an event instance and parameters is the list
of formal parameters of event including the event
sender, the event target, and (possibly) a list of specific
event parameters (see Section 2.2).

40

AT2AI-6: Fortino G. et al.: Modeling Multi-Agent Systems through Event-driven Lightweight DSC-based Agents

o Variables can be declared in each state and inside the
actions to form a hierarchical data space.

STATES:

Composite States = {TopState, ACTIVE, ADSC},

Simple States = {INITIATED, TRANSIT, SUSPENDED, WAITING},
IFinal State=FS, Deep History Pseudostate=DHS,

Initial State=TopState(INITIATED)

TRANSITIONS:

t, : TopState(INITIATED) —2%¢_ TopState(ACTIVE(DHS))

t, : TopState(ACTIVE(x)) —***— TopState(TRANSIT)

t, : TopState(TRANSIT) —22¢_ TopState(ACTIVE(DHS))

t, : TopState(ACTIVE(x)) —Supend_y TopState(SUSPENDED)

t, : TopState(SUSPENDED) —2= TopState(ACTIVE(DHS))
t, : TopState(ACTIVE(x)) —— TopState(WAITING)

t, : TopState(WAITING) —*%_, TopState(ACTIVE(DHS))

t, : TopState(x) —22% TopState(FS)

t, : TopState(x) —2— TopState(FS)

IDefault Entrance of DHS = ADSC;

notation: A(B) = A encloses B, A(x) = any state inside A

Figure 1. The FIPA-based template of the agent behavior.

Each ELDA behavior is forged according to an extended version
of the FIPA agent lifecycle template [13] in which the ACTIVE
state is always entered through a deep history pseudostate (DHS)
to restore the agent execution state after agent migration and, in
general, after agent suspension (see Section 2.3). In particular, the
ACTIVE state contains the active DSC (ADSC) composite state
to which the default entrance of the DHS points. The active agent
behavior can be obtained by refining the ADSC. The resulting
FIPA template of an ELDA agent is shown in Figure 1 by using a
term-rewriting formalism [19].

2.2 The Interaction Model

Interactions of ELDA agents are based on Events which formalize
both self-triggering events (Internal events) and requests to or
notifications from the local agent server (Management,
Coordination and Exception events). Events are further classified
into OUT-events which are generated by the agent and always
target the local agent server and IN-events which are generated by
local agent server and delivered to target agents.

2.2.1 Internal Events

Internal events are generated by agents for proactively driving
their behavior. In particular, a generated internal event is placed
into the event queue of the generating agent so an internal event
can be considered as both OUT and IN.

2.2.2 Management Events

Management events (see Table 1) which include requests to and
notifications from the local agent server are further classified with
reference to the following functionalities/services: agent lifecycle
management, timer setting, and resource access.

The agent lifecycle management events allow for the management
of agent creation, cloning, migration, suspension and destruction.
In particular:

- agent creation is supported by the OUT-event CREATE and
the IN-event CREATENOTIFY, which respectively formalize
the request for the creation of one or more agents and the
creation notification (if requested);

- agent cloning is enabled by the OUT-event CLONE and the
IN-event CLONENOTIFY, which respectively formalize the
request for cloning of an agent and the cloning notification
(if requested);

- agent migration 1is requested by the OUT-event
MOVEREQUEST, which embodies the identifier of the agent
to be migrated and the destination agent server location, and
is actually carried out after delivering the IN-event MOVE to
the agent; after migration the agent execution is resumed
through the IN-event EXECUTE (see Section 2.3);

- agent waiting, suspension, and quit are respectively
requested through the OUT-events WAITREQUEST,
SUSPENDREQUEST, and QUITREQUEST, and actualized

through the IN-events WAIT, SUSPEND and QUIT; a waiting
agent is waken up through the IN-event WAKEUP whereas a
suspended agent is resumed through the IN-event RESUME;
finally, an agent is started and destroyed by the agent server
through the IN-events INITIATE and DESTROY, respectively.

The timer setting events allow for timing agent activities. In
particular, the OUT-events CREATETIMER, STARTTIMER,
STOPTIMER, RESETTIMER, RELEASETIMER allow for the creation,
start, stop, reset and release of timers. A created timer is notified
through the IN-event TIMERNOTIFY whereas a timeout event (i.e.
an event raised when the timeout expires) is derived from the IN-
event TIMEOUTNOTIFY.

The resource access events allow for access to the resources of
the agent server such as files, console, databases, and
sensor/actuators. A resource is requested through the OUT-event
RESOURCEREQUEST and granted through the IN-event
RESOURCENOTIFY. An input operation on a resource is requested
through the OUT-event RESOURCEINPUTREQUEST and the
provided input is sent to the agent through the IN-event
RESOURCEINPUT; an output operation on a resource is requested
through the OUT-event RESOURCEOUTPUT; finally, a resource is
released through the RESOURCERELEASE event.

Table 1. Classification of Management events

MANAGEMENT
Class Event Type OUT Event Type IN
CREATE CREATENOTIFY
CLONE CLONENOTIFY
MOVEREQUEST MOVE, EXECUTE
LIFECYCLE WAITREQUEST WAIT, WAKEUP
SUSPENDREQUEST SUSPEND, RESUME
QUITREQUEST QuIT
INITIATE
DESTROY
CREATETIMER TIMERNOTIFY
STARTTIMER TIMEOUTNOTIFY
TIMER STOPTIMER
RESETTIMER
RELEASETIMER
RESOURCEREQUEST RESOURCENOTIFY
RESOURCE RESOURCEOUTPUT
RESOURCEINPUTREQUEST | RESOURCEINPUT
RESOURCERELEASE

41

AT2AI-6: Fortino G. et al.: Modeling Multi-Agent Systems through Event-driven Lightweight DSC-based Agents

2.2.3 Coordination Events

Coordination events (see Table 2) enable coordination acts
between agents and between agents and non-agent components
(e.g. remote objects, web services) according to a specific
coordination model. The considered inter-agent coordination
models are the Direct (synchronous and asynchronous), the
Tuple-based, and the Publish/Subscribe event-based models,
whereas the considered agent/non-agent components interaction
are a general RMI Object model and a Web Services model. In
particular:

- The Direct model is supported by the OUT-event
MSGREQUEST and the IN-event MSG for asynchronous
message passing, and by the OUT-event RPCREQUEST and
the IN-event RPCRESULT for synchronous message passing.
MSGREQUEST formalizes a request for sending an
asynchronous message and contains the actual message of
the MSG type to be sent, whereas MSG contains the
message content to be delivered to the target agent.
RPCREQUEST formalizes a request for sending a
synchronous message and contains the message of the MSG
type to be delivered to the target agent along with the back
event of the RPCRESULT type. When the receiving agent
accomplishes the request, the return value is encapsulated in
the RPCRESULT previously specified which is passed to the
requesting agent.

- The Linda-like Tuple-based model is enabled by the OUT-
events IN, OUT, and RD, and by the IN-event RETURNTUPLE.
Our, IN, and RD formalize the corresponding Linda
primitives for insertion, extraction and reading of a tuple,
respectively. IN and RD can be either synchronous or
asynchronous whereas OUT is only asynchronous.
RETURNTUPLE embodies the tuple/s associated to a
previously submitted IN or RD event.

- The Publish/Subscribe event-based model is supported by
the OUT-events SUBSCRIBE, UNSUBSCRIBE, and PUBLISH,
and by the IN-event EVTNOTIFICATION. SUBSCRIBE and
UNSUBSCRIBE respectively formalize subscription and
unsubscription to given events/topics, PUBLISH embodies a
generated event, and EVTNOTIFICATION, which is specified
in a previously submitted SUBSCRIBE event, contains an
event notification.

- The RMI Object model is supported by the OUT-event
RMIINVOKE and the IN-event RMIRETURN for the
invocation of methods on non-agent components.
RMIINVOKE contains the information needed to invoke a
remote method on a remote object along with the back event
of the RMIRETURN type which will embody the return
value, if any, of the invoked method.

- The Web Services model is supported by the OUT-event
SERVICEDISCOVERY, WSDLREQUEST, SERVICEINVOKE and
by the IN-event DISCOVERYRESULT, WSDLRESULT e
SERVICERESULT. SERVICEDISCOVERY formalizes the service
discovery request and the DISCOVERYRESULT, which is sent
back to the agent, contains the list of discovered services.
WSDLREQUEST formalizes the WSDL request of the chosen
service and the corresponding reply is provided through the
WSDLRESULT event. SERVICEINVOKE formalizes the
service invocation request and a possible return value is sent
back through the SERVICERESULT event.

Table 2. Classification of Coordination events

COORDINATION
Model Event Type OUT Event Type IN
DIRECT MSGREQUEST MsG

RPCREQUEST RPCRESULT

RD, IN RETURNTUPLE
TUPLE-BASED
Out
SUBSCRIBE

UNSUBSCRIBE

P/S_EVENT-BASED

PUBLISH EVTNOTIFICATION
RMI OBJECT RMIINVOKE RMIRETURN
SERVICEDISCOVERY | DISCOVERYRESULT
WEBSERVICES WSDLREQUEST WSDLRESULT

SERVICEINVOKE SERVICERESULT

2.2.4 Exception Events

Exception events are modeled as IN-events which are sent from
the local agent server to agents to notify the impossibility to
execute a service which was requested through the generation of
an OUT-event. An exception is defined per each OUT-event and
includes the description of the raised exception and its typology.
An exception also contains the causingEvent, i.e. the instance of
the event which has not been served by the local agent server and
caused the exception. The exceptions are organized into a
hierarchy which mirrors that of the Management and
Coordination OUT-events.

2.3 The Mobility Model

The mobility model of ELDA agents is based on a strong mobility
model which allows retaining the agent execution state. With
respect to a fine-grain mobility type in which the agent migration
can occur on a per-instruction basis the offered strong mobility
model is of the coarse-grain type as ELDA agents can migrate on
a per-action basis (i.e. after the execution on an action where an
action is a set of instructions atomically executed). In particular
the migration points of an ELDA agent match with the end of the
run-to-completion step (see Section 2.1) and represent the only
agent execution points in which it is possible to process Move
events (see Section 2.2).

The migration of ELDA agents can be either autonomous (i.e.
triggered by the agent itself) or passive (i.e. enforced by the
system or induced by other agents) [25]. Specifically, migration
points are known by the agent for autonomous migration as they
are specified in the agent (DSC-based) behavior through an
appropriate definition of states, events and transitions. In case of
passive migration, migration points are not known in advance as
they are induced by other agents or by the system; then, to obtain
a behavior more reactive to migration could be necessary to
program an ELDA agent with finer granularity of its actions.

The ELDA migration process is defined as follows. According to
the FIPA template (see Figure 1 for the referred transitions), an
ELDA agent after receiving the Move event passes into the
Transit state (see t2) where it rests until the migration is
completed; at the destination location the ELDA agent receives
the Execute event, generated by the system, which brings the
ELDA agent back into the state it was before the migration (see
t3) by retaining the same execution state. State retaining is
intrinsic due to the properties of the DSCs, particularly empty
states and run-to-completion semantics, and to the structure of the

42

AT2AI-6: Fortino G. et al.: Modeling Multi-Agent Systems through Event-driven Lightweight DSC-based Agents

FIPA-based template, specifically the entrance with deep history
in the ACTIVE state (see Section 2.1). In fact, after processing an
event the execution state of an ELDA agent is automatically
stored into its ACTIVE state so when the ELDA agent migrates it
goes into the TRANSIT state without modifying its execution
state as no exit action is allowed; after migration it is resumed and
the ACTIVE state is re-entered through the deep history
pseudostate which allows to set the current state to the state prior
to migration without modifying the execution state as no entry
action is allowed.

2.4 Distinctive features of the ELDA Model
The distinctive features of the ELDA model, which derive from
the characteristics of the Behavioral, Interaction and Mobility
models on which it is centered, can be summarized as follows:

- Visual modeling. The use of a visual language, based on the
UML Statecharts [22], for modeling the behavior of ELDA
agents, reduces the learning curve for their modeling due to
the pervasive exploitation of UML in Industry and
Academia, and increases the productivity of designers and
programmers as it facilitates application development.

- Executable specifications. As the DSC-based behaviors of
the ELDA agents are executable according to operational
semantics derived from Statecharts, ELDA agents can be
effectively verified (e.g. by means of formal methods or
simulation) prior to their actual implementation and
deployment.

- Multi-coordination. Coordination based on multiple models
can facilitate application design, improve efficiency, and
enable adaptability in dynamic and heterogeneous
environments as it allows agents to choose among a variety
of different coordination spaces and patterns which best fit
their dynamic communication and synchronization needs.

- Coarse-grain strong mobility. The ELDA mobility model
allows to easily identify and define the migration points of
an agent so letting agent designers choose and control the
granularity of the offered coarse-grain strong mobility.
Moreover this mobility model can be easily implemented
through any language which only provides native support to
weak mobility like the Java language.

These distinctive features make the ELDA model appropriate for
the modeling and implementation of distributed applications
characterized by:

- complex computations to be performed on huge data sets
(distributed data mining);

- tasks that are inherently parallel and distributed in nature
(distributed workflow execution);

- search in huge data repositories, especially in presence of
high network latency (distributed information retrieval);

- management and delivery of replicated content (content
delivery networks);

- computation in dynamic and resource-constrained
environments (wireless sensor networks).

Moreover, the ELDA model can be used to design other agent-
based behavioral and interaction models. In particular:

- the ELDA Behavioral model based on states and events can
support the design of agents ranging from reactive to BDI
agents;

- the ELDA Interaction model based on multiple coordination
paradigms can support the design of agent protocols ranging
from simple agent-to-agent interactions to complex multi-
agent negotiation protocols possibly based on specific ACL
messages.

3. THE ELDA-BASED MAS META-MODEL
Multi agent systems (MASs) based on the ELDA model can be
designed through the ELDA meta-model which provides all the
modeling elements needed to the design phase. This meta-model
is organized in six views correlated as shown in Figure 2:

- Agent View, which represents the structure of an ELDA
agent and its relationships with the coordination and system
spaces.

- Event View, which represents the structure of events.

- SystemSpace View, which represents the structure of the
system space.

- CoordinationSpace View, which represents the hierarchy of
the coordination spaces.

- DSC View, which represents the structure of a DSC.

- FIPATemplate View, which represents the structure of the
FIPA template of the ELDA behavior.

A A A
FIPATemplate View DSC View <<import>> Event View
A T

<<import>> ~ " <<import>>
Agent View
A < cimport>> e A
SystemSpace View CoordinationSpace View

Figure 2. ELDA meta-model: Top-Level View

<<import>>

<<m1)ort>>‘

As shown in the Agent View (see Figure 3) an ELDA agent is
composed of a single behavior which is specified through the
FIPA template (see Figure 1) whose structure is contained in the
FIPATemplate View (not reported for the sake of space). In
particular, the FIPA template as well as the ADSC of an ELDA
agent is modeled according to the DSC structure shown in the
DSC View (see Figure 4). The Agent View also shows that an
ELDA agent can interact with the System Space, which provides
system services, through the ManagementOUT and
ManagementIN events and with the Coordination Space, which
provides coordination services, through the CoordinationOUT and
CoordinationIN events. These events along with Internal and
Exception events, defined in Section 2.2, are included in the
Event View (not reported for the sake of space).

43

AT2AI-6: Fortino G. et al.: Modeling Multi-Agent Systems through Event-driven Lightweight DSC-based Agents

Y.

1 1..% r
SystemSpace View::SystemSpace Event View:Management
+sender | * +receiver) x CoordinationSpace View::CoordinationSpace | 1 L.*| Event View:Coordination
o +sender |* ;
Event View::ManagementIN +receiver] Event View::CoordinationIN
Event View::Internal
Event View::ManagementOUT Event View::CoordinationOUT Event View:Event
. 1.*
+receiver |« +senderx treceiver |x +sender| * "
ELDA 1 1 Behavior |1 1| FIPATemplate View:FIPATemplate
| e
Figure 3. ELDA meta-model: Agent View
DSC 1 1| TopState 1 1| FinalState LocalDataSpace| 1 * | Variable DefaultEntrance | | DefaultHistoryEntrance
‘o..1 \ /
+source
1 *
InitialState A Event View::Event
State . Transition
0..1
+target
1 * *
A +inner / \ +inner
ShallowHistory router 0.1 0.1 *
Guard Action +outer
0..1 0..1
1 DeepHistory « «
+parent v * %
0..1| CompositeState 0..1 0..x| SimpleState Function
.. -
+chid 0% +parent +child
Figure 4. ELDA meta-model: DSC View

As shown in the SystemSpace View (see Figure 5), the System
Space is composed of three basic managers, LifeCycleManager,
TimerManager, and ResourceManager which handle the
Management events of the Lifecycle, Timer, and Resource classes,
respectively (see Table 1 and Section 2.2). It is worth noting that
the ResourceManager provides access services to consoles,
databases, files, sensors and other available local resources
through associated sub-managers (ConsoleManager, DBManager,
FileManager, SensorManager, etc) which handle such specific
resources. Moreover, to extend the provided system services new
special-purpose managers can be defined by the designer along
with the related OUT- and IN-events.

The Coordination Space represents a local or global coordination
structure based on a given coordination model through which
agents interact. As shown in the CoordinationSpace View (see
Figure 6), six coordination spaces are currently defined:
DirectSpace (AsynchronousMsgSpace and
SynchronousMsgSpace), TupleSpace, PublishSubscribeSpace,

RMIObjectSpace, and WebServicesSpace. The interaction with
these spaces is regulated by the Coordination events reported in
Table 2 and described in Section 2.2. New coordination spaces
can be introduced by defining new coordination space structures
along with their related OUT/IN events.

To actually program ELDA-based MASs, the ELDA meta-model
is currently implemented as a set of Java classes constituting the
ELDAFramework. To enable rapid prototyping of MASs through
the ELDAFramework, an Eclipse-based visual tool named
ELDATool [9] is available which allows for visual programming
of agent behaviors, graphical definition of events, and automatic
generation of code (additional information about the ELDATool
and the ELDAFramework can be found in [7]).

44

AT2AI-6: Fortino G. et al.: Modeling Multi-Agent Systems through Event-driven Lightweight DSC-based Agents

SystemSpace

7 o,

TimerManager| | SpecialPurposeManager|

T

Manager

LifeCy

Resourc

Figure 5. ELDA meta-model: SystemSpace View

RMIObjectSpace

Y

CoordinationSpace

b
AN

Synchr

WebServicesSpace

TupleSpace

Async

Figure 6. ELDA meta-model: CoordinationSpace View

4. A CASE STUDY

The proposed case study concerns with distributed information
retrieval in a distributed computing system. In particular, a User
Agent searches for specific information over networked federated
locations by creating and launching a coordinated set of
information Searcher Agents onto different locations. As soon as
a Searcher Agent finds the desired information by locally
interacting with distributed Servant Agents, stops all the other
Searcher Agents and finally reports the found information to its
owner User Agent. Owing to the multi-coordination features
provided by the ELDA model, the application design choices are
the following:

- Searcher Agents locally coordinate using a local tuple space
to avoid duplicate search on the same location. Before
searching for the information on a given location, the
Searcher Agent checks for the presence of a signaling tuple
in the local tuple space which is left by another Searcher
Agent that has already visited the location. If the signaling
tuple is not present, the Searcher Agent can search for the
information; otherwise, it migrates to a new location, if a
new location is available, or quits.

- Searcher Agents are stopped by exploiting an event-based
Publish/Subscribe service. This allows a Searcher Agent to
emit a searching stop event to easily stop all the other
agents as soon as it finds the desired information.

- The Searcher Agent reports the found information to the
User Agent through an asynchronous message instead of
moving to the location of the User Agent. This is done to
avoid the migration of the agent along with the found
information, which would very likely take longer time.

In the following the behavior of the Searcher Agent (see Figure
7), programmed through the ELDATool [9], is fully described.

StopSearchMatification | acé E ?

«DHZ»
SearcherAgentADSC

-

'@ |

SignalTuple [contentMathulandLacationsavailable] | ac5

WaitdResult | QueryResult | acz
Search [acl
ReportandTerminate
SignalTuple [contentMotMullandMotLocationsAvailable] | acd InfoFound [ac3
bt

(ELDAEvent e) {

SignalTuple [contentIshul] [acl Analize

private void acO

generate (new ELDAEventRd (self (), signalTuple, false,
new SignalTuple (self())));
}
private void acl (ELDAEvent e) {
if (firstHost)
generate (new ELDAEventSubscribe (self (), stopSearch,

new StopSearchNotification(self())
firstHost=false; servant=getServant();
generate (new ELDAEventOut (self (), signalTuple,

null, false));
generate (new ELDAEventMSGRequest (self (),

new QueryMsg(self (), servant, query)));

)) i

}
private void ac2 (ELDAEvent e) {
Object result = ((QueryResult)
info=analize(result);
if (info.found()) generate (new InfoFound(self()));
else{
locations.addLocations (info.getNeighbourLocations ());
if (locations.hasMoreLocations()) ac5(e);
else ac6 (e);
}
}
private void ac3 (ELDAEvent e) {
generate (new ELDAEventMSGRequest (self (),
new Report (self(), owner, info)));
generate (new ELDAEventPublish(self (), null,
stopSearch)) ;
aceé (e);
}
private void ac4
if (!firstHost)
generate (new ELDAEventUnsubscribe (self (),
generate (new ELDAEventQuitRequest (self()));
}
private void ac5 (ELDAEvent e) {
generate (new ELDAEventMoveRequest (self (),
locations.nextLocation()));
generate (new Search(self()));
}
private void ac6é (ELDAEvent e) {
generate (new ELDAEventUnsubscribe (self (), stopSearch));
generate (new ELDAEventQuitRequest (self()));
}

Figure 7. The Searcher Agent: active behavior with the related
action code

e) .getData () ;

(ELDAEvent e) {

stopSearch)) ;

A Searcher Agent, once created and started on a given location,
requests the reading of the signalTuple in the TupleSpace for
checking if another Searcher Agent has already visited the
location (see action acO). In particular, the reading of the
signalTuple is asynchronous and the back event to be
delivered to the Searcher Agent is represented by the
SIGNALTUPLE event (derived from RETURNTUPLE) which is
handled as follows:

1) If the SIGNALTUPLE event has content null (i.e. no other
Searcher Agent has searched in this location), the Searcher
Agent subscribes to the stopSearch topic through the

45

AT2AI-6: Fortino G. et al.: Modeling Multi-Agent Systems through Event-driven Lightweight DSC-based Agents

SUBSCRIBE event, if the location visited is the first one
(firstHost=true), inserts the signalling tuple through the
Our event, and sends to the servantAgent a query
through the QUERYMSG event (derived from MSG) asking
for the searched information (see action acl). In particular,
SUBSCRIBE embodies the STOPSEARCHNOTIFICATION event
(derived from EVTNOTIFICATION), which is delivered to the
Searcher Agent when another one finds the searched
information.

2) If the SIGNALTUPLE event has content not null and other
locations are available, the Searcher Agent generates a
MOVEREQUEST to the next available location and the
internal event SEARCH to keep searching (see action ac5).
At the new location the migrated Searcher Agent, after
receiving the internal SEARCH event, enters again into the
Test state by executing acO.

3) If the SIGNALTUPLE event has content not null and no other
location is available, the Searcher Agent unsubscribes from
the stopSearch topic through the UNSUBSCRIBE event, if
firstHost=false, and generates a QUITREQUEST event
(see action ac4).

Consequently to the case 1, as soon as the QUERYRESULT event
(derived from MSG) sent by servantAgent is delivered to the
Searcher Agent, its content is analyzed (see action ac2): if the
searched information is found, the internal event INFOFOUND is
generated; otherwise, possible new locations included in the
obtained info are added to the list of available locations
(locations) and, if this list has more locations, a
MOVEREQUEST to the next available location and the internal
event SEARCH are generated; else the Searcher Agent
unsubscribes from the stopSearch topic and quits. When
INFOFOUND is received by a Searcher Agent, the agent reports to
its owner through the REPORT event (derived from MSGQG),
publishes through the PUBLISH event a stopSearch topic,
unsubscribes from the stopSearch topic and quits (see action
ac3).

In whatever state the Searcher Agent is, when it receives
STOPSEARCHNOTIFICATION, unsubscribes from the stopSearch
topic and quits (see action ac6).

5. RELATED WORK

Several agent models and frameworks are related to the proposed
ELDA model with respect to the three main dimensions of agent
modeling: behavior, interaction and mobility. In the following, the
comparison is restricted to those agent models which share the
following basic features with the ELDA model: lightweight agent
architectures, asynchronous agent interaction and state-based
programming. In particular, we have considered the agent models
on which Jade [3], Bond [4, 20] and Actors [1, 2] are based.

With reference to the agent behavior model, the behavioral model
of ELDA agents is based on Distilled StateCharts, Jade offers,
among different agent behavior types, an agent behavior (called
FSMBehaviour) based on flat finite state machines (FSMs), an
add-on of Jade (SmartAgent) [17] provides an extension of the
Jade FSMBehaviour (named HSMBehaviour) based on
hierarchical finite state machines (HSMs), Bond defines the agent
behavior as a multi-plane state machine in which each plane is
modeled as an FSM, and Actors are based on agents modeled as
active objects with state variables and action methods. The

execution semantics of the HSMBehaviour, the ELDA behavior,
the Bond agent behavior and the actor behavior is very similar: a
message/event triggers the execution of an action; when the action
execution is terminated the next available message/event is
fetched and processed. Conversely, the execution semantics of the
Jade FSMBehaviour is not driven by messages/events but by
action completions triggering transitions. The advantages of the
ELDA behavior with respect to the other agent behaviors relies on
the DSC formalism which (i) overtakes the limited features of the
FSMBehaviour by also introducing hierarchy and history and of
the HSMBehaviour which do not exploit history, (ii) derives from
the well formalized Statecharts formalism whereas a well founded
formalization and correlated tools for the Bond multi-plane state
machine and the actor behavior are not yet available, (iii) lends
itself to be easily supported by a visual tool.

With reference to the agent interaction model, the ELDA model
provides the interesting notion of multi-coordination [11] which
enables a holistic exploitation of multiple coordination spaces,
each based on a different coordination model. This is strategic in
the context of open and dynamic environments where agents to
fulfill their goal should interact with other agents or with other
components through different coordination models. Jade, Bond
and Actors are mainly based on asynchronous message passing,
even though Bond agents can also interact through synchronous
message passing, a tuple space based on the IBM TSpace and a
publish/subscribe event model. From the interaction perspective
further and interesting related work is represented by the
coordination infrastructures [23] such as reactive tuple spaces
(e.g. TuCSon), environmental and organizational artifacts. These
infrastructures/artifacts can be easily integrated and used as new
coordination spaces (see Section 3) for ELDA agents.

With reference to the agent mobility model, Jade, Bond and
Actors (in particular the implementation of Actors carried out in
the ActorFoudry framework [1]) are based on a weak mobility
model [14]. Conversely, the ELDA model is based on strong
mobility of the programmable coarse-grain type which enables
active and passive migration by simplifying the management code
of the agent migration with respect to agents based on weak
mobility whose programming is complicated by the explicit
management (save and restore) of the agent execution state.

6. CONCLUSION

This paper has proposed the ELDA model and its exemplification
through a case study developed by using ELDA-based design
methods and programming tools. In particular, the ELDA model
provides the following distinctive features: (i) DSC-centered
behavioral specification which supports formal-driven and visual-
based modeling of the agent behavior so enabling rapid
prototyping due to both the graphical representation of the agent
behavior and the availability of Statecharts-based formal tools for
its validation; (ii) event-based interaction between agents and the
hosting local agent server through an easily extensible system
space which provides basic and advanced services for agent
lifecycle management, timer handling and resource access; (iii)
local/remote inter-agent and agents/non-agent-components
interaction based on multiple coordination spaces which rely on
both already available models (e.g. message passing, Linda-like
tuple spaces, publish/subscribe, etc) and models to be purposely

46

AT2AI-6: Fortino G. et al.: Modeling Multi-Agent Systems through Event-driven Lightweight DSC-based Agents

defined; (iv) autonomous and passive agent migration based on
strong mobility of the programmable coarse-grain type.

The aforementioned features make the ELDA model more
effective than related agent models and frameworks currently
available in the literature. Moreover, rapid prototyping of ELDA-
based multi-agent systems is enabled by effective visual
programming tools (ELDATool) and frameworks
(ELDAFramework).

On the basis of the obtained results current research is focused on:
(i) finalizing a simulated execution platform enabling functional
and non-functional validation of ELDA-based MASs before their
deployment stage; (ii) defining a full-fledged methodology
supporting the development of ELDA-based MASs from analysis
to implementation and validation; this research is based on the
experiences gained by using PASSI [6] and GAIA [10] to drive
the analysis and design phases in the development of MASs
centered on Statecharts-based agents; (iii) formalizing the ELDA
model through rewriting logic-based techniques.

7. REFERENCES

[1] Astley, M. 1999. Customization and Composition of
Distributed Objects: Policy Management in Distributed
Software Architectures. Doctoral Thesis, University of
Illinois at Urbana-Champaign.

Astley, M. and Agha, G. 1998. Customization and
Composition of Distributed Objects: Middleware
Abstractions for Policy Management. In Proceedings of
ACM SIGSOFT 6th International Symposium on
Foundations of Software Engineering (FSE-6 SIGSOFT’98,
Orlando, FL, USA, 1998).

Bellifemine, F., Poggi, and A., Rimassa, G. 2001.
Developing multi agent systems with a FIPA-compliant
agent framework. Software Practice And Experience 31,
103-128.

Boloni, L. and Marinescu, D.C. 1999. A Multi-Plane State
Machine Agent Model. Technical Report CSD-TR-99-027,
Computer Science Department, Purdue University.

Braun, P. and Rossak, W. 2005. Mobile Agents: basic
concepts, mobility models, & the tracy toolkit. Morgan
Kaufmann Pub., Heildelberg, Germany.

Cossentino, M., Fortino, G., Garro, A., Mascillaro, S. and
Russo, W. 2008. PASSIM: a simulation-based process for
the development of multi-agent systems. Int. J. Agent-
Oriented Software Engineering 2(2), 132-170.

ELDATool documentation and
http://lisdip.deis.unical.it/software/eldatool.

Fortino, G., Frattolillo, F., Russo, W. and Zimeo, E.. 2002.
Mobile Active Objects for highly dynamic distributed
computing. In Proceedings of IEEE International Parallel and
Distributed Processing Symposium (IPDPS), Workshop -
Java for Parallel and Distributed Computing (JPDC’02, Fort
Lauderdale, FL, Apr. 15-19, 2002).

Fortino, G., Garro A., Mascillaro S., and Russo W. 2007.
ELDATool: A Statecharts-based Tool for Prototyping Multi-

Agent Systems. In Proceedings of Workshop on Objects and
Agents (WOA'07, Genova, IT, Sept. 24-25, 2007), pp. 14-19.

(2]

(3]

(4]

(3]

(6]

(7]

software,

(8]

(9]

[10] Fortino, G., Garro, A., and Russo, W. 2005. An Integrated
Approach for the Development and Validation of Multi
Agent Systems. Computer Systems Science & Engineering
20, 4, 94-107.

[11] Fortino, G. and Russo, W. 2005. Multi-coordination of
Mobile Agents: a Model and a Component-based
Architecture. In Proceedings of 20th Annual ACM
Symposium on Applied Computing (SAC’05, Santa Fe, NM,
USA, Mar. 13-17, 2005), Special Track on Coordination
Models, Languages and Applications, vol. 1, pp. 443-450.

[12] Fortino, G., Russo, W. and Zimeo, E. 2004. Statecharts-
based Software Development Process for Mobile Agents.
Information and Software Technology 46, 13, 907-921.

[13] Foundation for Intelligent Physical
Management Support for Mobility
DC00087C, 2002/05/10, http://www fipa.org

[14] Fuggetta, A., Picco, G.P.,, and Vigna, G. 1998.
Understanding Code Mobility. IEEE Trans. on Software
Engineering 24, 5, 342-361.

[15] Harel, D. 1987. Statecharts: a visual formalism for complex
systems. Science of Computer Programming 8, 231-274.

[16] Harel, D. and Gery, E. 1997. Executable Object Modelling
with Statecharts. IEEE Computer 30, 7, 31-42.

[17] Kessler, R., Griss, M., Remick, B. and Delucchi, R. 2004. A
hierarchical state machine using JADE behaviours with
animation visualization. In Proceedings of Int’l Joint
Conference on Autonomous Agents and Multi Agents
Systems (AAMAS’04, New York City, NY, USA, July,
2004).

[18] Luck, M., McBurney, P., and Preist, C. 2004. A manifesto
for agent technology: towards next generation computing.
Autonomous Agents and Multi-Agent Systems 9, 3, 2004,
203-252.

[19] Lilius, J. and Paltor, 1. P. 1999. The semantics of UML State
Machines. Technical Report N. 273. Turku Centre of
Computer Science (TUCS).

[20] Marinescu, D.C. 2002. Internet-based
Management. John Wiley & Sons, Inc., New York.

[21] Nwana, H.S. 1996. Software Agents: an overview.
Knowledge Engineering Review 11, 3, 205-244.

[22] Object Management Group.2005. Unified Modelling
Language Specification (N. formal/2005-07-05) v. 2.0.

[23] Omicini, A., Ossowsky, S., and Ricci, A. 2004. Coordination
infrastructures in the engineering of multi-agent systems. In
Proceedings of Methodologies and Software Engineering for
Agent Systems. (Kluwer, New York, 2004).

[24] Silva, A.R., Romao, A., Deugo, and D., Mira da Silva, M.
2001. Towards a reference model for surveying mobile agent
systems. Autonomous Agent and Multi-Agent Systems 4, 3,
187-231.

[25] Xu, D., Yin, J., Deng, Y., and Ding, J. 2003. A Formal
Architectural Model for Logical Agent Mobility. IEEE
Trans. Software Eng. 29, 1, 31-45.

[26] Zambonelli, F. and Omicini, A. 2004. Challenges and
research directions in agent oriented software engineering.
Autonomous Agents and Multi-Agent Systems 9, 3, 253-284.

Agents: Agent
Specification,

Workflow

47

AT2AI-6 Working Notes

48

AT2AI-6: Fuentes-Fernandez R. et al.: An Executable Activity Theory Based Framework for Early Requirements
Analysis

An Executable Activity Theory Based Framework for Early
Requirements Analysis

Rubén Fuentes
ruben@fdi.ucm.es

Jorge J. Gomez-Sanz
jjgomez@sip.ucm.es

Eva Ullan
evah@sip.ucm.es

Facultad de Informatica
Universidad Complutense de Madrid
28040 Madrid, Spain

ABSTRACT

Gathering requirements in a domain problem is a challenging
task for which several agent-oriented solutions have been de-
vised. The high-level abstraction of agent concepts and their
associated semantics eases this elicitation. Nevertheless, this
does not ensure that the specification reflects what the cus-
tomer demands. A frequent validation technique consists in
building a prototype so that the customer can appreciate the
result of the conversations with the analysts. The creation of
such system requires time and money, and thus the indus-
try would appreciate means of reducing these costs. This
paper addresses this problem trying to prevent unnecessary
developments. The proposal consists in capturing require-
ments with a framework based on the analysis of human
societies named SCAT. This framework is generic enough to
be domain independent and uses concepts similar to those
in Agent-Oriented Software Engineering. Specifications cap-
tured with SCAT are described at low cost, since only gen-
eral principles are required, and get the extra advantages of
being both executable and verifiable. Besides, the resulting
instantiation of the framework can be translated later onto
a specific methodology if the required transformation rules
are developed.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifica-
tions—elicitation methods, languages, tools

General Terms

Documentation, Languages, Verification

Keywords

Social properties, Simulation, Formal proof, Activity The-
ory, Requirements elicitation, Agent-Oriented Software En-
gineering

1. INTRODUCTION

Defining valid and correct requirement specifications re-
mains a challenging task for software projects. Given a do-

Jung, Michel, Ricci & Petta (eds.): AT2AI-6 Working Notes, From
Agent Theory to Agent Implementation, 6th Int. Workshop,
May 13,2008, AAMAS 2008, Estoril, Portugal, EU.

Not for citation

main problem, a development team may realize too late that
the original requirements were wrong since they did not cap-
ture what the customer wanted. Any delay in this detection
have an important impact in the project, as the later the
mistake is found, the greater is the cost of fixing it. The
application of agent concepts has provided some aids in the
early detection of mistakes in these specifications.

The goal-oriented modelling promotes goals as the key
concept in requirements. Lamsweerde reviews some of its
approaches in [20], being two relevant examples Tropos [10]
and KAOS [4]. Despite of their focus on goals, both of
them require producing detailed specifications of the prob-
lem in order to evaluate the validity of the requirements.
These extended specifications are far beyond the mere use
of goals and they are described with some kind of formalism,
whose use requires a high-level of expertise. Although either
KAOS or Tropos could generate a prototype in the tradi-
tional sense, they provide also other alternative means to
check the requirements without formal methods. These al-
ternatives demand less effort to produce specifications than
the formal options, but they are also less powerful analytical
tools.

Non goal-oriented methodologies, like Passi [3] or ADEL-
FE [1], deal with requirements by means of use cases. The
way to proceed once use cases have been identified differs
from one methodology to another, but all of them require a
quite complete multi-agent system specification to be able
to validate the requirements by execution. That is, these ap-
proaches manually validate the requirements using the pro-
totypes.

Both goal and use case oriented approaches can benefit
of automated code generation facilities. Examples of these
processes can be found in Executable UML (Executable Uni-
fied Modelling Language) [13] and INGENIAS [11]. Exe-
cutable UML (xUML) is an extension of UML 2.0 intended
for model driven development with transformations. As
xUML is object-oriented, it must be extended and adapted
for its with agent concepts. This is the case of the work with
protocols in Agent UML reported in [7]. INGENIAS also
permits to quickly develop a system from a partially com-
pleted specification. In this case, the departure modelling
language is agent-oriented and the prototypes are built by
instantiation of code templates with information from mod-
els. This kind of model-driven developments reduces the
cost of later modifications in the requirements, as an im-
portant part of the implementation is automatically made.
Nevertheless, it is subject of the same restrictions of the
previous approaches, as there are no specialized means of

49

AT2AI-6: Fuentes-Fernandez R. et al.: An Executable Activity Theory Based Framework for Early Requirements
Analysis

capturing and validating requirements others than carrying
out an agent-oriented development.

Related with both the formal analysis and the use of pro-
totypes, this paper proposes validating a requirement spec-
ification by means of its execution, the inspection of its
traces, and the verification of developer-defined properties.
Proposing the direct execution of specifications to ensure
their validity is not new. For instance, Gravell and Hender-
son [12] defend the benefits of executable specifications and
recommend complementing them with methods like manual
or automatic inspection of the specifications. In order to be
useful in this setting, the effort to produce these specifica-
tions should imply a lower cost than producing a prototype
or a formal specification. Note that this line is different from
that of code generation. The xUML or INGENIAS models
are transformed to generate prototypes that are the object
of the verification while, in this case, checking happens over
the original specifications.

The approach in this paper addresses requirement specifi-
cation with the SCAT (Situation Calculus for Activity The-
ory) framework for the development of Artificial Societies
based on the Activity Theory. The Activity Theory (AT)
[21] is a paradigm from the Social Sciences that analyzes hu-
man societies focusing on their contextualized activities. An
Artificial Society (AS) [18] is a synthetic representation of a
society. AS are related with the computational study of so-
cieties but not particularly with AT. The operational seman-
tics of SCAT is an AT extension of the Situation Calculus
according to the ConGolog [5] implementation. The advan-
tage of this formalism is that its implementation enables ex-
ecutable specifications. A SCAT specification uses high-level
AT concepts with semantics close to agent-oriented ones [8].
This allows transferring [9] the acquired knowledge to an
agent-oriented methodology, which is better suited for the
engineering of the system. When compared with other alter-
natives, SCAT offers some features that suggest it can trim
down the cost of checking requirements through execution:

e SCAT handles only concepts of high level of abstrac-
tion. Hence, a SCAT specification is not blurred by
low level details.

e The number of elements needed to describe a meaning-
ful specification is low. It suffices declaring the partic-
ipating entities, dependencies, and what is going to be
run to perform validation tests.

e SCAT predicates semantics are intuitive. They are
based on common concepts of everyday life used by
AT to explain the behaviour of human societies.

e SCAT does not compel to incorporate time reasoning
in the specification. This prevents effort on behalf the
developer.

These advantages imply in exchange certain tradeoffs in
the capabilities of SCAT. The most relevant one is that the
level of detail that SCAT can capture is reduced if com-
pared to what other formalisms [4, 10] allow. However, it
must be noticed that SCAT is not intended to capture for-
mally the requirements, but to provide an inexpensive way
of early detecting mistakes in the specification, so that the
real development can start in better conditions.

The rest of the paper is structured as follows. Section 2
briefly presents AT. The SCAT framework is introduced in

Sect. 3, which describes the language and its grammar, and
Sect. 4, which reports its implementation using ConGolog
[5] and some hints about its execution. Section 5 shows an
example of requirements elicitation and specification with
SCAT. Section 6 describes how a SCAT program can be
translated to a software methodology, INGENIAS [11] in
this case. INGENIAS was chosen due to its extensive tool
support for visual modelling, code generation, and reporting
facilities. Related work regarding the execution of specifica-
tions as means to increase the knowledge about requirements
is discussed in Sect. 7. Finally, we present some conclusions
about the approach.

2. ACTIVITY THEORY

The Activity Theory (AT) [21] is a framework for the anal-
ysis of human groups focused on their contextualized acts.
These acts are called activities and constitute the minimal
meaningful unit to understand human actions. Their con-
text comprehends the socio-physical environment and their
historical development. This section introduces the main
AT concepts through examples from the case study of this
paper.

The term activity [6] refers to a process intended to trans-
form some object into the outcome that satisfies the needs of
the subject of that activity. For instance, a researcher work-
ing in a department do research transforming the available
knowledge in papers that contain the solution for a given
problem. The subject is the participant or group whose
agency is chosen as the point of view in the analysis. Po-
tential subjects are the agents, people using a software sys-
tem, or their societies. In our example, the researcher is the
subject. The objects of the activity can be raw materials
or mind structures. Our researcher transforms knowledge
to generate new knowledge for a paper. The subject’s needs
that motivate the performance of the activity are their objec-
tives. Some objectives for our researcher can be contributing
to mankind knowledge or obtaining merits for a job post.

The relations between subject and object are not direct
but mediated by several kinds of elements. The subject al-
ways acts over the object through tools. Tools can be phys-
ical or symbolic, external or internal, and crystallizes the
experience of the group in the process. Following our exam-
ple, the researcher uses as tools previous experiences writing
papers and devices like the laptop or the word processor.
The community includes those subjects related in any way
(e.g. by use, ownership, or awareness of the existence) with
the objects of the activity. Communities in the research ac-
tivity can be that of the researchers in the same field, the
department where the researcher works, or the family and
friends, as all of them may have some kind of influence over
the activity. A community is moulded by the division of
labour and the rules. The division of labour establishes the
role of the actors in the community, the power that they
hold, or the tasks they are responsible of as related with the
transformation process. The rules, norms, and conventions
of the communities that constrain the activity are encom-
passed under the concept rules. These mediating entities
and their relations make explicit the influence of the envi-
ronment in which the activity happens and the historical
and social development of it.

All the previous elements (i.e. an activity and its subjects,
objects, outcomes, tools, objectives, communities, rules, and
divisions of labour) constitute an activity system, that is,

50

AT2AI-6: Fuentes-Fernandez R. et al.: An Executable Activity Theory Based Framework for Early Requirements

Neighbourhood™ Entities™ Relations™ ATDeclaration* Instance™ Universe™

activity | subject | object | tool | outcome | objective | community |

rel(ID, ATRel, ID, ID) | rel(ID, ATRel, ID, ID), RelList
executedBy | transform | use | produce | try | accomplishedBy |

pursue(ID, ID). | decompose(ID, [IDList]). | duration(/D, Int).

Analysis

Program =
Neighbourhood = neighbourhood(ID, [IDList]).
Entities = entities(/D, IDList, [ElemList]).
ElemList = elem(ID, ATRole) | elem(ID, ATRole), ElemList
ATRole =

rules | divisionOfLabour | action | operation
Relations = relations(ID, [IDList], [RelList]).
RelList =
ATRel =

ruledBy | organizedBy
Instance = instance(ID, ID, [IDList]).
ATDeclaration =
Universe = universe(/D, [IDList], [IDList]).
IDList = ID | ID, IDList

Figure 1: SCAT grammar

the context of the activity. Such a context is a mandatory
prerequisite to understand truly the whole system and its
ruling principles, and to improve its engineering [6].

At the same time, an activity system is made up of, and
embedded into, neighbourhoods of nested activities, actions,
and operations, all of which could be conceived as separate
activity systems depending on the observer’s perspective.
An action is a task that pursues goals non-relevant individ-
ually but that contribute to a primary goal. For instance,
writing the paper is part of the research and, although re-
quired to complete the activity, does not satisfy by itself the
objective of generating knowledge. An operation is a con-
crete realization of an action for specific circumstances. For
instance, writing the paper can be done in a word proces-
sor or by hand. In these neighbourhoods, factors that affect
the current activity system could be the outcome of other
activity systems. Typical examples of these situations are
activities that produce the components of the activity sys-
tems of other activities or even new activities. For instance,
the researcher produce some experimental results that are
part of the knowledge transformed as objects in the writing
of the paper. For the remaining discussion, the term task
stands for activities, actions, and operations when the dif-
ferences between them are not relevant. The term artifact
refers to any concept of an activity system.

3. SCAT GRAMMAR AND INFORMAL SE-
MANTICS

SCAT (Situation Calculus for Activity Theory) is a mod-
elling, simulation, and verification framework for the analy-
sis of societies. It is intended for practitioners of Social Sci-
ences through a domain specific language [19]. The language
allows specifying AS following the AT guidelines seen in
Sect. 2. SCAT specifies AS with universes made up of neigh-
bourhoods describing general patterns of behaviour and in-
stances of them that characterize actual behaviours in the
system.

Figure 1 presents the main rules of the grammar of SCAT
with an EBNF-like notation. Terminal symbols are high-
lighted using a bold font. All the identifiers of elements are
unique in the specification, although an element (but not a
relation) can be declared several times with different roles.
For instance, the same element can be the outcome of an
activity and be used as a tool in other activity. Notice that

following the Prolog notation used in ConGolog [5], square
brackets do not indicate optional elements but are the termi-
nal symbols for lists. For instance, [ElemList] corresponds
to a SCAT list where ElemList defines its elements separated
by commas.

A SCAT program comprehends declarations about sev-
eral aspects, being some of them optional. A neighbourhood
defines a parameterized network of activity systems with its
participants declared in the entities declaration and their de-
pendencies in the relations declaration. AT Declarations are
primitives adding extra information about individual enti-
ties. The instances define the actual activity systems by
grounding some of the neighbourhoods. The universe is the
set of instances that are going to be studied along with the
actual participants that exists previously to the execution of
any activity.

A neighbourhood declaration associates an identifier ID
to a network of linked activity systems. It allows declar-
ing as parameters the entities for the neighbourhood that
can be externally set with the argument IDList. This way,
the neighbourhood declaration can be reused with different
actors.

The entities in the neighbourhood need to be associated to
the roles they play within its activity systems. The entities
declaration has as arguments, in order of appearance, the ID
of the neighbourhood previously defined, a list of parameters
that is the same as in the corresponding neighbourhood, and
a list of elements. Each elem description includes an ID
for its element, which can match a particular entity of the
world or one of the parameters, and the role that it plays
in that neighbourhood according to the AT. The different
roles are extracted from the AT formalization presented in
[8]. They correspond to the entities used to depict an UML-
AT diagram. For more information, we invite readers to
review the original work.

The relations declaration describes the dependencies be-
tween entities according to the AT. The first two arguments
are the same as for an entities declaration. The last argu-
ment is the list of relationships among the entities previously
defined for the neighbourhood. A rel declaration has four
arguments: an ID for the relationship, the kind of AT rela-
tionship, and the entities it connects. The different kinds of
relations are extracted as well from [8]. According to that
definition, the elements connected by the relationship must
play concrete AT roles. For instance, an executedBy rela-

51

AT2AI-6: Fuentes-Fernandez R. et al.: An Executable Activity Theory Based Framework for Early Requirements
Analysis

tion indicates that a subject is responsible of the execution
of an activity. Hence, it declares a capability of the subject.
Another example is produce that establishes the concrete
outcome generated by the execution of an activity.

An instance declaration establishes a parameterization of
a neighbourhood. Its first two arguments are the identifiers
of the instance and the associated neighbourhood, and the
third one is a list of values that grounds the parameters of
the neighbourhood.

Besides the general declarations about activity systems,
SCAT allows making statements about individual elements
with ATDeclarations. The declaration pursue establishes
that a subject tries to achieve an objective. A declaration
decompose describes how an artifact is obtained composing
other artifacts (this is the case for activities realized through
actions and actions through operations). Finally, duration
expresses how many units of time take the execution of an
operation. Without an explicit declaration, an operation
needs one unit of time.

Finally, a universe refers to a set of instances whose evo-
lution along time has to be observed. They correspond to
scenarios where the different actors are tested. The argu-
ments of this declaration are the identifier of the universe,
since there can be several under inspection, its list of in-
stance identifiers, and a list of elements initially available.
All the elements existing in the universe must appear in this
declaration or be produced by some activity.

4. SCAT IMPLEMENTATION

The predicates in the previous section characterize uni-
verses independently of their execution model. This allows
certain types of static verification of the systems (like find-
ing contradictions in the specifications in the line of [8]), but
it does not allow checking their dynamic behaviour. For this
purpose, SCAT needs an operational semantics that deter-
mines how universes evolve over time with the execution of
tasks and the way in which subjects select the tasks to ex-
ecute. This evolution has two important requisites. First,
interruption of tasks must be allowed at any moment, as sub-
jects can be unable, or do not want, to finish them. Second
and to ease the analysis, the semantics must provide a sorted
account of the events in the execution over a timescale. The
issue of the universe evolution is addressed through an ex-
tension of ConGolog [5]; a standard implementation of the
choice of tasks is provided following the Rationality Princi-
ple [15].

The introduction already points out that the operational
semantics of SCAT is built upon ConGolog, which is a Pro-
log implementation of the Situation Calculus. The Situation
Calculus (SC) deals with the evolution of a system, whose
initial state is a term s0, by means of actions performed over
states (the ConGolog term do(action, state)). The pre
and post conditions of these actions are determined through
customized frame axioms. These axioms determine what
changes as a consequence of the execution of the actions and
also explicitly state what remains unaltered after an action
execution.

There are other extensions of SC different from ConGolog.
Concretely, Pinto and Reiter [16] or Zimmerbraun and Scherl
[22] deal with the integration of time into SC, but the results
do not meet the needs of this concrete development. Pinto
and Reiter [16] do not permit interruptions in the execution
of activities and Zimmerbraun and Scherl [22] do not indi-

cate when events appear over an absolute timescale. The
solution applied in SCAT uses flags similar to those of [22]
to mark the beginning and the end of the different tasks, as
well as absolute marks of time in the different states, similar
to those of the Event Calculus [14].

SCAT over ConGolog

Roughly, a universe is regarded as a set of ConGolog sys-
tems where multiple subjects simultaneously perform tasks.
These tasks affect to their activity systems and have collat-
eral effects in other systems through shared elements. The
tasks need a time for their execution whose account demands
an explicit representation of time. For this purpose, SCAT
codifies its own quanta of time. Every universe includes a
special non-declared subject called cronos that is responsi-
ble of time passing. It executes an atomic activity called
tick dividing the quanta. A basic operation may begin and
end its execution at the same or different quanta depend-
ing on its duration. To point out these facts in the SCAT
framework, the basic unit of operation becomes the doing
term:

doing(Context, ID, Flag, Subject, Task, Params)

It corresponds to the begin or the end of the execution of
a task (i.e., AT activity, action, or operation). Its parame-
ters are identifiers of elements in a neighbourhood plus some
additional elements for the management of the doings. A
Subject executes the doing related with a Task. The Flag
takes values among three terms: shot, begin, and end. The
value shot is only used with environment events that take
zero units of times (i.e., they happen in just one quantum);
begin and end indicate the start or the end of the execution
of a task respectively, and are used in all the other cases.
Each task execution in a run has an identifier ID, that is
unique for a doing term with a shot flag, but shared by the
terms for the same execution of a task with flags begin and
end.

Following the SC, the evolution of a universe is described
as a sequence of doing terms from an initial state s0. With
the exception of the subject cronos, whose choices of doings
are part of the execution environment, all the other subjects
are able to decide when they want to execute a doing. These
choices are considered with the chooseDoing predicate:

chooseDoing(Subject, State, Doing)

The predicate takes the identifier of the subject that has to
choose a doing at a given setting indicated by State. This
state is a sequence of doings beginning in s0, or the special
term now to indicate the current state as in ConGolog.

Analysis of Requirements

SCAT programs built upon ConGolog get benefit of the
standard resolution algorithm of Prolog, although it affects
its scalability. Concretely, they can return every possible
result (i.e. sequence of doing terms) that satisfies a given
universe. SCAT programs are executed looking for the equi-
librium of the society or the possibility of reaching a state
that satisfies some constraints. The concept of equilibrium
refers to a state where some society features do not change
or they change in cycles. Examples are those of a universe
completed or one where a subject always performs the same
activity without achieving the desired effect in the environ-
ment. The second group of tests refers to the existence of

52

AT2AI-6: Fuentes-Fernandez R. et al.: An Executable Activity Theory Based Framework for Early Requirements
Analysis

neighbourhood(research,
[Researcher, Paper]).
entities(research, [Researcher, Paper],
[elem(Researcher, subject),
elem(write, activity),
elem(createKnowledge, objective),
elem(Paper, outcome))).
relations(research, [Researcher, Paper],
[rel(rl, try, write, createKnowledge),
rel(r2, executedBy, write, Researcher),
rel(r3, produce, write, Paper)]).
duration(write, 2).

neighbourhood(teaching, [Teacher]).
entities(teaching, [Teacher],
[elem(Teacher, subject),
elem(instruct, activity),
elem(transmitKnowledge, objective)]).
relations(teach, [Teacher],
[rel(r4, try, instruct, transmitKnowledge),
rel(r5, executedBy, instruct, Teacher)]).

neighbourhood(job, [Employee, Post]).
entities(job, [Employee, Post],
[elem(Employee, subject),
elem(apply, activity),
elem(getJob, objective),
elem(Post, object),
elem(rule(unique, [Post]), rules)].

relations(job, [Employee, Post],

[rel(r6, try, apply, getJob),

rel(r7, executedBy, apply, Employee),
rel(r8, transform, apply, Post),
rel(r9, ruledBy, apply, unique)]).

rule(unique, [Post]) : —

constraint([], [instance(_, job, [, Post])]).

rule(exist, [Employee, Post]) : —

constraint([instance(_, research, [Employee, _])],
[instance(_, job, [, Post])]).

decompose(apply, [instruct, ask]).
decompose(apply, [instruct, write, ask]).

pursue(john, createKnowledge).
instance(disial, research, [john, scatPaper]).
instance(disia2, research, [paul, scatPaper]).
pursue(john, transmitKnowledge).
pursue(paul, transmitKnowledge).
instance(disia3, teaching, [john]).
instance(disia4, teaching, [paul]).
pursue(john, getJob).

pursue(paul, getJob).

instance(fdil, job, [john, lecturer]).
instance(fdi2, job, [paul, lecturer]).
universe(ucml, [disial, disia2],

[john, paul, scatPaper, createKnowledge]).

universe(ucm2,

[disial, disia2, disia3, disia4, fdil, fdi2],
[john, paul, scatPaper, lecturer,
createKnowledge, transmitKnowledge, getJob)).

Figure 2: SCAT program for the life in the department.

a given sequence of tasks in the universe that, if performed
by their subjects, generates a state where some given prop-
erties holds. To perform the previous tests, SCAT provides
the predicate deriveSequence:

deriveSequence(State, Sequence, PosConstraints,
NegConstraints)

State represents a specific initial setting of interest in the
considered universe. PosConstraints is a list of AT enti-
ties (see Sect.2) or instances of neighbourhoods that have
to appear in the evolution of the system from the initial
state to the final one. In the case of activities, they have
to be executed and completed (satisfying or not their objec-
tives); objectives have to be achieved; the other AT entities
have to exist in State or being produced by some completed
activity of the sequence; instances have to achieve all the ob-
jectives in their activity systems. NegConstraints is a list
of elements that must not appear or be satisfied in the se-
quence. Last, Sequence is a sequence of doings that makes
evolve the initial State to one that satisfies the constraints.
A query about simulation ending just imposes empty lists
of constraints, both positive and negative. An example of a
query about the reachability of a state is:

deriveSequence(sO, Sequence, [elem(think, action),
elem(explain, action),
elem(scatPaper, outcome)], [1).

The query tries to obtain a Sequence of doings from the
initial state sO that leads to a state where the outcome
scatPaper has been produced, and the actions think and
explain have been completed.

S. EXAMPLES OF SCAT PROGRAMS:
LIFE WITHIN THE ACADEMY

This section introduces part of a case study about life in
a university whose goal is to construct a simulator for that
setting. The current example focuses on how a person gains
merits to obtain a job in a university department. There are
two alternatives: to do research and teaching; or just teach-
ing. Departments expect that all their applicants adopt the
first option as it gives them a higher self-esteem and pres-
tige to their departments. John and Paul are two applicants
for a job. John has in his CV teaching and researching ac-
tivities, and Paul has only teaching. The simulation refers
to who will gain the position and how. Figure 2 shows the
SCAT program with three neighbourhoods (for doing re-
search, teaching, and applying to a job), and the instances
and universes for their analysis.

The neighbourhood research explains how and why a re-
searcher writes papers. Essentially, a researcher intends to
create knowledge by an activity called write that produces
a Paper. The activity write has a duration of two units
of time. There is also a simpler neighbourhood for teaching
with just one activity. The last neighbourhood explains how
the job can be gained. An employee makes merits and then
triggers the action ask. These actions make up the activity
apply. The only applicant who complete the activity gets
the job. The uniqueness is determined by the rule unique.

The two universes at the end of Fig. 2 represent potential
scenarios for the system. The universe ucmi1 will tell who
actually writes the paper when John and Paul are able to

53

AT2AI-6: Fuentes-Ferndandez R. et al.:

An Executable Activity Theory Based Framework for Early Requirements

Analysis

?- deriveSequence(s0, Sequence, [elem(disial, instance)], [elem(fdil, instance)]).

]
Sequence = do(doing(nil, 12, end, paul, wait, [defining(w

, 12, begin, paul, wait, [defining(wait, paul)]),
, 11, end, john, wait, [defining(wait, john)]),
, 11, begin, john, wait, [defining(wait, john)]),
, 10, shot, cronos, tick, [time(3)]),
nil, 4, end, paul, apply, [defining(job, paul, lecturer)]),
4,7 end paul, ask, [defining(job, paul, lecturer)]),
2

do(doing
doing(nil
doing(nil
doing(nil
doing
doing

wait, paul)]),

doing 79 begin, john, ask, [defining(job, john, lecturer)]),
doing(nil, 1, end, john, write, [defining(research, john, scatPaper)]),

doing

doing(4,
doing

oing
doing

)

il, 8, shot, cronos, tick, [time(2)]),

7, begin, paul, ask [defining(job paul, lecturer)]),
5, end, paul, instruct, [defining(teaching, paul)]),
2, 3, end, john, instruct, [defining(teching, john)]),
nil, 6, bhOt cronos, tick, [time(1)]),

4, 5, begin, paul, instruct, [defining(teaching, paul)]),

doing n11 4, begin, paul, apply, [deﬁnlng(Job paul, lecturer)]),

doing(2, 3, begin, john, instruct, [defining(teaching, john)]),

doing ml 2, begin, john, apply, [deﬁnlng(Job john, lecturer)]),

doing(nil, 1, begin, john, write, [defining(research, john, scatPaper)]), s0)...)

(nil
do((ni
do((ni
do((ni
do((
do((
do((
do((
do((n
do(doing(4,
do((
do((
do(doing(
do((
do((
do((2,
do((
do((

Figure 3: Trace generated by the execution of the SCAT program

do it. That is, who will successfully complete one of the
two instances disial or disia2. The initial elements avail-
able at ucml! are the subjects, a paper to write, and the
will of creating knowledge. The second universe, i.e., ucm2,
mixes several instances where Paul and John write papers,
give lectures, and pursue a job. It tests who gets the job as
lecturer in the department by completing the instance fdil
or fdi2. The execution would start from the subjects, a pa-
per to write, the post, the will of creating and transmitting
knowledge, and the goal of getting a job.

Figure 3 includes a query about if it is possible that an ap-
plicant with research does not obtain the job in the depart-
ment and a possible answer of the reasoning system. The
activity systems use the default behaviour for the choice of
doings. The fact that John made research corresponds to
the satisfaction of the positive constraint about the instance
disial, while that John did not get the job is the negative
constraint about the instance fdil. Remember from Sect. 4
that a constraint about an instance is satisfied when all the
objectives of its neighbourhoods are satisfied.

In this case, the system finds a solution for the query
that also appears in Fig. 3. The subject Paul, who does not
pursue the objective createKnowledge about doing research,
is able to get the job, as one of the alternatives to achieve
this goal just requires making teaching before asking the job.
Paul begins

do(doing(4, 5, begin, paul, instruct,
[defining(teaching, paul)])

in quantum 0 and finishes it in the next quantum, when
he also begins the activity ask. In quantum 2, he gets the
job as he satisfies all the requirements. As only one subject
can obtain the job because of the applicable rule unique
in the instance, the subject John, who teaches and does
research, loses the job. The parameters just indicate the
actual instantiation of the instances.

Another relevant issue is the flow of time. It appears as the
doings of the activity tick carried out by the subject cronos.
Finally, the execution is considered as finished when no sub-

ject (cronos excluded) can execute an activity different of
wait, which does not produce any change in the universe.
The subject Paul has satisfied his only objective with the
activity apply. The subject John has made research but he
cannot perform apply to satisfy the other objective because
of the rule unique. Thus, both of them can only perform
wait by quantum 4. This situation could be avoided sub-
stituting the rule unique by exist, which demands that the
applicant do also research.

6. INTEGRATION WITH AGENT-

ORIENTED METHODOLOGIES

Though executable, a SCAT program cannot be consid-
ered as a fully developed system. It is a resource to cap-
ture and execute activity systems at low cost, whose out-
come is knowledge about the system to be. To have a com-
plete running system, this knowledge must be integrated in
the process of a software engineering methodology. Given
that SCAT works on concepts from AT, choosing an agent-
oriented methodology makes sense. The main reason is that
the interpretation of intentionality embedded within SCAT
resembles to the BDI [2] principles. SCAT considers in its
default implementation, although it is not constrained to,
subjects that accomplish activities in order to achieve ob-
jectives.

Applying the knowledge represented by a SCAT program
in an agent-oriented methodology is done by producing a
tentative system specification following the notation of the
selected methodology. This problem has been already ad-
dressed by the authors in [8], where translations are provided
from several methodologies to the AT based language UML-
AT. Since SCAT borrows many concepts from UML-AT), it
is natural to reuse those translation facilities.

Figure 4 shows some examples of the equivalence of con-
cepts between AT and the agent-oriented methodology IN-
GENIAS [11]. The different networks of AT concepts ap-
pear on the left and their correspondences in INGENIAS to
the right. These AT concepts matches some of the ones pre-

o4

AT2AI-6: Fuentes-Fernandez R. et al.: An Executable Activity Theory Based Framework for Early Requirements

Analysis
AT INGENIAS
Agent Model:
agent(subject)
Activity — /WFResponsible/—task(activity)

— /accomplishedBy/—subject
— /transform/—object

Tasks and Goals Model:

— /GTPursues/—goal(objective)

— /produce—outcome task(activity)
— /try /—objective —/GTAffects/—fact(object)
— /WFProduces/—fact(outcome)
— /GTSatisfies/ —goal(objective)
Community Organization Model:
group(community)—/OHasMember/
—/decompose/ ahiect]
—[subjectl, subject2] —agent(su J.eCt)
’ —agent(subject2)

Figure 4: Some transformation rules from UML-AT to INGENIAS

sented when reviewing SCAT grammar in Sect. 3. These net-
works are represented as entities connected by relationships
represented with arrows labelled within ”/”. In some cases,
the same networks of elements can match several translating
networks, both from AT to the agent-oriented methodology
or vice versa. This ambiguity problem cannot be solved
trivially. It requires human assistance to determine which
translation is more appropriate in the current problem. To
save some effort, for a concrete network of AT elements and
agent-oriented methodology, the selection is made only once.

Following this mapping table, and using the developer in-
tervention to disambiguate terms, the neighbourhood with
identifier job shown in Fig. 2 can be translated to the INGE-
NIAS diagram in Fig. 5. The transformation is not complete,
since some elements from SCAT have no correspondence in
INGENIAS, like the duration predicate. In this case, this
predicate was translated as TextNotes entities, which are
free text annotations included in the diagrams.

G0l
_=Get]job)
W___—F«GTPU FSUes:

EmDllWEE“«WFRespnnsahle»éﬂ—as:‘”
pply

o «FrarmeFact
“Taskr| Grafrects»—] Post
Apply .

«Satisfaction»

<G 0al
%Getjnh
Figure 5: Partial transformation of the SCAT pro-
gram

As expected, the size of the diagram is small since there
is a high compatibility between BDI and AT concepts. To
evaluate if the SCAT language really saves effort in the spec-
ification, we tried to make the program in Fig. 2 progressing
towards a prototype with the INGENIAS Agent Framework
(IAF). The first table, labelled as Result in Fig.6, shows
stats about the number of entities and relationships of the
initial translation to INGENIAS. Notice that some original
elements can be translated several times because different
rules from the mapping provide different interpretations for
them. This initial translation is not directly executable. It
is a valid INGENIAS specification but its inconsistencies

and the lack of certain elements make that the IAF can-
not generate code for it. So a quick refactoring is made
with the initial specification in order to remove all errors.
In the initial translation to INGENIAS, the total amount
of elements, entities or relationships, summed up to 28 el-
ements. After making it TAF compatible, the specification
size increased to 43 elements. Further application of the
INGENIAS methodology - the definition of the deployment,
external components for paper writing and application de-
liver, code associated to tasks - lead to 66 elements, an even
greater increment. Given that INGENIAS has a quick im-
plementation stage due to its code generation facilities, these
figures and effort can be considered as a low limit to build
a prototype for agent-oriented methodologies. It should be
expected even wider differences with other methodologies
less supported by tools.

Finally, remarking that though INGENIAS has been con-
sidered in this section, SCAT could be translated to other
methodologies due to its roots in AT. Work made in agent
model integration with AT in [9] justifies this statement.

7. RELATED WORK

The production of requirements specifications has been
considered in the agent literature. This section focuses on
two works highly related with early requirements specifica-
tion, goal operationalization in KAOS and Formal Tropos.

Using the KAOS methodology, executing the requirements
specification is studied as the operationalization of goals in
[17]. This operationalization adds similar features to the
work presented here with some remarks. A SCAT program
is executable by itself. However, [17] requires defining ad-
ditional information, like the preconditions and postcondi-
tions of the operations required to achieve the goals. On
the other hand, the verification of properties in SCAT is
made with a basic searching algorithm, whereas [17] bases
on model checking tools. The animation of the execution is
made graphically in [17] by means of goal state machines in-
tended to express the operation descriptions. The research
in this paper depends on the Prolog facilities to animate the
specification. Therefore, the user can inspect the current
evaluation of the different variables and the incorporation
of new terms to clauses.

Formal Tropos [10] permits precise definitions of systems
with time-based predicates about their behaviour. Model
checking based tools are used to inspect this formal specifi-

%)

AT2AI-6: Fuentes-Fernandez R. et al.: An Executable Activity Theory Based Framework for Early Requirements

Analysis
Refactorized
Result -
- Name Times
Name Times
Agent 2
Agent 2
FrameFact 6
FrameFact 2 .
GTModifies 1
GTAffects 1
GTPursues 1
GTPursues 1 .
. GTSatisfies 4
GTSatisfies 2
Goal 2
Goal 2
Role 4
Role 4
Task 4
Task 4
TextNote 2
TextNote 2
WFConsumes 6
WFDecomposes 1
WPFDecomposes 1
WEPlays 4
WEPlays 4
WFProduces 1
WEFResponsable 2 WEProduces 2
P WEFResponsable 4

Figure 6: Some transformation statistics for the overall universe

cation in order to verify the satisfaction of properties. On
the other side, SCAT does not require including reasoning
about time while specifying the system. Time is considered
only during the execution. This makes a SCAT program
simpler than a Formal Tropos specification. At the same
time, it could be argued that Formal Tropos is more expres-
sive than SCAT, at least in what refers to time aspects.

8. CONCLUSIONS

This paper has shown the application of SCAT, a frame-
work for the analysis of activity systems, to early require-
ments gathering and validation. SCAT allows the quick
specification of models of the systems under study. With
little information, users are able to run simulations of the
expected behaviour according to the AT, and checking hy-
pothesis by means of their models.

Validation of requirements is achieved by checking the re-
sults obtained with simulations. These simulations can be
used as well to determine if some states can be reached or
not. It is assumed that the final validation happens as a
result of confirming with customers the appropriateness of
the simulation behaviour.

The SCAT specification can be later on translated to other
methodologies for development. As an example, this pa-
per has presented some results applied to the INGENTAS
methodology. Nevertheless, SCAT can be translated to oth-
ers, as proves some seminal work made in model integration
with AT [9]. This translation has also been useful to show
that SCAT specifications can provide simulation and verifi-
cation with less effort then the required to build a prototype
in an agent-oriented methodology, despite of the extensive
tool support of INGENTAS.

The current model of SCAT has some limitations. The
first one refers to its non-monotonic reasoning due to Pro-
log, which does not guarantee an answer to a query in finite
time and hinders scalability of SCAT programs. To prevent
this, model checking techniques are being studied. The idea
is to transform a SCAT program into a suitable input for a
model checking engine. Secondly, the specification of com-
plex systems is still a tedious work subject to errors, as it
needs many predicates. Here, we are working in the inte-
gration between SCAT and UML-AT modelling tools. Our
purpose is to provide customized graphic modelling tools for

SCAT. The last limitation emerges from the trace of the exe-
cution of universes. The state of a universe according to the
SC is a chain of actions from an initial state. These traces
become difficult to study very soon in the execution. New
predicates will be added to SCAT to simplify the analysis
of states in order to solve common queries. Besides, tools to
animate specifications are being considered.

9. ACKNOWLEDGMENTS

This work has been funded by the Spanish Council for
Science and Technology under grant TIN2005-08501-C03-01,
the Direccién General de Universidades e Investigacién de la
Consejeria de Educacién of the Comunidad de Madrid, and
the Universidad Complutense de Madrid (Research Group
921354).

10. REFERENCES

[1] C. Bernon, M. Gleizes, and G. Picard. Engineering
Adaptive Multi-Agent Systems: The ADELFE
Methodology. Agent-oriented Methodologies, 2005.

M. E. Bratman. Intention, Plans, and Practical
Reason. CSLI Publications, 1987.

M. Cossentino and I. ICAR-CNR. From Requirements
to Code with the PASSI Methodology. Agent-oriented
Methodologies, 2005.

A. Dardenne, A. van Lamsweerde, and S. Fickas.
Goal-directed requirements acquisition. Selected
Papers of the Sixzth International Workshop on
Software Specification and Design table of contents,
pages 3-50, 1993.

G. De Giacomo, Y. Lespérance, and H. Levesque.
ConGolog, a concurrent programming language based
on the situation calculus. Artificial Intelligence,
121(1-2):109-169, 2000.

Y. Engestrom. Learning by Ezpanding: an

Activity- Theoretical Approach to Developmental
Research. Orientakonsultit, 1987.

J. O. et al., editor. Representing Agent Interaction
Protocols with Agent UML, volume 3382 of LNCS.
Springer, 2005.

R. Fuentes, J. J. Gémez-Sanz, and J. Pavén. Activity
theory for the analysis and design of multi-agent

56

AT2AI-6: Fuentes-Fernandez R. et al.: An Executable Activity Theory Based Framework for Early Requirements
Analysis

20]

(21]

22]

systems. In P. Giorgini, J. P. Miiller, and J. Odell,
editors, AOSE, volume 2935 of LNCS, pages 110-122.
Springer, 2003.

R. Fuentes-Fernandez, J. J. Gémez-Sanz, and

J. Pavén. Model integration in agent-oriented
development. IJAOSE, 1(1):2-27, 2007.

A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore,

M. Roveri, and P. Traverso. Specifying and analyzing
early requirements in Tropos. Requirements
Engineering, 9(2):132-150, 2004.

J. J. Gémez-Sanz, R. Fuentes, and J. Pavén. Enabling
rapid prototyping using decoupling of code skeletons
and code generation process. InfoComp, Journal of
Computer Science, 2007.

A. Gravell and P. Henderson. Executing formal
specifications need not be harmful. Software
Engineering Journal, 11(2):104-110, Mar 1996.

S. J. Mellor, B. M., and J. I. Executable UML: A
oundation for Modl-Drive Architectures.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

E. Mueller. Event Calculus Reasoning Through
Satisfiability, 2004.

A. Newell. The knowledge level (presidential address).
AI Magazine, 2(2):1-20, 33, 1980.

J. Pinto and R. Reiter. Reasoning about time in the
situation calculus. Annals of Mathematics and
Artificial Intelligence, 14(2):251-268, 1995.

C. Ponsard, P. Massonet, A. Rifaut, J.-F. Molderez,
A. van Lamsweerde, and H. T. Van. Early verification
and validation of mission critical systems. Electr.
Notes Theor. Comput. Sci., 133:237-254, 2005.

L. Steels. The Artificial Life Route to Artificial
Intelligence, chapter Building Agents out of
Autonomous Behavior Systems. Lawrence Arlbaum
Associates, Inc., 1995.

van Deursen A., P. Klint, and J. Visser.
Domain-specific languages: An annotated
bibliography. ACM SIGPLAN Notices, 35(6):26-36,
2000.

A. van Lamsweerde. Goal-oriented requirements
engineering: a guided tour. Requirements Engineering,
2001. Proceedings. Fifth IEEE International
Symposium on, pages 249-262, 2001.

L. S. Vygotsky. Mind and Society. Harvard University
Press, 1978.

S. Zimmerbaum and R. B. Scherl. Sensing actions,
time, and concurrency in the situation calculus. In

C. Castelfranchi and Y. Lespérance, editors, ATAL,
volume 1986 of LNCS, pages 31-45. Springer, 2000.

o7

AT2AI-6 Working Notes

58

AT2AI-6: Garcia E. et al.: Issues for Organizational Multiagent Systems Development

Issues for Organizational Multiagent Systems
Development

Emilia Garcia
Department of Information
Systems and Computation

Technical University of
Valencia

Valencia, Spain

mgarcia@dsic.upv.es

Adriana Giret
Department of Information
Systems and Computation

Technical University of
Valencia

Valencia, Spain

agiret@dsic.upv.es

ABSTRACT

Organizational multiagent system (OMAS) are rapidly emerg-
ing as a powerful paradigm for developing complex systems.
Their development process implies specific requirements and
software engineering tools. Recently a great number of meth-
ods and frameworks to develop OMAS have appeared. Each
of them offers different functionality and they have distinct
characteristics and perspectives. The main contribution of
this paper is a comprehensive list of fundamental OMAS
development issues. These issues will be a starting point to
define a complete list of OMAS development requirements.
From these requirements it could be possible to define an
evaluation framework for OMAS development tools in or-
der to help the developers in evaluating OMAS tools and
applications.

Keywords

Multi-agent systems, MAS organizations, software engineer-
ing

1. INTRODUCTION

Organization multiagent systems (OMAS) have been use-
fully employed as a paradigm for developing agent systems
[7, 17]. One of the advantages of organization development
is that systems are modeled with a high level of abstrac-
tion, so the conceptual gap between real world and models
is reduced. Also this kind of systems offers facilities to imple-
ment open systems and heterogeneous member participation
[25].

OMAS development implies new requirements on tradi-
tional MAS models and technology, including the integra-

Jung, Michel, Ricci & Petta (eds.): AT2AI-6 Working Notes, From
Agent Theory to Agent Implementation, 6th Int. Workshop,
May 13, 2008, AAMAS 2008, Estoril, Portugal, EU.

Not for citation

Estefania Argente
Department of Information
Systems and Computation

Technical University of

Valencia
Valencia, Spain
eargente@dsic.upv.es

Vicente Botti
Department of Information
Systems and Computation

Technical University of
Valencia

Valencia, Spain

vbotti@dsic.upv.es

tion of organizational and individual perspectives and the
dynamic adaptation to environmental changes [10]. There-
fore, traditional MAS software engineering is not enough
to develop OMAS. They need software engineering methods
and frameworks that cover organizational concepts and offer
the necessary technology. In the last years several OMAS
methodologies [4], modeling techniques [22] and platforms
[5, 15] have been developed. However, each approach uses
its own terminology and offers different functionality, so it
is very difficult for developers to choose between one or an-
other. Many designers have doubts about how to translate
organizational concepts into final execution entities for an
application [6] and what platform and implementation re-
quirements are needed. There is no common agreement on
what should be the complete list of these "new” requirements
for organization-oriented MAS systems. Moreover, there is
no evaluation framework that helps in determining the cor-
rectness or completeness of a given OMAS method, tool or
execution platform for this kind of system.

Some works like [13, 28] analyze and compare different
agent-oriented frameworks to develop MAS. They show a
list of the most important features that are needed to de-
velop MAS and propose them to evaluate current methods
and MAS development kits. However, this list of features is
not complete enough for evaluating OMAS, because it does
not deal with organizational concepts and related technology
required for developing OMAS. The main goal of this paper
is to contribute with a comprehensive list of fundamental
OMAS development issues. These issues will be a starting
point to define a complete list of OMAS development re-
quirements. From these requirements it could be possible
to define an evaluation framework for OMAS development
tools in order to help developers in evaluating OMAS tools
and applications.

In order to define the fundamental OMAS development
issues we have made a detailed study of the state of the art
methods and tools for OMAS. Section 2 overviews a set of
the most representative ones. In this study we have ana-
lyzed their organizational concepts and technology associ-

59

AT2AI-6: Garcia E. et al.: Issues for Organizational Multiagent Systems Development

ated. From this study we propose the list of fundamental
OMAS development issues detailed in Section 3, we also
present a brief discussion on the importance of these issues
in OMAS development. Finally, Section 4 presents some
conclusions and future work.

2. STATE OF THE ART OMAS DEVELOP-
MENT TOOLS

In this section we briefly present the most representative
set of state of the art development tools for OMAS. We
have studied this tools in order to figure out the OMAS
fundamental issues required and already provided by them.
The goal of this section is just to present an introduction of
them. The detailed information on each tool can be found
in the referenced literature. In the next section we present
the insights of the OMAS development issues related with
these tools.

AGR (Agent, Group, Role) [17] is an organizational method-

ology that is the evolution of the Aalaadin model [16]. In
AGR agent, group and role are the primitive concepts. An
agent is an active, communicating entity playing (multiple)
roles within (several) groups.

The Tropos methodology, in the latest version [20], adopts
an organizational viewpoint and explicitly studies the iden-
tification of the organizational structure. It proposes using
generic multiagent structures that are based on human or-
ganizations.

GaiaEXOA (Gaia Extended with Organizational Abstrac-
tions) [31] is an evolving extension of the Gaia methodology
for designing open MAS.

Ingenias [26] is a methodology for the development of
OMAS that is supported by an integrated set of tools, the
INGENIAS Development Kit (IDK). It integrates results
from research in the area of agent technology with a well-
established software development process, which in this case
is the Rational Unified Process (RUP).

Electronic Institutions (EI) [1] is a framework that is fo-
cused on the design and implementation of an open MAS.
It allows the definition of social norms and agent behavioral
control. This framework provides several tools to define and
implement electronic agent institutions.

Organizational Model for Normative Institutions (Omni)
[11] is an integrated framework for norms, structure, inter-
action and ontologies for modeling organizations in MAS.
It is a unification of two other models: the OperA and the
HarmonIA framework.

Moise+ is an organizational model for Multi-Agent Sys-

tems based on notions like roles, groups, and missions. Moise+

models may be implemented in any platform. Authors present
some software to work with Jason, Saci and S-Moise+ [23]
which is developed by Moise+ authors.

Jack Teams [27] is an extension to JACK Intelligent Agents
platform that provides a team-oriented modelling frame-
work. As Jack, it is based on the BDI agent model and
it is implemented in Java.

3. OMAS DEVELOPMENT ISSUES

OMAS software engineering is based on agent-oriented
software engineering (AOSE). However, AOSE is not enough
for developing this kind of systems as it does not consider the
own characteristics of organization concepts and techniques
(4].

The aim of this section is to show the most important soft-
ware engineering issues for OMAS development. Because of
the different perspectives and the terminological and con-
ceptual confusion in OMAS [8], the identification of a set
of independent, orthogonal features which completely char-
acterize the OMAS development process seems infeasible.
The purpose of this section is to make an overall analysis of
the needs that arise when developing OMAS, relying more
on the concepts than in a specific terminology. These is-
sues are classified into three categories: (i) methodology and
modeling language; (ii) development tool; and (iii) execution
platform. Following, those categories are deeply discussed.

3.1 Methodology and modeling language

A well-defined methodology greatly helps developers to
move from the requirements of the application to the final
built system. A complete analysis of the most important
features in agent methodologies can be found in [13]. This
section is focused on the issues that must be considered when
MAS organizational concepts are taken into account. Specif-
ically, methodological features that need to be analyzed are:

e Development process: the methodology and the
modeling language should be able to extract the orga-
nizational requirements; and model the organizational
concepts and structure, and also the individual be-
haviours and objectives of agents. An analysis whether
they cover the whole development process is needed.
Most approaches, such as AGR, Roadmap and Tropos,
only cover the analysis and the design stages. Despite
this, approaches, such as Electronic Institutions, Inge-
nias and Omni, also cover the implementation stage.

e Methodology concepts and modeling language
relationship: The gap between the concepts of the
methodology and the modeling language should be as
little as possible, so a complete organizational mod-
eling language is needed [6]. This modeling language
can be formal or informal. Most part of current OMAS
methodologies offer an informal modeling language that
cover completely the concepts and the relationships
studied in the methodology. Despite this, there are
approaches that introduce formal modeling. For ex-
ample, all dimensions of Omni have a formal logical
semantics, which ensures consistency and possibility
of verification of the different aspects of the system.

e Social patterns: Patterns describe a problem com-
monly found in software design configurations and pre-
scribe a flexible solution for the problem, so as to ease
the reuse of that solution. This solution is repeat-
edly applied from one design to another, producing
design structures that look quite similar across differ-
ent applications [12]. They are very useful and reduce
the developing time, but only few approaches integrate
them. One of them is Tropos that integrates few social
patterns in the organizational topologies. In [12] some
of these patterns are explained (broker, matchmaker,
mediator, monitor, embassy, wrapper, contract-net).

e Domain dependence: Methods should offer domain-
independent organizational representations and domain-
specific frameworks to capture particular relevant or-
ganizational characteristics [21].

60

AT2AI-6: Garcia E. et al.: Issues for Organizational Multiagent Systems Development

On the other hand, there are specific organizational con-
cepts that must also be modelled by an OMAS methodology,
based on five dimensions [8, 4]: structural, dynamic, func-
tional, normative and environment.

3.1.1 Structural Dimension.

It represents the structure of the organization and all the
elements that persist in the organization independently of
their members. The structure is defined by its roles, groups,
and their dependencies and links. The issues related with
the structural dimension are:

e Topology Selection: There are many organizational topolo-

gies (for example Tropos propose Flat-Structure, Pyra-
mid Style, Chain of Values, Matrix, Structure-in-Five,
Co-optation, Joint Venture, Bidding, Arm’s Length y
Hierarchical Contracting). Which typologies are sup-
ported by the methodology and by the modeling lan-
guage is an important development issue. Most com-
plete methodologies should provide a guideline to help
developers in the decision of which structure is more
appropriated. For example, Tropos offers some guide-
lines to determinate which is the most appropriate
topology for each application. These guidelines are
based on general aspects of the performance (fault tol-
erance, adaptability, coordinability) and they do not
take into account organizational components like de-
partments.

e Composed organization: This concept considers whether
the approach allows the creation of an organization
inside another organization. The most part of the
methodologies allow it (AGR, GaiaEXOA, Moise+,
etc.). Also whether an organization can be created
from other pre-existing organizations.

e Social relationships: Methodologies might take into ac-
count and enable modeling role dependencies and the
type of social relationship between the agents and with
organizations [10]. Some role dependencies are: her-
itage, communication, compatibility, coordination, au-
thority or power control. Some of relationship types
between agents and organizations are: knowledge links
(who can get information about other agents); commu-
nication links (who can interact with); authority links
(who has control over others); etc.

3.1.2 Dynamic Dimension.

It represents the evolution of the organization, i. e., how
agents go inside and outside of the organization and how
they change their roles depending on their capabilities and

objectives in each moment. The following concepts are needed:

e Dynamical models: The dinamicity of the system should
be modeled, i. e., the modeling language should be
able to represent how agents go in and out of the or-
ganization, how they change their roles and how the
organizations are created and/or destroyed. Each ap-
proach represents the dinamicity of the system in a dif-
ferent way and given different functionality. For exam-
ple: AGR models how agents change from one group
to another. Omni uses contracts to specify when an
agent can have a given role. Furthermore, approaches
like EI or Moise include an entity which checks that
the actions are valid before executing them.

e Interactions: The possibility to have open and dy-
namic systems that allow the interaction of heteroge-
neous agents is a desirable feature. To get this the def-
inition of a common ontology is necessary. Also com-
municative acts should follow interaction patterns
or protocols. It is necessary to define a set of the
valid illocutions that agents can exchange and that
satisfies a common ontology, a common communica-
tion language and knowledge representation language
[2]. The most part of the approaches define interac-
tion protocols, but only few of them, such as EI and
Ingenias, are able to model a common ontology that
completely specify the valid illocutions.

e (Context: Some approaches specify the situations or
context in which the organizations can be during their
execution, and how an organization changes between
one situation to another. The context specifies the
state of the agents, which roles they play and the es-
tablished norms [1]. Despite this is a very interesting
feature, only few approaches like EI and Moise-Inst
[18] (an extension of Moise) define contexts.

3.1.3 Functional Dimension.

It represents the organization goals and each component
goals. Also it indicates how these goals are achieved, i. e.,
their decomposition in tasks and plans. Finally, it defines
which functionality is offered by the organization and agents.
In this case, the most relevant concepts to be taken into
account are:

e Goals: It is important to not forget that agents which
form an organization are autonomous and they have
their own goals, behaviours and beliefs in addition
to those from the organization. For that reason the
approach should be able to model individual goals,
global or organizational goals and how these global
objectives are decomposed into individual goals in
order to be achieved. The most part of the approaches
support this feature.

e Goal decomposition: The decomposition of goals into
tasks and plans should be modeled. Also the most part
of the approaches support this feature.

e Functionality: The offered behaviour of any OMAS
entity should be specified. Currently, there is no ap-
proach that specifies which functionality is offered by
an organization.

3.1.4 Normative Dimension.

It represents the set of norms that control the organi-
zation. Norms facilitate the mechanisms to drive the be-
haviour of agents, specially in those cases when their be-
haviour affects other agents [24].

In organization-oriented methodologies two different trends
can be observed when comparing several approaches [4]. On
the one hand, methods such as Ingenias [26]. Agent-Group-
Role [17] detail system roles, groups and relationships but
they do not explicitly consider social norms. On the other
hand, other methods and frameworks, such as Electronic In-
stitutions [14], are focused on the social norms and explicitly
define control policies to establish and reinforce them. More-
over, an extension of AGR to support norms is presented in
[19].

61

AT2AI-6: Garcia E. et al.: Issues for Organizational Multiagent Systems Development

Many kinds of norms can be distinguised, but not all
methodologies and modeling languages allow the specifica-
tion of all of them. Some of these types of norms are [24]:
(1)Deontic (Obligations, Permissions and Prohibitions); (2)
Legislatives, for creating, modifying or revoking norms; (3)
Reinforcement, for controlling and penalizing; (4) Rewards.

3.1.5 Environment Dimension.

It represents all the elements of the environment that in-
teract with the organization. The following concepts are
needed:

e Resources: The mechanism to access resources (read,
interact, modify, etc.) should be modeled [31, 26].
Some methodologies like Roadmap, GaiaEXOA and
Omni, model the resources, their contextual relation-
ships and how these resources are accessed.

e Perceptors and Effectors: Some approaches like [29]
model observations as the ability of an entity to per-
ceive the state of (or to receive a signal from) an ob-
served entity by means of perceptors. Perceptor types
are used to specify (by means of perceiving acts) the
observations that agents can make. The specification
of which entities can observe others is modeled with a
perceives dependency. Different aspects of effect-
ing interactions are modeled analogously, by means of
effectors, effector types, effecting acts, and effect de-
pendencies.

e Stakeholders: They represent the interaction links of
the organization with its environment, detailing who
takes benefit of the organizational results or who does
the organization depend on [30]. Only few approaches
model stakeholders, one example is Omni that model
the entities that take benefit of the organization or
that need it. Also identify which are their objectives
and their dependences on the organization.

3.2 Development tool

Development tools are usually divided in two different
kind: the specification tool that allows modeling the sys-
tem, and the implementation tool that allows implementing
the final code of the application.

Some tools try to integrate or connect both parts [1]. They
add automatic code generation techniques that reduce sig-
nificantly the implementation time and errors. Despite this,
nowadays the gap between the model and the implementa-
tion is very high [28] and the most common situation is that
a big part of the concepts defined in the models cannot be
directly translated to the final implementation. Currently
there is no tool that completely integrates the model and
the final code.

Only the requirements that appear when the organiza-
tional concepts are being added to a MAS are taking into
account in this paper. A complete analysis of the most im-
portant features of traditional MAS development kits can
be found in [13].

3.2.1 Modeling tool.

It should offer modeling facilities by using the selected or-
ganizational modeling language. It should cover completely
the modeling language and the methodology. It is conve-
nient that some or all the guidelines offered by the method-

ology are integrated with the modeling tool, but current
systems do not offer this facility.

3.2.2 Implementation tool.

The implementation tool should integrate the entire range
of modeling features and should easiest the translation from
these modeling features to the corresponding execution ele-
ments of a given agent execution platform.

Lots of methodologies and software engineering works only
offer a theoric analysis and lots of them do not provide any
development tool. Two of the most complete development
tools are:

EI offers : Islander (a graphical tool that supports the spec-
ification and verification of the institutional rules); Simdei
(a simulation tool to animate and analyze Islander specifi-
cations prior to the deployment stage); aBuilder (an agent
development tool which given an Islader specification sup-
ports the generation of agent skeletons for that institution);
Ameli (a software platform to run institutions); Monitoring
tool (a tool which permits the monitoring of EI executions
run by Ameli). Nevertheless, there are important lacks in EI
tools: the model tool only takes into account organizational
concepts; the development tool (aBuilder) only automati-
cally generate agent skeletons and the code agent should be
manually completed.

On the other hand, Ingenias is supported by an integrated
set of tools, the Ingenias Development Kit (IDK). These
tools include an editor to create and modify MAS models,
and a set of modules for code generation and verification
of properties from these models. This approach covers the
entire development process in a basic way, but, it has im-
portant lacks in the transformation from models to the final
implementation. It only offers a basic generation of code
skeletons and does not provide an implementation environ-
ment.

3.3 Execution platform

Regarding agent platforms, the most well-known agent
platforms (like Jade) offer basic functionalities to agents,
such as AMS (Agent Management System) and DF (Direc-
tory. Facilitator) services; but designers must implement
nearly all organizational features by themselves, like com-
munication constraints imposed by the organization topol-
ogy [3].

e Organization representation: Organizations can
be materialized in the following ways [6]: (1) devel-
opers does not define the organization structure, al-
though the observer can see an emergent organization;
(2) the organization exists as a specified and formalized
schema, made by a designer but agents do not known
anything about it and do not reason about it; (3) each
agent has an internal and local representation of coop-
eration patterns which it follows when deciding what
to do; (4) agents have an explicit representation of the
organization which has been defined. Thus an agent
is able to reason about it and uses it in order to initi-
ate cooperation with other agents . A good example of
the 4 classification may be S-Moise+ or Ameli (EI plat-
form). They have an explicit representation of the or-
ganization and both have similar architectures. They
follow a three-layer architecture: the application layer
that is formed by the autonomous agents of the appli-
cation; the social layer that ensures that the interac-

62

AT2AI-6: Garcia E. et al.: Issues for Organizational Multiagent Systems Development

tion follow the established norms; the communication
layer that allow the communication between agents.
Application agents are responsible for achieving orga-
nizational goals and using the agent proxy offered by
the organization to interact with it.

The implementation tool should integrate the entire
range of modeling features and should easiest the trans-
lation from these modeling features to the correspond-
ing execution elements of a given agent execution plat-
form.

Control mechanisms: The platform should have
control mechanisms that ensure the satisfaction of the
organizational constraints. The most common archi-
tectures use middlewares between agents or between
agents and the organization [15]. This middleware
forces agents to respect the constraints of the organiza-
tion. Also, this middleware allows that heterogeneous
agents interact and that the organization changes dy-
namically. This feature is well supported byAmeli and
S-Moise+. They act as a middleware between agents
and the communication layer. Each agent has associ-
ated a proxy agent offered by the organization which
control that all the norms and constraints are validated
before the interaction.

Description of the organizations: The organiza-
tion should have an available description in a standard
language. It allows external and internal agents to get
some information about the organization at run-time.
This last feature is not only useful in open systems,
but also when considering a reorganization process. A
good example of specification of the organization and
its benefits can be found in the S-Moise+ platform.

AMS and DF extension: The AMS and the DF of-
fered by traditional MAS platforms should be improve.
The AMS should have the information of the existing
organizations and their members. The DF should pub-
lish the services offered by the agents individually and
the services offered by an organization. It should have
not only the name of the service offered, but also a
description of it to allow open systems.

Communication layer: The kind of communication
layer used in the communicative acts is a very impor-
tant feature. Some of them, such as FIPA-ACL (used
by Ameli) and KQML (used by S-Moise+), are more
suitable for open systems than TCP/IP, CORBA and
RMI [6].

Monitorization: The platform should offer a mech-
anism to monitorize the state of the agent and of the
organizations.

Modeling concepts support: The platform and the
programming language should cover all these concepts
(explained in Section 3.1). For example, which types of
topologies support the platform, which kind of norms,
etc. are very interesting features to analyze. No all the
platform has a complete modeling concepts support,
for example Ameli is focused on the management of
rules and norms but do not support the definition of
complex topologies. Jack Teams allows the creation
of composed "Teams” but it do not offer support for
other topologies.

e API: The platform should offer an API that allows [9,
5] to create, destroy and modify organizations; consult
and modify the organization description, add, query
and delete the agents of an organization; send messages
to a whole organization, etc.

3.4 Discussion

OMAS development is a very complex task that implies
new requirements on all the stages of MAS development
process. As is shown, new methodologies, modeling lan-
guages, developing environments and platforms are needed.
All these development tools requires specific issues to cover
organizational characteristics.

The entire development process should be supported by
OMAS software engineering tools. Generally, there are big
gaps in the development process. The methodology defines
concepts that are not supported by the modeling tool. Also,
the modeling tool specifies some entities that do not have
a corresponding implementation artifact. Moreover, there
are few development tools that automatically generate im-
plementation code for a given execution platform.

The study that we present in this paper, shows that there
is no development tool that completely cover all the funda-
mental OMAS development issues. Furthermore, developers
do not have any help to choose between one or another de-
velopment tool. For this reason, we are convinced that there
is a fundamental need of a complete evaluation framework in
order to get a qualitative and quantative measurement of the
completeness or correctness of a given OMAS development
tool.

4. CONCLUSIONS AND FUTURE WORKS

In this work we have presented a comprehensive list of
OMAS development issues. These issues were defined from
a detailed study of the state of the art development methods
and taking into account the new characteristics of OMAS re-
lated to traditional MAS. It is well known that OMAS are
specially suited for open and large systems in which orga-
nizational structures are required in order to manage the
system complexity. These facts makes compulsory to use
Software Engineering principles, methods and techniques in
the entire development cycle of this kind of systems. Many
research efforts have been developed in this field. In this
work we have shown that many of the fundamental OMAS
issues are not completely covered by these works. Moreover,
there is a fundamental need to have evaluation frameworks
in order to get a qualitative and quantative measurement
of the completeness or correctness of a given OMAS devel-
opment tool. With such a framework a developer could se-
lect the more appropriate tool for the particular system to
develop. The fundamental OMAS development issues pre-
sented in this work are a starting point to develop a com-
plete requirement list for OMAS development. From this
requirement list it should be possible to define a complete
evaluation framework for OMAS development tools.

We are working on the definition of the OMAS develop-
ment requirement list integrated with traditional MAS re-
quirement, and issues from Service-Oriented MAS. The final
goal of our research is the definition of a general qualitative
and quantitative evaluation framework for MAS.

63

AT2AI-6: Garcia E. et al.: Issues for Organizational Multiagent Systems Development

S.

ACKNOWLEDGEMENTS

This work is partially supported by the PAID-06-07/3191,

TIN2006-14630-C03-01 projects and CONSOLIDER-INGENIO

2010 under grant CSD2007-00022.

6.

7.
1]

2]

8]

[4

[7]

8

(10]

(11]

(12]

(13]

ADDITIONAL AUTHORS

REFERENCES

J. Arcos, M. Esteva, P. Noriega, J. A. Rodriguez, and
C. Sierra. Environment Engineering for Multi Agent
Systems. Journal on Engineering Applications of
Artificial Intelligence, 18:191-204, 2005.

J. L. Arcos, P. Noriega, J. A. Rodriguez-Aguilar, and
C. Sierra. E4mas through electronic institutions. In
D. Weyns, H. Parunak, and F. Michel, editors,
Environments for Multiagent Systems III, volume 4389
of Lecture Notes in Artificial Intelligence, pages
184-202. Springer-Verlag, 2007.

E. Argente, A. Giret, S. Valero, V. Julian, and

V. Botti. Survey of MAS Methods and Platforms
focusing on organizational concepts. In Vitria, J.,
Radeva, p. and Aguilo, I, editor, Recent Advances in
Artificial Intelligence Research and Development,
Frontiers in Artificial Intelligence and Applications,
pages 309-316, 2004.

E. Argente, V. Julian, and V. Botti. Multi-agent
system development based on organizations.
Electronic Notes in Theoretical Computer Science,
150:55-71, 2006.

E. Argente, J. Palanca, G. Aranda, V. Julian,

V. Botti, A. Garcia-Fornes, and A. Espinosa.
Supporting Agent Organizations, pages 236—245. 2007.
O. Boissier, J. F. Hiibner, and J. S. Sichman.
Organization oriented programming: From closed to
open organizations. Engineering Societies in the
Agents World VII, 4457/2007:86-105, 2007.

O. Boissier, J. Padget, V. Dignum, G. Lindemann,
E. Matson, S. Ossowski, J. Sichman, and

J. Vazquez-Salceda. Coordination, Organizations,
Institutions and Norms in Multi-Agent Systems,
volume 3913 of LNCS (LNAI). 2006.

L. Coutinho, J. Sichman, and O. Boissier. Modeling
Organization in MAS: A Comparison of Models. In
First Workshop on Software Engineering for
Agent-oriented Systems, pages 1-10, 2005.

N. Criado, E. Argente, V. Julian, and V. Botti.
Organizational services for spade agent platform. In
IWPAAMSO07, 2007.

V. Dignum and F. Dignum. A landscape of agent
systems for the real world. Technical report
44-¢s-2006-061, Institute of Information and
Computing Sciences, Utrecht University, 2006.

V. Dignum, J. Vazquez-Salceda, and F. Dignum.
Omni: Introducing social structure, norms and
ontologies into agent organizations. LNAI 3346, 2005.
P. A. Do TT, Kolp M. Social patterns for designing
multi-agent systems. In Proceedings of SEKFE-2003,
2003.

T. Eiter and V. Mascardi. Comparing environments
for developing software agents. AI Commun.,
15(4):169-197, 2002.

(14]

(15]

[16]

(17]

(18]

(19]

20]

(21]

22]

23]

(24]

(25]

[26]

27]

28]

29]

M. Esteva, J. Rodriguez-Aguilar, C. Sierra, J. Arcos,
and P. Garcia. On the Formal Specification of
Electronic Institutions, pages 126-147. Lecture Notes
in Artificial Intelligence 1991. Springer-Verlag, 2001.
M. Esteva, B. Rosell, J. A. Rodriguez, and J. L.
Arcos. AMELI: An agent-based middleware for
electronic institutions. In In Proc. of AAMASO/,
pages 236-243, 2004.

J. Ferber and O. Gutknecht. A meta-model for the
analysis and design of organizations in multi-agent
systems. In Proceedings of the Third International
Conference on Multi-Agent Systems (ICMAS’98),
pages 128-135. IEEE Computer Society, 1998.

J. Ferber, O. Gutknecht, and F. Michel. From Agents
to Organizations: an Organizational View of
Multi-Agent Systems. In P. Giorgini, J. Muller, and
J. Odell, editors, Agent-Oriented Software Engineering
VI, volume LNCS 2935 of Lecture Notes in Computer
Science, pages 214-230. Springer-Verlag, 2004.

B. Gateau, O. Boissier, D. Khadraoui, and E. Dubois.
Moiseinst: An organizational model for specifying
rights and duties of autonomous agents. Third
European Workshop on Multi-Agent Systems (EUMAS
2005), pages 484-485, 2005.

B. Gateau, O. Boissier, D. Khadraoui, and E. Dubois.
Moiseinst: An organizational model for specifying
rights and duties of autonomous agents. Environments
for Multi-Agent Systems II1, 4389:41-50, 2007.

P. Giorgini, M. Kolp, and J. Mylopoulos. Multi-agent
architectures as organizational structures. Autonomous
Agents and Multi-Agent Systems, 13(1):3-25, 2006.

B. Horling. Quantitative organizational modeling and
design for multi-agent systems. PhD thesis, 2006.

B. Horling and V. Lesser. Using odml to model
multi-agent organizations. In TAT ’05: Proceedings of
the IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, 2005.

J. Hubner, J. Sichman, and O. Boissier. S-moise+: A
middleware for developing organised multi-agent
systems. In In Proc.Int. Workshop on Organizations
in Multi-Agent Systems, from Organizations to
Organization Oriented Programming in MAS, volume
3913 of LNCS, pages 64—78, 2006.

F. Lopez, M. Luck, and M. d’Inverno. A normative
framework for agent-based systems. Computational
and Mathematical Organization Theory, 12:227-250,
2006.

X. Mao and E. Yu. Organizational and social concepts
in agent oriented software engineering. In AOSE IV,
volume 3382 of Lecture Notes in Artificial Intelligence,
pages 184-202, 2005.

J. Pavon, J. Gomez-Sanz, and R. Fuentes. The
INGENIAS Methodology and Tools, volume chapter
IX, page 236U276. Henderson-Sellers, 2005.

A. O. Software. Jack intelligent agents: Jack teams
manual, release 4.1. 2004.

J. Sudeikat, L. Braubach, A. Pokahr, and

W. Lamersdorf. Evaluation of agent-oriented software
methodologies examination of the gap between
modeling and platform. AOSE-2004 at AAMASO/,
2004.

I. Trencansky and R. Cervenka. Agent modelling

64

AT2AI-6: Garcia E. et al.: Issues for Organizational Multiagent Systems Development

language (AML): A comprehensive approach to
modelling mas. In Informatica, volume 29(4), pages
391-400, 2005.

J. Vazquez-Salceda, V. Dignum, and F. Dignum.
Organizing multiagent systems. Technical report
uu-cs-2004-015, Institute of Information and
Computing Sciences, Utrecht University, 2006.

M. Wooldridge, N. R. Jennings, and D. Kinny. The
Gaia Methodology for Agent-Oriented Analisys and
Design. Journal of Autonomous Agents and
Multi-Agent Systems, 15, 2000.

65

AT2AI-6 Working Notes

66

AT2AI-6: Gaud N. et al.: A Verification by Abstraction Framework for organizational Multi-Agent Systems

A Verification by Abstraction Framework for organizational
Multi-Agent Systems

Nicolas Gaud
Multiagent Systems Group
System and Transport
Laboratory
University of Technology of
Belfort Montbéliard
90010 Belfort cedex, France
nicolas.gaud@utbm.fr

Abderrafida Koukam
Multiagent Systems Group
System and Transport
Laboratory
University of Technology of
Belfort Montbéliard
90010 Belfort cedex, France
abder.koukam@utbm.fr

ABSTRACT

Software agents and multi-agent systems (MAS from now
on) are recognized as both abstractions and effective tech-
nologies for modelling and building complex distributed ap-
plications. However, they are still difficult to engineer. The
reason is that when massive number of autonomous compo-
nents interact it is very difficult to predict that the emer-
gent organizational structure fits the system goals or that
the desired functionalities will be fulfilled. Verification ap-
proaches try to evaluate whether or not a product, service,
or system complies with a specification. However verifica-
tion approaches are limited by the state-space of the system
under study. This paper proposes an approach based upon
an organizational framework and specifically the capacity
concept which enables to abstract a role know-how and to
reduce the state space of the system under study. A for-
mal framework based on multi-formalisms language and the
specification approach are presented and illustrated through
the specification of a part of the contract net protocol.

Keywords

Holonic and Multi-agent systems, Formal method, Verifica-
tion, Abstraction

1. INTRODUCTION

Software agents and multi-agent systems (MAS from now
on) are recognized as both abstractions and effective tech-
nologies for modelling and building complex distributed ap-
plications. However, they are still difficult to engineer. When

Jung, Michel, Ricci & Petta (eds.): AT2A1-6 Working Notes, From
Agent Theory to Agent Implementation, 6th Int. Workshop,
May 13, 2008, AAMAS 2008, Estoril, Portugal, EU.

Not for citation

Vincent Hilaire
Multiagent Systems Group
System and Transport
Laboratory
University of Technology of
Belfort Montbéliard
90010 Belfort cedex, France
vincent.hilaire@utbm.fr

Stéphane Galland
Multiagent Systems Group
System and Transport
Laboratory
University of Technology of
Belfort Montbéliard
90010 Belfort cedex, France
stephane.galland@utbm.fr

Massimo Cossentino
Istituto di Calcolo e Reti ad
Alte Prestazioni
Consiglio Nazionale delle
Ricerche
Palermo, Italy

cossentino@pa.icar.cnr.it

massive number of autonomous components interact it is
hard to predict if the emergent organizational structure will
fit the system goals or if the desired functionalities will be
fulfilled. Verification approaches try to evaluate whether or
not a product, service, or system complies with a specifi-
cation. However verification approaches are limited by the
statespace of the system under study. In order to tackle this
problem and to verify properties for large systems such as
MAS, several techniques may be used. Verification by ab-
straction is one of these techniques. It consists in finding an
abstraction relation and an abstract system that simulates
the concrete one and that is manageable for algorithmic ver-
ification [5, 24].

The goal of this paper is to present a verification by ab-

straction approach dedicated to MAS and particularly orga-
nizational MAS and Holonic MAS (HMAS). This approach
is based upon the abstraction of capacities of roles played by
agents within organizations. Organizational approaches are
now common within the MAS domain [16, 29, 4, 6] and pro-
pose organizational concepts for MAS and HMAS modelling.
The framework presented in this paper, namely CRIO, is
based upon four main concepts : Capacity, Role, Interac-
tion and Organization. Agents play roles within organiza-
tions and interact between themselves. In order to be played
by an agent, a role may require some capacities. A capacity
is an abstraction of a know-how or a service. It is a very
useful concept during the analysis and design of HMAS [26].
The verification by abstraction approach presented here is
based upon this concept. Each capacity abstracts a part of
role behaviours and separate it from its current implemen-
tation.
Each concept of the CRIO framework is specified using a for-
mal language namely OZS [21]. This language composes two
formalisms, Object-Z [14] and statecharts [22]. The formal
semantics defined for this notation allows the verification of
properties by using dedicated software environment such as
SAL [9].

67

AT2AI-6: Gaud N. et al.: A Verification by Abstraction Framework for organizational Multi-Agent Systems

This paper is organized as follows, section 2 introduces
OZS notation. Section 3 presents the CRIO framework,
section 4 illustrates the framework and the abstraction ap-
proach using the contract net protocol. Eventually, section
5 concludes.

2. BACKGROUND

Many specification formalisms can be used to specify en-
tire system but few, if any, are particularly suited to model
all aspects of such systems. For large or complex systems,
like MAS, the specification may use more than one formal-
ism or extend existing formalism.

Our approach uses Object-Z to specify the transforma-
tional aspects and statecharts to specify the reactive aspects.
Object-Z extends Z [25] with object-oriented specification
support. The basic construct is the class which encapsu-
lates state schema and operation schemas which may affect
its variables.

Statecharts extend finite state automata with constructs
for specifying parallelism, nested states and broadcast com-
munication for events. Both languages have constructs which
enable refinement of specification. Moreover, statecharts
have an operational semantic which allows the execution of
a specification.

We introduce a multi-formalisms notation that consists in
integrating statecharts in Object-Z classes. The class de-
scribes the attributes and operations of the objects. This
description is based upon set theory and first order predi-
cates logic. The statechart describes the possible states of
the object and events which may change these states. A stat-
echart included in an Object-Z class can use attributes and
operations of this class. The sharing mechanism is based on
name identity. Moreover, we introduce basic types such as
[Event, Action, Attribute]. Event is the set of events which
trigger transitions in statecharts. Action is the set of state-
charts actions and Object-Z classes operations. Attribute is
the set of objects attributes.

The LoadLock class illustrates the integration of the two
formalisms. It specifies a LoadLock composed of two doors
which states evolve concurrently. Parallelism between the
two doors is expressed by the dashed line between DOOR1
and DOOR2. The first door reacts to activatel and deactivatel
events. When someone enters the LoadLock he first activates
the first door enters the LoadLock and deactivates the first
door. The transition triggered by deactivatel event executes
the inLL operation which sets the someonelnLL boolean to
true. Someone which is between the first and the second
door can activate the second door so as to open it.

— LoadLock

someonelnLL : B

__INIT
— someonelnLL
_inLL _outLL
AsomeonelnLL AsomeonelnLL
someonelnLL’ — someonelnLL’

__behavior
DOOR1

deactivatel/inLL

deactivate2/outL L

activate2[someonelnLL] \\‘

The notation for attribute modification consists of the
modified attributes which belongs to the A-list. In any op-
eration sub-schema, attributes before their modification are
noted by their names and attributes after the operation are
suffixed by ’.

The result of the composition of Object-Z and statecharts
seems particularly well suited to specify MAS. Indeed, each
formalism has constructs which enable complex structures
specification. Moreover, aspects such as reactivity and con-
currency can be easily dealt with.

3. THE CRIO METAMODEL

The CRIO metamodel presented in figure 1 is the basis of
the framework we present in this paper. A more complete
description of the metamodel related to a MAS methodol-
ogy is given in [8]. As this metamodel is aimed at MAS
and HMAS we consider that all agents are holons. Simple,
non composed, holons are agent in the usual meaning. The
metamodel introduces two different levels of abstraction.

The abstract level is concerned with the analysis of a prob-
lem in organizational terms. The analysis phase is based
on four main concepts : role, interaction, organization and
capacity. The adopted definition of role comes from [11]:
”Roles identify the activities and services necessary to achieve
social objectives and enable to abstract from the specific in-
dividuals that will eventually perform them. From a society
design perspective, roles provide the building blocks for agent
systems that can perform the role, and from the agent design
perspective, roles specify the expectations of the society with
respect to the agent’s activity in the society”. Moreover, the
concept of roles and organization in CRIO is slightly differ-
ent than the usual one. Indeed, in role is not just a speci-
fication of an expected behaviour but a rela building block
that will be refined down to an implementation that will be
used by agents. However, in order to obtain generic mod-
els of organizations, it is required to define a role without
making any assumptions on the agent which will play this
role. To deal with this issue the concept of capacity was
defined [26]. A capacity is a pure description of a know-how
and may consider as an interface between the role and asso-
ciated entities. A role may require that individuals playing
it have some specifics capacities to properly behave as de-
fined. The role requires certain skills to define its behavior,
which are modeled by capacity. The capacity can then be
invoked in one of the tasks that comprise the behavior of
the role. In return, an individual must provide a way of
realizing all required capacities to play a role. Interactions

68

AT2AI-6: Gaud N. et al.: A Verification by Abstraction Framework for organizational Multi-Agent Systems

—orig 1 1.¥
Interacton | _____ Role .« requires >
» —dest 1 1% W
Capacity
% M
1 1 2
g A
Organization rovides >
Abstract Level 9 - P 2 2
1 } E @
e e e _
%) | . *
Concrete Level £ v provides > * | Capacity Implementation
3]
& AR *
* * — internal Groups O x
Group Holon *
1. ﬁ} L¥ 3 0..1 *
v

Figure 1: CRIO meta-model

are sequences of actions which consequences have influences
over the future behaviours of roles. The context of these
interactions is given by an organization. An organization is
then a description of a set of roles and their interactions.
They define a specific pattern of interaction.

The concrete level describes the solution in terms of groups
instantiating organizations. Entities belonging to groups,
agents or holons, have capacity implementations required
by the played roles. For each concept of this metamodel, a
formal description using the OZS notation is given. These
specifications define a framework that can be used to for-
mally describe a MAS model. In this paper we will not give
the specifications of group and holon which are not neces-
sary for the example. The following types are defined and
have to be refined : [Atéribute], [Event] and [Action]. These
types define respectively the sets of attributes, stimulus and
actions of roles. The first concept specified is the role. The
role class defines an empty behavior schema and it has to
be refined to specify the behavior of the role. It will be
specified by using a statechart. A role is also composed of
a set of attributes, a set of events it can react to and a set
of actions. The role is also defined by a set of capacities
required by the role and the conditions that have to be met
in order to play and leave the role. The constraint states
that whatever stimulus (resp. action) of the stimulus set
(resp. actions) it must be present on at least one transition
of the statechart defining the role behavior. The p symbol
enables to access to the statechart included. This mecha-
nism enables to manipulate the statechart concepts using
the Object-Z language and is described in [20].

Role

(f behavior

attributes : P Attribute

stimulus : P Event

actions : P Action

requiredCapacities : F Capacity
obtainConditions, leaveConditions : Condition

V s € stimulus,d e € behavior.p e

(3t € e.transitions e t.label.event = s)
Ve € behavior.p e

(V't € e.transitions e t.label.action C actions)

An interaction is specified by a couple of roles, orig and dest,
which are respectively the origin and the destination of the
interaction. The roles orig and dest interact by the way
of operations op; and op2. These operations are combined
by the || operator which equates output of op; and input
of op2. In order to extend interaction to take into account
more than two roles or more complex interactions involving
plan exchange one has to inherit from Interaction.

— Interaction — Organization

orig, dest : Role roles : P Role

op1, op2 : Action

Vi€ interactionse
(i.ormig € Toles
Ai.dest € roles)

Y re roles o
d1€ interactions e

op1 € orig.action
op2 € dest.action

(orig.opi || dest.op2)

An organization is specified by a set of roles and their
interactions. Interactions happen between roles of the con-
cerned organization. It is to say that for each interaction of
the interactions set the roles of the interaction must belong

69

interactions : P Interaction

r € t.01ig V 1T € i.dest

AT2AI-6: Gaud N. et al.: A Verification by Abstraction Framework for organizational Multi-Agent Systems

Contract Net

Initiator Participant

Figure 2: Contract Net organization

to roles set of the organization. Moreover, each role must
be part of at least one interaction.

The capacity class specifies the concept of capacity. This
concept is described by a set of attributes taken as input by
the capacity and a set of outputs produced by the capacity.
The requires and ensures sets of constraints specifies what
must be true before the capacity can be called and after the
capacity is called. This property is expressed with the con-
straint that whenever the capacity is called and the requires
constraints are true then eventually the ensures constraint
will be true.

— Capacity

inputs : F Attribute
outputs : F Attribute
requires : F Constraint
ensures : F Constraint

capacityCall(name) A (/\Te,equi,.es) = O(Aceensures €)

A capacity implementation is specified by the Capacity-
Impl class. This class has an implements attributes that
specifies which capacity it implements. The behaviour schema
specifies how the capacity is implemented.

CapacityImpl

implements : Capacity

behaviour

-

With this framework one can specify a MAS or HMAS
solution using organizational concepts. The next section
describes a part of the contract net protocol specified using
this framework.

4. CONTRACT NET EXAMPLE
4.1 Specification

In this section the contract net protocol [27] is specified
with the CRIO framework. We adopt the FIPA description
of the contract net protocol [17]. The organization describ-
ing the contract net protocol is sketched in figure 2. This
organization is composed of two roles : initiator and par-
ticipant. The initiator is the manager who is interested in
delegating a task. The participants are the members of the
network which can receive the call for proposal and make
propositions to the initiator.

The Initiator class specifies the Initiator role. It inher-
its from the role class of the CRIO framework and adds

the following attributes : proposals which is a set of Pro-
posal, best which is the best proposal selected by the ini-
tiator and criteria which is a set of functions which help
to sort the different proposals. The role requires a capacity
which is named ChooseBestBid. The behavior of the initia-
tor role specified by the behavior schema consists of three
states. The first and by default state is idle. Whenever the
taskToBeDistributed event occurs, it means that initiator
will delegate a task, the initiator sends a call for proposal
(¢fp(t) action which is not described in this paper as it is a
very simple communication) for a specific task t and enters
the waitingBids state. In this state the initiator receives
proposals and after a predefined timeout the initiator select
among the bidders and send the corresponding answers. It
then enters the waitingResult state waiting to receive a re-
sult from the chosen bidder. After the result is sent or a
timeout has occurred the initiator returns to idle state.

The criterion used by an Initiator to choose a proposal
are specified by a set of functions. Each function ranks with
an integer a proposal as defined by the Criterion type. The
criteria set is a set of such functions. It specifies a multi-
criteria ranking for the proposals.

Criterion == f : Proposal — N

__Initiator
Role

proposals : F Proposal
best : Proposal
criteria : F Criterion

ChooseBestBid € requiredCapacities

__behaviour
taskToBeDistributed/cfp(t)

waitingBids

result or timeout(wr)

waitingResults

— selectBidders
best’ = capacity Call(

sendAnswers

-

The ChooseBestBid capacity inherits from the Capacity class.
Its inputs are a set of proposals and a sequence of criterion,
namely criteria. This sequence of criterion can then be spec-
ified as criteria == seq Criterion. The notation to access
to a specific function in this sequence consists in using it
rank. For example, criteria(i,b) returns the value of the i
criterion applied to the proposal b. It produces as output a
proposal, which is the best according to all criterion, among
the proposals in input. The proposals input set must not
be empty in order to select one. It is the constraint stated
in the requires set and the ensures set states that the best
proposal is the best according to criteria. It means that it
has to minimize the value of each criterion.

70

timeout(wb)/selectBidders;sendAnswers

ChooseBestBid(proposals, criterion))

AT2AI-6: Gaud N. et al.: A Verification by Abstraction Framework for organizational Multi-Agent Systems

__ChooseBestBid
Capacity

inputs = IF Proposal, criteria
outputs = {best : Proposal}
requires : {inputs # I}
ensures : Pbid : inputse

34 € [1..#criteria)e

criteria(i, bid) < criteria(i, best)

AV j € [l..#criteria] \ ie

criteria(j, bid) = criteria(j, best)

The ChooseBestBidImpl class specifies a possible implemen-
tation of the ChooseBestBid capacity. It inherits from Ca-
pacityImpl and has two attributes: a proposal which is the
selected best proposal and bids which is a set of proposals.
The behaviour schema specifies that at first the best pro-
posal is initialized by the first proposal and after that each
proposal is compared in sequence with the best found. If it is
better than the current best according to the min operation
it becomes the new best and the capacity implementation
iterates through the bids sequence. The min operation re-
turns the best proposal among two proposals. head and tail
operations return respectively the first and the rest of the
proposals sequence.

— ChooseBestBidImpl
CapacityImpl

best : Proposal
bids : F Proposal

implements = { ChooseBestBid}

__behaviour
[|bids|!=0)/best:=min(best,head(bids));bids:=tail(bids);

/best=head(bids);bids=tail(bids);

O

comparingBids

—min
prop1?, prop2?, res! Proposal

prop1? < props? = res! = prop;?
prop2? 3 prop1? = res! = propa?

—_head
sequence? : seq Proposal
res! : Proposal

res! = sequence?(1)

—tail
sequence?, res! : seq Proposal

sequence? = head(sequence?) U res!

4.2 Verification

The specification of the contract net example was given
as input to the SAL environment [9] which is a suite of
model checkers and theorem provers. It was compared with
the same specification but without the capacity concept. It
means that the initiator role integrates the behaviour that
choose the best proposal. The SAL environment integrates
a path finder which generates traces from the semantics of
the specification. The basic behaviour is to generate a ten
steps trace of the system. The first part of the table 1 (above
the double line) sums up the time in seconds taken by the
different computations. The first line corresponds to the
construction of the structure used by the path-finder and the
second line is the generation of a ten steps trace. One can
see that, even on the simple example described in this paper,
the version with capacity is more efficient than the version
without capacity. Indeed, the version without abstraction is
more than four times longer than the one with capacity.

The second part of the table 1 (below the double line)
presents the experiment of theorem prooving with induction.
The proven property is the first discussed in the end of this
section. For the version with abstraction the results given
are the sum of the times and numbers of nodes of the role and
of the capacity implementation proofs. The construction of
the proof structure corresponds to the generation of the data
structure used for the proof. The version without capacity
is about three times longer than the one with capacity. The
proof line is the time taken by the proof, the ratio is about
the same as the construction of the proof structure. The
last lines is the number of nodes generated for each proof.
We have chosen to compare the two specifications of the
CNET protocol in time and space in order to support the
claim that our approach of verification by abstraction leads
to a specification which is more manageable for algorithmic
verification than a complete specification. This state-space
reduction is obtained by the abstraction of a part of the
specification, here the capacity of chosing the best bid. In
the version with abstraction this part of the specification
is proven apart from the rest and the resulting theorem is
taken as input for the verification of the whole system.

We were able to verify the following property for the Choose-
BestBidImpl class.

Abid: inputse
34 € [1..#criteria)e
criterion(i, bid) < criterion(i, best)
AV j € [l..#criteria) \ i
criteria(j, bid) = criteria(j, best)

This property corresponds to the ensures set of the ChooseBest-

Bid capacity. In order to verify this property we have used
a k-induction scheme as described in [10]. It means that
we have to prove that the property holds for initial states
and is preserved under each transition. The SAL bounded
model checker associated with induction proved this prop-
erty. The ChooseBestBidImpl capacity implementation ver-
ifies then the ChooseBestBid capacity.

Concerning the specification of the Initiator role with the
ChooseBestBid capacity we have proven the following prop-
erty using the symbolic model checker.

behavior.state = waitingBids = {(behavior.state = idle)

We were then able to prove that the given specification
satisfies the two properties that an Initiator always return

71

AT2AI-6: Gaud N. et al.: A Verification by Abstraction Framework for organizational Multi-Agent Systems

Version with abstraction

Version without abstraction

Construction of the trace structure 0.15 0.63
Trace generation 0.23 1
Construction of the proof structure 1.36 3.75
Proof 5.16 14.6
Number of nodes 180391 474401

Table 1: Comparisons in time and space

to the idle state and the chosen proposal is allways the best
one.

5. RELATED WORKS

Formal methods have been widely used in the MAS field
see [1] for a short survey of formal methods in agent ori-
ented software engineering and [19] for a more complete
survey and roadmap on this topics. There are two common
approaches for verification Model checking and automated
theorem proving. Model checking is the process of checking
whether a given structure is a model of a given logical for-
mula. It carries out an exhaustive search through the state-
space in order to produce a counter-example of the given
property. Theorem proving consists in proving automati-
cally or semi-automatically (with human interaction) that a
given formula is a logical consequence of the specification.

In [3] model checking techniques were used for verify-
ing multi-agent programs implemented with the AgentS-
peak language. This approach is restricted to a subset of
the AgentSpeak language, namely AgentSpeak(F), that pro-
duces finite state systems. The properties to be verified are
expressed with a simplified BDI logic. In [2] the authors
propose the use of slicing a technique to reduce the state-
space for model checking. The principle of this approach is
to simplify the specifications for eliminating details that are
not relevant to the property to verify. Again this approach
is limited to AgentSpeak program.

In [23] a compositional approach is used for the verifica-
tion of MAS. Compositional approaches are based on the
following principle : if each component behaves correctly
in isolation, then it behaves correctly in concert with other
components. One has thus to prove each component and
then the composition relationship in order to prove proper-
ties concerning the whole system. The reported experience
only concerns model checking and no evidence are given con-
cerning the efficiency of the proposition.

For theorem proving many approaches use modal logics to
specify and make proofs about MAS [18]. Proofs using
modal logics theories can be non trivial. Moreover, deduc-
ing implementations from such specifications is not an easy
task.

In the MAS field there are also some verification approaches
which are restricted to a specific feature of agents such as
communication protocols, see for example [15].

Organizational approaches are now common in the MAS
field see [16, 29, 4, 6] for example. However, few among
these approaches use formal methods. OMNI [13] is an inte-
grated framework for norms, structure, interaction and on-
tologies for modeling organizations in MAS. It was preceded
by OperA [12] and HarmonlIA [28]. GAIA [29] is an analysis
and design methodology for MAS. The main differences be-
tween these approaches and the one presented in this paper
is that the approach presented in this paper enables the use

of software tools to ease proofs and the organizational con-
cepts are expressed in such a way that thay can be refined
to an implementation.

6. CONCLUSION

The approach described in this paper considers organi-
zations as blueprints that can be used to define a reusable
and modular solution to a problem. The concept of capac-
ity allow the definition of role without making any assump-
tions on the architecture of the agent that may play them.
In this paper we have presented a framework of organiza-
tional concepts with a formal semantics which allow the use
of abstraction during proofs. The abstraction is based on
the capacity concept which abstracts a role know-how. The
description of the capacity enables the abstraction of this
know-how from the real implementations. The proofs of
properties at the organization level are then less complex.
This approach enables one to tackle the limitation of formal
methods concerning the complexity of verification. These
claims are illustrated through the contract net protocol spec-
ification example. The use of a random trace generator and
a theorem proover on two versions of the contract net spec-
ification, one with the abstraction and aone without, shows
that the one with abtraction is more tractable.

We have used an organizational framework which seems ap-
propriate for MAS and HMAS modelling.

Future works will deals with the development of a soft-
ware environment which will help the specifier in his tasks
of building and verifying specifications. Moreover, we plan
to integrate this formal verification approach within the AS-
PECS methodological process [7, 8] which enables the anal-
ysis and design of MAS and HMAS.

7. ADDITIONAL AUTHORS

8. REFERENCES

[1] Carole Bernon, Massimo Cossentino, and Juan Pavén.
An overview of current trends in european AOSE
research. Informatica (Slovenia), 29(4):379-390, 2005.

[2] Rafael H. Bordini, Michael Fisher, Willem Visser, and
Michael Wooldridge. State-space reduction techniques
in agent verification. In AAMAS, pages 896-903.
IEEE Computer Society, 2004.

[3] Rafael H. Bordini, Michael Fisher, Willem Visser, and
Michael Wooldridge. Verifying multi-agent programs
by model checking. Autonomous Agents and
Multi-Agent Systems, 12(2):239-256, 2006.

[4] P. Bresciani, P. Giorgini, F. Giunchiglia,

J. Mylopoulos, and A. Perini. Tropos: An
agent-oriented software development methodology.
Journal of Autonomous Agents and Multi-Agent
Systems, 8(3):203-236, 2004.

72

AT2AI-6: Gaud N. et al.: A Verification by Abstraction Framework for organizational Multi-Agent Systems

(5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

Edmund M. Clarke, Orna Grumberg, and David E.
Long. Model checking and abstraction. In POPL,
pages 342-354, 1992.

M. Cossentino. From Requirements to Code with the
PASSI Methodology, chapter IV, pages 79-106. Idea
Group Inc., Hershey, PA, USA., 2005.

Massimo Cossentino, Nicolas Gaud, Stéphane Galland,
Vincent Hilaire, and Abderrafida Koukam. A holonic
metamodel for agent-oriented analysis and design. In
HoloMAS’07, 2007.

Massimo Cossentino, Nicolas Gaud, Stéphane Galland,
Vincent Hilaire, and Abderrafida Koukam. A
metamodel and implementation platform for holonic
multi-agent systems. In EUMAS’07, 2007.

Leonardo de Moura, Sam Owre, Harald Rue8, John
Rushby, N. Shankar, Maria Sorea, and Ashish Tiwari.
SAL 2. In Rajeev Alur and Doron Peled, editors,
Computer-Aided Verification, CAV 2004, volume 3114
of Lecture Notes in Computer Science, pages 496-500,
Boston, MA, July 2004. Springer-Verlag.

Leonardo Mendonga de Moura, Harald Ruef3, and
Maria Sorea. Bounded model checking and induction:
From refutation to verification (extended abstract,
category A). In Warren A. Hunt Jr. and Fabio
Somenzi, editors, Proceedings of the 15th International
Conference on Computer Aided Verification, CAV
2003, volume 2725 of Lecture Notes in Computer
Science, pages 14-26, Boulder, CO, USA, July 8-12
2003. Springer.

V. Dignum and F. Dignum. Coordinating tasks in
agent organizations. or: Can we ask you to read this
paper? In Coordination, Organization, Institutions
and Norms COINQECAI’06, 2006.

Virginia Dignum. A Model for Organizational
Interaction: Based on Agents, Founded in Logic. PhD
thesis, Universiteit Utrecht, 2004.

Virginia Dignum, Javier Vazquez-Salceda, and Frank
Dignum. OMNI: Introducing social structure, norms
and ontologies into agent organizations. In PROMAS,
volume 3346. Springer, 2004.

Roger Duke, Paul King, Gordon Rose, and Graeme
Smith. The Object-Z specification language. Technical
report, Software Verification Research Center,
Departement of Computer Science, University of
Queensland, AUSTRALIA, 1991.

Marc Esteva, Juan A. Rodriguez-Aguilar, Carles
Sierra, Pere Garcia, and Josep Lluis Arcos. On the
formal specifications of electronic institutions. In
Frank Dignum and Carles Sierra, editors, Agent
Mediated FElectronic Commerce, The FEuropean
AgentLink Perspective, volume 1991 of Lecture Notes
in Computer Science, pages 126—147. Springer, 2001.
Jacques Ferber, Olivier Gutknecht, and Fabien Michel.
From agents to organizations: an organizational view
of multi-agent systems. In Agent-Oriented Software
Engineering IV 4th International Workshop,
(AOSE-2003@AAMAS 2003), volume 2935 of LNCS,
pages 214-230, Melbourne, Australia, July 2003.
FIPA. Fipa contract net interaction protocol
specification. Technical Report SC00029H, FIPA,
2000.

M. Fisher. Temporal semantics for concurrent

[19]

[20]

[21]

22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

METATEM. JSC, 22(5 and 6):627-648,
November/December 1996.

M Fisher, R. H Bordini, B Hirsch, and P. Torroni.
Computational logics and agents: A roadmap of
current technologies and future trends. Computational
Intelligence, 1(23):61-91, 2007.

P. Gruer, V. Hilaire, and Abder Koukam.
Heterogeneous formal specification based on object-z
and state charts: semantics and verification. Journal
of Systems and Software, 70(1-2):95-105, 2004.

Pablo Gruer, Vincent Hilaire, Abder Koukam, and

P. Rovarini. Heterogeneous formal specification based
on object-z and statecharts: semantics and
verification. Journal of Systems and Software,
70(1-2):95-105, 2004.

David Harel. Statecharts: A visual formalism for
complex systems. Science of Computer Programming,
8(3):231-274, June 1987.

Catholijn M. Jonker and Jan Treur. Compositional
verification of multi-agent systems: A formal analysis
of pro-activeness and reactiveness. Int. J. Cooperative
Inf. Syst, 11(1-2):51-91, 2002.

C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and

S. Bensalem. Property preserving abstractions for the
verification of concurrent systems. Formal Methods in
System Design: An International Journal, 6(1):11-44,
January 1995.

Michael Luck and Mark d’Inverno. A formal
framework for agency and autonomy. In Victor Lesser
and Les Gasser, editors, Proceedings of the First
International Conference on Multi-Agent Systems,
pages 254-260. AAAI Press, 1995.

Sebastian Rodriguez, Nicolas Gaud, Vincent Hilaire,
Stéphane Galland, and Abder Koukam. An analysis
and design concept for self-organization in holonic
mas. In S Brueckner, S Hassas, M Jelasity, and

D Yamins, editors, Engineering Self-Organising
Systems, number 4335 in LNAI, pages 15-27.
Springer, 2007.

R. G. Smith. The contract net protocol : High-level
communication and control in a distributed problem
solver. Morgan Kaufmann, pages 357-366, 1988.
Javier Vazquez-Salceda. The harmonlA framework.
KI, 19(1):38, 2005.

F. Zambonelli, N. Jennings, and M. Wooldridge.
Developing multiagent systems: the gaia methodology.
ACM Transactions on Software Engineering and
Methodology, 12(3), 2003.

73

AT2AI-6 Working Notes

74

AT2AI-6: Hachicha H. et al.: MAMT: an environment for modeling and implementing mobile agents

MAMT: an environment for modeling and implementing
mobile agents

Héla HACHICHA
SOIE
ISIMS, Institut Supérieur

hela.hachicha@fsegs.rnu.tn

ABSTRACT

This paper presents an approach to model and to implement
mobile agents. This approach is materialized by a UML profile,
called MA-UML for modeling mobile agents, and a software
development environment that assists the specification, design
and implementation stages of the agent system development
lifecycle, called MAMT. The MAMT environment provides
support for modeling multi-agent systems by using the MA-UML
profile.

Keywords
Mobile Agent, UML, AUML, UML profile, mobile agent
engineering.

1. INTRODUCTION

Mobile agents are software entities that can migrate autonomously
throughout a network from host to host. This means they are not
bounded to the platform they begin execution. Mobile Agents are
emerging as an alternative programming-concept for the
development of distributed applications.

So far, most of the work on the area of mobile agents has been
focusing on the technology itself, and the development of agent
frameworks to support mobility. However, few works have
proposed to model mobile agent-based application and no
formalism yet exists to sufficiently specify mobile agents.

In this context and in order to contribute towards to solve this
problem, we have been working to propose an approach to model
and to implement mobile agents. This approach is materialized
first by the MA-UML (Mobile Agent UML) profile, which
extends the UML language [1] and the AUML formalism [2].
Second, the proposed approach provides also the MAMT (Mobile
Agent Modeling Tool) software CASE Tool, which supports the
use of MA-UML profile and the generation of Java code from
conceptual diagrams in order to implement mobile agent-based
applications.

This paper is structured as follows. Section 2 describes the
considerations to model mobile agents and reviews the previous
approaches to model mobile-agent applications. In section 3, we
describe an overview of the MA-UML profile. Section 4 shows

Jung, Michel, Ricci & Petta (eds.): AT2A41-6 Working Notes, From
Agent Theory to Agent Implementation, 6th Int. Workshop,
May 13, 2008, AAMAS 2008, Estoril, Portugal, EU.

Not for citation

Adlen LOUKIL

SOIE

Khaled GHEDIRA
SOIE

INSAT, Institut National des Sciences ENSI, Ecole Nationale des Sciences
d’Informatique et de Multimédia, Sfax Appliquées et de Technologie, Tunis

adlen.loukil@insat.rnu.tn

de l'informatique, Tunis

khaled.ghedira@isg.rnu.tn

the MAMT environment, describing its architecture and main
features. Then, it presents our strategy for mapping conceptual
specifications to Java code. Finally section 5 summarizes the
paper and offers directions for future work.

2. MOBILE AGENTS MODELING

2.1 Design considerations

We discuss in this section the basic concepts of mobile agent
needed for its specification. According to the literature [3], the
mobility of an agent is related to some concepts such as: itinerary,
location, move action, remote cloning action, and security. In
addition, a Mobile Agent (MA) must contain all of the following
models: an agent model, a lifecycle model, a computational
model, a security model, a communication model and a navigation
model. Also MA must exist in a software environment (called,
Mobile Agent Environment) in which it can execute.

Based on these issues, we have identified the following concepts
to consider when modeling mobile agent:

Concept 1: the environment that describes entities of a mobile-
agent application.
Concept 2. the
characteristics.
Concept 3: the itinerary which describes the list of locations to
visit or to reside and the set of tasks to be performed in order to
complete a specific mission.

Concept 4 the travel schema which describes the travel planning.
Concept 5: the tasks execution planning which describes the
mapping of tasks to be performed on different locations.

Concept 6: the interactions which describe the communication
acts.

Concept 7: the security mechanisms which describe the security
properties needed to protect agent from malicious entities and to
protect entities from malicious mobile agents.

Concept §: the lifecycle model which describes MA’s behavior.
Concept 9: the move action (weak or strong) and the cloning
action.

Concept 10: the mobility paths which describes the different
network nodes.

internal structure which describes MA

2.2 Mobile Agent modeling with UML

The literature defines three main categories of approaches to
model mobile agents which are: the design pattern approach, the
formal approach, and the semi-formal approach.

The semi-formal formalisms can be classified into two classes.
The first class is the semi-formal approaches that propose their

(0]

AT2AI-6: Hachicha H. et al.: MAMT: an environment for modeling and implementing mobile agents

own methodologies or extend their agent-oriented methodologies
such as: the MaSE methodology [4] was extended to allow the
analysis and the design of mobile agent. The m-Gaia [5] proposed
extension of the Gaia Agent Oriented software Engineering
(AOSE) methodology to model mobile agent systems. The second
class of approaches aims to propose some extensions to UML
or\and AUML notations.

In our work we are interested to the semi-formal approaches and
particularly to formalisms which proposed extensions to UML
or\and AUML notations. We mention hereafter some of them and
the most relevant for our work.

The MAM-UML [6] profile has introduced new stereotyped
classes, packages, relationships, and different tagged values to
model entities of a mobile-agent application and their structural
relationships. Additionally, it has proposed to describe the
itinerary model using the UML interaction diagram (sequence or
collaboration). In this diagram, authors have defined new
stereotyped messages, using the dependency relationship (move,
remote cloning), and constraints which associated to the mobility
messages enable to specify why and when an agent moves. Mobile
agent’s behavior during its lifecycle has modeled using the UML
statechart diagram and by defining new stereotyped actions
(strong move, weak move, and remote cloning).

Moreover, a variant of an UML activity diagram is used to specify
model of activities. Different swimlanes break the diagram into
different types of places and different constraints associated to a
transition between activities enable to specify why and when an
agent moves. Interactions of mobile agents are modeled using the
UML collaboration diagram as a template. Finally, the mobility
view is modeled using the deployment and component diagrams.

The advantage of the MAM-UML approach is the covering of the
most mobile agent concepts in the three phases of the
development process (analyze, design and implementation). But,
some limits can be identified in this work. In fact, the MAM-
UML itinerary model describes the agent’s mobility between
locations and the interactions of MA with entities (stationary
agents and resources). However, in the literature [7] “the itinerary
typically consists of a list of tasks to be executed sequentially and
the locations where the tasks are to be performed”.

Also the travel planning designed in itinerary model is static
which not considers the environment changes that can occurs and
make agent incapable to reach some locations (e.g. the mobile
agent platform on the destination address is not operational, the
machine that the agent is moving from is isolated from the rest of
the network). Moreover, the tasks execution planning designed
with UML activity diagram is not dynamic (with a static set of
locations). Finally, authors have not considered the design of
mobile agent internal structure, security mechanisms, and mobility
path.

Klein et al. [8] have proposed extensions to UML class diagram
with new stereotypes and tagged values to model entities involved
in a mobile agent application. In addition, stereotyped actions
«move» and «remote execution» are introduced in the UML
statechart diagram to show the relationship between agent state
change and agent location change. Moreover, authors have
proposed to specify agent mobility by extending the UML

sequence diagram with the new elements and new stereotyped
messages (move, remote execution, and clone).

This work represents an initial approach on modeling mobile
agent and not considered the most mobile agent concepts.

Mouratidis et al. [9] have introduced extensions to the UML
deployment and activity diagrams. These extensions have been
integrated to the AUML formalism. The AUML deployment
diagram allows developers to specify mobile agent, origin
location, destination location, and static aspect of mobility paths.
The AUML activity diagram allows developers to specify the
dynamic aspect of the mobility path: the sequence of the
movement, the detailed mobility path, and the decisions that drive
the choice of particular intermediate nodes. The activity nodes
model plan, while the transitions model events.

This work has the advantage of the modeling of the mobility paths
of agent which considers the environment changes and the
decisions which MA will take during its travel. Also, it allows
specifying the travel planning of MA. However, this represents a
static planning. Moreover, this approach not considers the other
concepts of MA.

Kang et al. [10] have proposed extensions to activity diagram in
UML 1.5 and UML 2.0 in order to model the dynamic behavior of
mobile agents. Authors have introduced the new stereotype «host»
with a parameter for a swimlane, which represents the location
with a unique name (address). The activity “Go” is also
introduced to model agent’s movements. Authors have also
modeled the exception handling which can occur and cause the
failing to access to the destinations hosts.

This extended UML activity diagram allows to specify the tasks
execution planning of mobile agent in different hosts. However,
this represents a static planning. This work also has not
considered the other mobile agent concepts.

Kusek et al. [11] have introduced extensions to UML sequence
diagram to model agent mobility, current location, and location of
agent creation. Four variants uses of sequence diagram are
proposed to model agent mobility. In these diagrams different
stereotypes are added: stereotype «agent» to model agent,
stereotype «at» to model current location, and stereotype «movey
to model agent’s movements.

In these diagrams, vertical lines represent both places and
instances of agents and arrows between these lines represent
movements of agents between places. This makes diagrams so
complex and particularly with an important number of places.

2.3 Discussion

All these approaches previously described are useful and
interesting contributions. However, no formalism yet exists to
sufficiently specify the basic concepts of MA described in section
2.1. Table 1 summarizes the principal concepts of mobile agent
and the contributions of some existing approaches.

76

AT2AI-6: Hachicha H. et al.: MAMT: an environment for modeling and implementing mobile agents

Table 1. Contributions of some existing approaches

MAM- Mobile AUML Kang Kusek
UML UML [8] [9] et al. et al.
(6] [10] [11]
Environment x x
MA Internal
structure
Itinerary x x
Travel schema x x x x
Task planning x x
Interaction x x x
Lifecycle x x x
MA security
Mobility Path x

After examining the presented approaches, some deficiencies can
be identified to model some concepts; we summarize some limits
in the following points:

The internal structure of MA is not well specified by these
approaches.

The security properties needed for mobility is not addressed.

The travel planning of mobile agent modeled by some of these
approaches [8] [11] [6] [9] is not flexible and not dynamic (with a
static set of locations). In fact, if MA cannot reach some locations,
then their related tasks cannot be performed. A mobile agent
travel planning is considered one of the most important
techniques for completing a given task efficiently. However, a
static planning may not be the best approach in real network
environments. So it is necessary to model a flexible and dynamic
travel planning, which considers the environment changes.

The tasks execution planning modeled by some of these
approaches [6] [10], using the activity diagram, is not dynamic
(with a static set of locations). In fact, if MA cannot reach some
locations for ever reason, then the list of tasks relevant to these
locations cannot be performed and MA cannot reach its mission.
So it is necessary to model a dynamic tasks execution planning.

In order to contribute towards to surmount some insufficiencies,
we have been working to propose additional extensions to UML
and AUML notations. This represents the MA-UML profile,
presented in the next section.

3. THE PROPOSED MA-UML PROFILE

It is to be notice that our works focus on the modeling of mobile
agent applications when there are only two kinds of entities:
mobile agents and static locations; and they are not well suited for
mobile computing modeling (laptops, mobile phones, PDAs).

There are seven diagrams in MA-UML profile classified into
static and dynamic diagrams. MA-UML extends the UML and the
AUML class diagrams and defines three new diagrams to model

mobile agent structural / static aspects, which are environment
diagram, mobile agent diagram and itinerary diagram. MA-UML
extends the UML statechart diagram, the UML activity diagram,
and the AUML sequence diagram to model mobile agent dynamic
aspects, which are: lifecycle diagram, mobile agent activity
diagram, mobile agent sequence diagram and navigation diagram.
Figure 1 illustrates the relationships between these diagrams.

R3
Itinerary > Navigation diagram

Environment
diagram diagram R4 o
R1 ¢ }y >a MA Activity
MA p Lifecycle /R7/' diagram
diagram RS diagram

MA sequence
diagram

TR

Legend: Ri: Relationship i between two diagrams

Figure 1. Inter-diagrams Relationships.

3.1 Environment Diagram

The purpose of this diagram is to model all entities involved in a
mobile-agent application, their properties and their structural
relationships. Typically, this application involves several agents
(stationary and mobile) that interact and communicate, playing
different roles. Also, it involves one or several region(s), a
number of mobile-agent systems, some places, and several
resources.

In order to model these entities and their structural relationships,
we propose to introduce new stereotyped UML classes («placey,
«esourcey), stereotyped AUML classes («mobile agenty,
«stationary agent»), stereotyped packages («region», «m-agent-
systemy), stereotyped associations («communicate», «reside»,
«manipulate», «homey»), and new graphical notations. This
extended diagram is called Environment Diagram. To illustrate
these extensions, we present as an example the environment
diagram designed for electronic commerce application (figure2).

Figure 2 illustrates an environment diagram for a simple mobile-
agent application. In such application, a SearcherAgent (mobile
agent) moves between different places provided by two different

mobile-agent systems, in the context of a region. The
InterfaceAgent (stationary agent) is responsible for the
initialization of SearcherAgent with its mission. The

SecurityAgent is responsible for authenticating the SercherAgent.
The DataBase represents the resource manipulated by mobile
agent.

After modeling the different entities, each mobile agent specified
in this diagram must be specified in the mobile agent diagram in
order to specify its internal structural and its characteristics
(R1, Figure 1: Environment diagram —» MA diagram).

7

AT2AI-6: Hachicha H. et al.: MAMT: an environment for modeling and implementing mobile agents

agent-class-name \ role-name;, role-name,, ..

o ogmopteny | MAS
provides provides
includes «region » includes
VarletPlacel = # MaletPlace2
Placelame Flacearne
PlaceAdt PlaceAdi
create() Create()
cresidex chomen
aresiden

& InterfacefAgent A Searcherfgent

AgentiD «eommunicates pgentID & SecurityAgent

Agentiame AgentMName AgentlD

communicate() move() AgentMame
«amanipulates authenticate()

[DataBase

Attribute: AgentID -AgentAddress —Agent pseudoname

-user authorization
- MA authentication key

«Authenticationy: -user authentication
- rights of access (permits)

«Controllable parameters»: - Time To Live - urgency
- necessarv resonrces — rioht of decision - tuvne of the mahile acent sustem

«MA-Information»: - owner - PlaceName -AgentSystemAdr — RegionName

«History»: - visited hosts - contacted agents — error log

«Capability»: - Moving capability —Cloning capability -Communication
capability - State-preserving capability - Knowledge management capability

«ltinerary»: - set of destinations — set of tasks - navigation events
— intermediate results

Legend:

4 Mobile Agent A& Stationary Agent e Resouce

Figure 2. The environment diagram of a mobile-agent
application

3.2 Mobile Agent Diagram

This diagram is responsible for modeling the internal structure
and the characteristics of a Mobile Agent (MA). The properties of
the internal structure of a MA depend on the requirements of
applications (electronic commerce, telecommunication, etc.). But
we believe that several properties must be identified and are
available and needed for each application. Based on the literature
[3], we propose to define additional properties in the internal
structure of the stationary agent relevant to the mobile agent (e.g.
authentication, history, itinerary).

In order to specify the properties relevant to the MA, we propose
to extend the AUML agent class diagram by adding these
properties as attributes in a separate AUML AgentBaseClass
compartment. This extended diagram is called Mobile Agent
Diagram; figure 3 shows the structure of the extended AUML
class diagram.

After specifying the mobile agent internal structure, it is necessary
to specify the itinerary diagram (R2, Figurel: mobile agent
diagram —p Itinerary diagram). Also, for each mobile agent it is
necessary to specify the different states that agent can reach
during its lifetime (RS, Figure 1: MA diagram — Lifecycle
diagram).

«Navigation protocol»

Legend:

[T AUML elements C——] MA-UML elements

Figure 3. The internal structure of the mobile agent

3.3 Itinerary Diagram

An agent’s itinerary describes the tasks of the agent and the
locations where those tasks are to be performed [7]. The itinerary
model defines the mobile agent travel planning. The travel
planning can be determined either statically or dynamically. That
is, it can be calculated either before the agent is dispatched or
while the agent is migrating. Dynamic travel planning is more
flexible, and can adapt to environmental changing in real time.
However, since the travel planning is calculated on the fly, it also
consumes more computation time and more power of the local
sensor. On the other hand, although static travel schema cannot
adapt to the network change, it is able to save both computation
and power since the travel planning only needs to be calculated
once. Computation-efficiency, power-efficiency, and flexibility
are three parameters that cannot be satisfied at the same time.

In order to be able to specify a dynamic and flexible travel
planning, which can adapt to environment and network changes,
we propose that the developer predicts and introduces Navigation
Events into the itinerary model. The navigation events represent
the unexpected events that can be produced during the migration
of mobile agent or having learned information from another
entity. Moreover, the developer must define additional
destinations places (Equivalent Places) in the itinerary model.
Then, if a navigation event occurs and MA can not reach a given
place, it must update its travel planning and move to equivalent
place instead of the failure place in order to be able to perform the
associated tasks.

In order to model the elements of the mobile agent itinerary
model, we define a new diagram, called Itinerary Diagram. This
diagram represents an extension of the UML class diagram by
introducing new stereotyped classes and new graphical notations.
Figure 4 describes the elements of the itinerary diagram.

78

AT2AI-6: Hachicha H. et al.: MAMT: an environment for modeling and implementing mobile agents

[E] Result

1] [tinerary

 Place

New classes
defined to
itinerary
model

ETask

& EquivalentPlace | | [s]NavigationEvent

J

Figure 4. The Itinerary diagram

The set of navigation events that can occur and the equivalent
places defined in the itinerary model can be updated by the MA
during its travel, having learned any information or having met a
problem. Figure 4 presents the static view of mobile agent
itinerary model. The dynamic view of itinerary may be viewed as
the specifications of the travel planning and the tasks execution
planning. In order to model the dynamic view of the itinerary, we
define two new diagrams: first the navigation diagram which
specifies the travel planning between locations (R3, Figure 1:
Itinerary diagram —p Navigation diagram). Second, the mobile
agent activity diagram which specifies the mapping of tasks to be
performed on locations (R4, figure 1: Itinerary diagram —p MA
activity diagram).

3.4 Mobile Agent Diagram

This diagram is responsible for modeling the tasks execution
planning among different places. In UML, activities (tasks) are
specified with the activity diagram. In order to model the
relationships between locations and tasks and the reuse aspect of
an activity, we propose to introduce the concept of location in the
UML activity diagram; we call this diagram Mobile Agent Activity
Diagram. To specify the concept of location, we propose to attach
parameters to each activity (parameterized activity). These
parameters represent the list of places where this activity (task)
needs to be performed. Figure 5 illustrates an example of a mobile
agent activity diagram.

IDP: IDentity of Place

Figure 5. The mobile agent activity diagram

The parameters attached to each task make possible to the
developer to specify the set of places (locations) where this task
can be performed. In figure 5, task 1 for example is performed in
place P1 and place P3. The parameters can be instantiated during
the system execution process. That means that the set of places
can be updated during the MA execution when it can not reach
some places by the equivalent places specified in the itinerary
diagram. Then, with the use of parameters it is possible to model a
dynamic tasks execution planning and to specify the reuse aspect
of an activity.

3.5 Navigation Diagram

The purpose of this diagram is to model the agent travel planning
which describes its movements between places defined in its
itinerary.

In order to specify a dynamic travel planning, we propose a
variant use of the UML statechart; we call this diagram
Navigation Diagram. We propose that the states model places, the
transitions between states model the movements of an agent
between places, and events which trigger the transitions between
states model the navigation events which drive the movements of
MA to the equivalent places. Figure 6 illustrates an example of
the proposed navigation diagram.

E\?[%dition] \ next
EqPlace b
Event 2 [condition] \ next

Legend:

/\ Movement[Place]Home[Place]Destination

Figure 6. The navigation diagram

Figure 6 shows a navigation diagram that models the travel
planning of the agent between different places. In this diagram,
when MA is in “place a” and need to move, it passes
automatically to the next place (“place b”), but if any navigation
event occurs (eventl), MA transit to the equivalent place of place
b (Egplace b).

With the use of the UML statechart diagram, it is possible to
specify the navigation events that can be occurred during MA
travel and to specify additional locations to be visited if a MA can
not reach a given location. These issues allow to model a flexible
and dynamic travel planning which adapt to the environment
changes.

3.6 Lifecycle Diagram
The lifecycle diagram extends the UML statechart diagram by
adding new stereotyped actions and new types of transitions.

During its lifetime and in order to achieve its mission, MA needs
to communicate with other entities (agents, environment, user), to
move from location to another, and to perform the assigned tasks.
These issues allow to specify when and how mobile agent transits
to one state to another. Then, in order to specify mobile agent
change states, we believe it is necessary to specify relations with
the interaction diagram, which specifies the communication acts,
the navigation diagram, which specifies the travel planning, and
the activity diagram, which specifies the tasks mapping.

In order to model these relationships, we propose to introduce
new stereotyped actions and new types of transitions: activity,
interaction, and navigation transitions. The activity transition
triggers the execution of the mobile agent activity diagram in the

79

AT2AI-6: Hachicha H. et al.: MAMT: an environment for modeling and implementing mobile agents

"Activated" state in order to perform tasks relevant to a given
location (R7, Figure 1: Lifecycle diagram — MA Activity
diagram). The interaction transition triggers the execution of the
mobile agent sequence diagram in a given state in order to execute
communication acts (R8, Figure 1: Lifecycle diagram —%» MA
sequence diagram). The navigation transition triggers the
execution of the navigation diagram in the "ChooseDest" state in
order to determine and to decide to the next location to be visited
(R6, Figure 1: Lifecycle diagram—p Navigation diagram). As an
example, figure 7 illustrates the graphical notations and the use of
navigation transition.

Navigation transition decide (location L

=

Navigation diagram

decide (location L)
i .

Class diagram Lifecycle diagram

MobileAgent

decide (location

Figure 7. Granularity levels of the lifecycle diagram use:
navigation transition

3.7 Mobile Agent Sequence Diagram

The AUML sequence diagram (protocol diagram) [2] presents a
set of interactions between agents playing different roles. In order
to model the different interactions between the new elements
defined by MA-UML profile, we propose to introduce the new
proposed elements in the AUML sequence diagram. We call this
diagram Mobile Agent Sequence Diagram. Table 2 identifies the
instances that may appear in the mobile agent sequence diagram
and its associated diagram elements.

Table 2. The mobile agent sequence diagram elements

Instances Mobile Stationary Place Resource
Agent Agent

Diagram 4 Moblle Agent 4 Stationary Agent Place I Resource

element

Instances ASearcherhgent & InterfaceAgent Alaleaz | DitBase

example

4. MAMT: AN ENVIRONMENT FOR
MODELING AND IMPLEMENTING

MOBILE AGENTS

In order to support the use of the MA-UML profile and to
implement a system using MA-UML, it is necessary to create a
software CASE Tool (Computer Aided Software Engineering
Tool) and to refine the models and to generate Java code.

In the following sub-sections, we present the software CASE Tool
we have developed. Then we describe the proposed strategy for
mapping mobile agent specifications to Java code.

4.1 The MAMT environment

We developed MAMT (Mobile Agent Modeling Tool) that is a
software development environment to support a mobile agent-
based applications development process. The MAMT

environment was developed as a set of plug-ins for the Eclipse
Platform [12].

The MAMT environment consists of three plug-ins, which are:

The graphical editor tool: includes the MA-UML library. It is
composed of the UML metamodel, the AUML metamodel and the
MA-UML metamodel. The editor tool supports the seven MA-
UML diagrams and allows the creation of a number of UML,
AUML and MA-UML artefacts. The GEF plug-in was used to
provide a powerful foundation for creating editors for visual
editing of arbitrary models. The EMF plug-in was used to create
and store UML, AUML and MA-UML models in the XMI format.

The translator tool: includes the transformation rules. It is
responsible for the transformation of the MA-UML XMI file,
which represents the output of the editor tool, to the UML XMI
file.

The code generation tool: includes a Java library and a set of code
generation rules. It is responsible to generate automatically Java
code based on the UML XMI file. The code should be completed
by the developer.

As a MAMT prototype, we have implemented the graphical editor
tool using the UML2 2.0, EMF 2.2, GEF, GMF plug-ins of
eclipse. This editor supports essentially the three static diagrams
of the MA-UML profile which are: the environment diagram, the
mobile agent diagram and the itinerary diagram. Also it supports
the MA-UML navigation diagram. Figure 8 illustrates as an
example the metamodel needed to implement the environment
diagram editor.

Gl Edit Mavigste Search Project Run Sample Ecors Editor Window Help

(B0 BEHG S o

5] Package Explorer 2 Hierarchy =0 #] EnvironmentDiagra

| EnvDiagEditor,um|
== =~ | B8] [SERD wDiagEditor) iranmen
=542 ErvDiagEdiar = 8 ErwironmentDiagram
8 o = B EnviranmentDiagram - Class
& RES i Resource
£ PL: Place
=+ 54 StationaryAgent
& MA : MaobileAgent
= H Mobilegent -> Class
= MobileAgenthame ; EString
= MobileAgentID : EInt
H stationaryagent - Class
H Place -» Class
© Placshlame : EString
= PlacelD : EInk
H Resource -» Class
B Home -> Class
= Homehame ¢ EString
&3 source : Mobileagent
&3 target : Place
Communicatel -» Class
Reside - Class
Offer - Class
Manipulake - Class
= Manipulatelame : EString
&3 source : MobilsAgent
& target : Resource
H Communicatez - Class
[=-#] platform: /pluginforg. eclipse. uml2.umlimodel/UML . ecore
& uml
=-#] platform:/pluginforg.eclipse.emf . ecorefmodel/Ecore ecare
ecore

= JRE System Library [fre1.5.0_06]
B Plug-in Dependencies
(= META-TNF
= (= model
4| EnvDiagEditar.uml
EnvironmentDiagram_2_Enviranme
#] EnvironmentDiagram.ecore
| EnvironmentDiagram.uml
1= EnvDiagProfile
722 TtineraryDiagram
12 MobileAgentDiagram
52 NavigationDiagram

-

&

o & & E
[0 00 0 00

Figure 8. A metamodel part of the environment diagram

80

AT2AI-6: Hachicha H. et al.: MAMT: an environment for modeling and implementing mobile agents

Figure 8 shows the metamodel of the environment diagram which
describes the different metaclasses added to UML metamodel (e.g.
mobile agent, resource, reside). The Editor tool corresponding to
the environment diagram is illustrated in figure 9.

Run Sample Window Help

EE RN B B R A S
B Il S e S E——
Y ID. tinerary_diagra. . | M#A.ma_diagram_diagram ‘ = B8
«||==Palette — »
[T Select
+_ Zoom
M MarketPlace = Note .
IDPlace
L — erwironment_di,.. *
createl)
A Mabile_fgert
== Aktribute
=M Method
A Searcher agent £ Stationary_agent
IDSAgent & Interface --=5A Attribute
move() T £ --=5f Method
M Place
communicated) -->Flace Aftritite
-->Place Method
I Ressource
&> & ® U -->Ressource Attribute
--=Ressource Method
[Database o
1DDE & Reside
addi) b Manipulake
communicate
4] [»[L= Geometric Shapes ‘

Figure 9. A snapshot of the MAMT tool showing the editing of
an environment diagram

4.2 Mapping MA-UML models to Java code

The transformation process of MA-UML models to Java code is
supported by the two MAMT plug-ins: the translator tool and the
generator tool. In order to map MA-UML models to Java code,
we propose to use the MDA approach [13]. The MDA defines a
set of consecutive transformations that should be applied to the
models in order to allow the transformation of high-level
abstraction models into code. The MDA approach proposes four
layers allow deriving code from the specifications, which are:
CIM, PIM, PSM, and code. The proposed approach for mapping
MA-UML specifications to Java code is illustrated in figure 10.

MA-UML XMI
Translator Tool PIM
— 3
Generator Tool UML XMI PSM
—
00 Code Code

Figure 10. Transformation process based on MDA

The PIM layer. The MA-UML is a modelling language focused to
model mobile agent-based application. The MA-UML models that
describe an application are PIMs that are portable to diverse
systems and can be used to generate different computational
models by applying various implementation platforms.

Transforming PIMs into PSMs. After elaborating the MA-UML
models of PIMs, these models should be transformed into PSMs.
The transformation of MA-UML models into UML models occurs
in two stages: (1) the first stage: the first stage consists of
describing the all the MA-UML models in a textual description by
using the XMI format. The XMI is used in our approach to
represent the MA-UML models, to assist in the transformation

from MA-UML models into UML models, to represent the UML
models and to help the transformation from UML models into
code. (2) The second stage: in this stage, the MA-UML XMI
generated in the previous stage is converted into a UML XMI.
This transformation is based on the transformation rules that we
have defined.

The PSM layer. The UML XMI generated in the previous stage
represents a PSM of the application. The UML XMI created in
this stage is a UML class diagram that contains the classes of the
application. All application entities, properties, relationships, and
behaviour modelled by the MA-UML diagrams generate the UML
class diagram of the application.

Transforming PSMs into code. In the final stage of the
transformation process, the UML models are transformed into
code. This kind of transformation corresponds to the last stage of
the MDA approach that transforms PSMs into code. This
transformation is based on the code generation rules that we have
defined.

5. CONCLUSION

This paper presented an approach to support the modeling and the
implementation of mobile agent. This approach consists first on
the MA-UML profile which defines a set of seven diagrams that
describes the static and the dynamic aspects of the mobile agent.
Second, this approach consists on the MAMT that is a software
development environment to support the use of MA-UML
diagrams and transform specification models to Java code. The
transformation process is based on the MDA approach. Our future
works include two axes. In the first, we are looking to implement
the other MA-UML dynamic diagrams. In the second axe, we are
looking into the design and the implementation of a mobile agent-
based application in the medical field.

6. REFERENCES

[1] Unified Modeling Language Specification, version 2.0,
OMG, http://www.uml.org. Accessed in: December 10,
2004.

Bauer, B., Miiller, J. P., Odell, J. 2001. Agent UML: a
Formalism for Specifying Multiagent Software Systems. In
International Journal of Software Engineering and
Knowledge Engineering, vol. 11, No. 3, pp.1-24, 2001.

Tomoya, T., Tadanori, M., Takashi, W. 1998. A Model of
Mobile Agent Services Enhanced for Resource Restrictions
and Security. In International Conference on Parallel and
Distributed Systems (ICPADS '98).

Self, A., DeLoach, S. A. 2003. Designing and Specifying
Mobility within the Multiagent Systems Engineering
Methodology. Special Track on Agents, Interactions,
Mobility, and Systems (AIMS) at The 18th ACM
Symposium on Applied Computing (SAC 2003).

Sutandiyo, W., Chhetri, M. B., Loke, S.W., Krishnaswamy,
S. 2004. MGaia: Extending the Gaia Methodology to Model
Mobile Agent Systems. In the Sixth International Conference
on Enterprise Information Systems (ICEIS 2004), Porto,
Portugal, April 14-17.

Belloni, E., Marcos, C. 2003. Modeling of Mobile-Agent
Applications with UML. In Proceedings of the Fourth

(2]

(3]

(4]

(3]

(6]

81

AT2AI-6: Hachicha H. et al.: MAMT: an environment for modeling and implementing mobile agents

[7]

(8]

(9]

Argentine Symposium on Software Engineering
(ASSE’2003). 32 JAIIO (Jornadas Argentinas de Informatica
e Investigacion Operativa), Buenos Aires, Argentina.
September 2003. ISSN 1666-1141, Volume 32.

Ling, S., Loke, S. W. 2001. Verification of Itineraries for
Mobile Agent Enabled Interorganizational Workflow. In
Proceedings 4th International Workshop on Mobility in
Databases and Distributed Systems (MDDS'2001), Munich,
Germany, 582-586.

Klein, C., Rausch, A., Sihlinh, M., Wen Z. 2001. Extension
of the Unified Modeling Language for mobile agents. In Siau
K. Halpin T. (Eds.): Unified Modeling Language. System
Analysis, Design and Development Issues, chapter VIII. Idea
Group Publishing, 2001.

Mouratidis, H., Odell, J., Manson, G. 2002. Extending the
Unified Modeling Language to Model Mobile Agents.

Workshop on Agent-oriented methodologies. OOPSLA

2002, Seattle, USA, November (2002).

[10] Kang, M., Taguchi, K. 2004. Modeling Mobile Agent
Applications by Extended UML Activity Diagram. In
Proceedings of the 6th International Conference on
Enterprise Information Systems (ICEIS)’04, Porto, Portugal,
519-522, April (2004).

[11] Kusek, M., Jezic G. 2006. Extending UML Sequence
Diagrams to Model Agent Mobility. In Agent-Oriented
Software Engineering, vol. 4405, pp. 51-63, 2006.

[12] Eclipse: Eclipse.org, v 3.0, http://www.eclipse.org/.
Accessed on 05/2005.
[13] OMG MDA Guide. Version 1.0.1,

http://www.omg.org/docs/omg/03-06-01.pdf.

82

AT2AI-6: Himmelspach J. et al.: Component based models and simulation experiments for multi-agent systems in
James 11

Component-based models and simulation experiments for
multi-agent systems in James i

Jan Himmelspach
jh194@informatik.uni-
rostock.de

Mathias Ro6hl
mroehl@informatik.uni-
rostock.de

Adelinde M. Uhrmacher
lin@informatik.uni-
rostock.de

Faculty of Computer Science and Electrical Engineering
University of Rostock
18059 Rostock, Germany

ABSTRACT

The architecture of the modelling and simulation framework
JAaMEs II facilitates its reuse for a broad range of applica-
tions, including agent-based modelling and simulation. Sim-
ulation studies can be done by using component based mod-
els, which may have been defined in an external IDE and
saved in an standardized way. We created a customisable
middleware for JAMES II, which can be easily extended to
read various experiments and models from different sources,
to dynamically instrument the created structures, to exe-
cute models on different hardware infrastructures efficiently,
to store simulation data into diverse data sinks, which can
be used to create specialised IDEs, and which can be fully
integrated into other applications.

1. INTRODUCTION

In multi-agent research, particularly in bridging the gap
between conceptual modelling and implementation, simula-
tion has played an important role from the very beginning
and since then features central for those simulation environ-
ments to support an easy evaluating of multi-agent systems
has been subject of discussion [10]. Early approaches of
utilising simulation in the context of agent design have been
characterised by ad-hoc implementations or by concentrat-
ing on one test scenario only, e.g. Tileworld [22]. Over the
years the attention has turned towards exploiting state of
the art modelling and simulation (mé&s) methods, or entire
frameworks for agent design. The list of existing simula-
tion systems is rather long, they offer quite diverse features
for supporting the design of diverse models. Some of these
systems try to make models interoperable, e.g. MOBIUS
[2], some focus on an efficient distributed simulation, e.g.
usik [21], some on specific application areas (e.g. NS/2 [5],
SWARM [19]), some on web-based simulation (e.g. D-SOL
[14]), and some on certain formalisms or description lan-
guages, e.g. JDEVS [6] and SESAM [16]. Several of these
systems are extensible, few have a clear separation between
(declarative) model and simulator, and even less address the
problem of a declarative experiment description.

Especially the translation process, from a declarative model
representation to an executable model is handled quite dif-

Jung, Michel, Ricci & Petta (eds.): AT2A1-6 Working Notes, From
Agent Theory to Agent Implementation, 6th Int. Workshop,
May 13, 2008, AAMAS 2008, Estoril, Portugal, EU.

Not for citation

ferently by the available systems. Sometimes models are di-
rectly created in a general purpose programming language,
an approach pursued in Repast, or they are transformed
into source code (from a symbolic description), compiled and
executed afterwards, others directly interpret the symbolic
model. All techniques have advantages as well as disadvan-
tages [9]. On the one hand, the expressiveness of a general
purpose programming language is considered to be higher
and the resulting code most often faster (but this heavily
depends on the skills of the author). On the other hand,
model languages may ease the creation of models, may pre-
vent errors, and may even be better reusable. Compiling
means speed up, interpretation eases observation and inter-
action.

Despite all this efforts, so far only few answers to the
question on how to transform declarative models into effi-
cient executable code and thus combining the benefits of
a declarative, composite model definition with an efficient
and sound execution, do exist. Whereas the benefits of an
explicit model description appear obvious and most agent-
oriented approaches distinguish between model and simula-
tion, one other aspect has achieved too little attention so
far: supporting the simulation experiment itself. However,
an unambiguous description of experiments is a pre-requisite
for a systematic experimentation with multi-agent systems
and their repeatability. Again we find declarative descrip-
tions and executions tightly connected. Thus, simulation
systems face a set of interrelated challenges with respect to
Modelling research: Modelling research most often deals
with the problem of how to describe a model. Thereby the
focus is either on how to describe a problem (which most
often leads to new formalisms) or on how to make models
reusable and exchangeable. Especially the often neglected
validation of models is of high importance for getting reli-
able results by simulation.

Simulation research: The development of simulation al-
gorithms is strongly related to the modelling formalisms
used and platforms to be supported. Thereby the achieved
results are most often not comparable to results which have
been previously achieved because most of these algorithms
have strong interrelationships with the frameworks they are
embedded in.

Simulation experiments: Quite many simulation systems
have been developed for concrete application domains, or
even for concrete simulation experiments [19], often by non-
experts in the area of modelling and simulation. For be-
ing able to execute a broad range of different applications

83

AT2AI-6: Himmelspach J. et al.: Component based models and simulation experiments for multi-agent systems in

James 11
Layer 1 ‘ User interface ‘ - ‘ User interface ‘
. B |

Layer 2 ‘ Database H Experiment H Model ‘ 2 start

T 2 |-
Layer 3 ‘ Simulation H Simulator ‘)) Use y write/read

Simulation Experiment ’
Figure 1: Modules of James II. use generates
A A

a variety of modelling formalisms and platforms have to be
supported in an efficient manner and the software must be
accessible for non mé&s experts. In addition experiments and
thus the computed results must be repeatable.

The two aspects (1) how to combine a composable model
construction with efficient simulation engines and (2) to pur-
sue the question what is an experiment, and how can it be
supported shall form the nucleus of our paper. A plugin-
based architecture provides a suitable base for our endeav-
our. In the following we will show the general experimenta-
tion process of JAMES II and how symbolic model descrip-
tions can be integrated. The proposed mechanism allows
the integration of any model description language — as long
as a so called ModelReader (and target model classes) exist
in the system — but both can be easily extended as well.
This process can be considered as a new way (for the gener-
ation of executable models) — symbolic models are read and
mapped onto executable model components.

An example of a multi agent-based application will be

used to illustrate the applicability and usability of the achieved

solution in regards to component based modelling of multi
agent systems and the usage of efficient distributed simula-
tion for experimenting with the model.

2. BACKGROUND

A general modelling and simulation framework usable for
different applications by various users has to be very flexible:
all parts, and even sub parts, of the framework have to be
exchangeable. For being reusable in the large JAMES II has
been split up into several modules (see Figure 1). Each
of these modules realises a part of the functionality required
for an m&s framework. These modules are clearly separated
from each other — this ensures their interchangeability and
reuse. The most apparent one may be the strict distinction
between model and simulator. A model cannot directly call
simulator functions — this makes it fairly easy to use different
simulators, or even to exchange the simulator used during a
simulation run — e.g. if another one is assumed to be more
efficient. For being able to reuse a model, it is useful to
have generic model descriptions which are independent from
a concrete simulator implementation and can be converted
into executable models on demand (e.g. [1]). These model
components, sometimes called building blocks [30], can be
described by, e.g., using XML.

The user interface encapsulates model creation, model ex-
ecution (control + visualisation), data analysis, and so on.
Up to now we only have a rudimentary graphical user in-
terface (GUI), i.e. we only have a model view, a simple
experiment editor, and very simple model editors. The GUI
is only loosely coupled to the remaining simulation system
and it is even possible to use JAMES II without a GUI at
all (either in a kind of batch mode or interactively) or to
embed JAMES II into another application. The GUI has
been designed by using the model-view-controller paradigm

Figure 2: Relationship of the core modules of James
II.

which allows, e.g., various views on the same model. The
basic coupling between a running simulation and the GUI is
realised by the Observer-pattern.

The data sink used during a simulation run may have
to be able to handle many observations, such that the run
can be analysed and visualised afterwards. The database
interface makes no restriction in regards to the database to
be used — thus everything starting from a plain ASCII file up
to a modern database system can be used in principal. The
interface is standardised, thus any sink implementing the
interface can be used interchangeable for collecting runtime
data.

The Model module encapsulates the modelling formalisms
supported by JAMES II. All executable models must be de-
scendants of the base class Model, all externally visible func-
tions should be placed in an interface on which the sim-
ulators can operate. These model classes can be directly
used for creating models by coding in Java, for other model
sources instances of these classes need to created while read-
ing a model. Models are explicit and they are separated
from the execution (simulation algorithms). The computer
on which a model is computed does not matter, e.g. the
mobility of agents is separated from moving models to other
computers — if the latter is done, the reason is load balancing
and not model logic.

The simulation module in JAMES II contains the simula-
tion management part. If a simulator executes a model this
is called a simulation. In this package methods and classes
for simulation setup (simulator selection and creation, par-
titioning, management of distributed computing resources),
run time control (pause, ...) as well as simulation related
run time jobs (e.g. load balancing) are located. Simulations
in JAMES II can either be executed sequentially on a single
machine, several simulations can be executed in parallel on
different machines, or simulation can be executed using par-
allel distributed algorithms. If they are to be executed in
a parallel distributed manner, the integrated (and extensi-
ble) partitioning and load balancing sub packages come into
play.

The Simulators are selected by and embedded into a sim-
ulation. This selection depends firstly on the model class
of the model to be executed and secondly on other crite-
ria. Currently the list of available criteria is extended by a
new “intelligent” criterion, which tries to automatically se-
lect the best of the algorithms usable in principal. In JAMES
II several simulators for each of the different formalisms can
coexist. E.g. currently we have six different simulation algo-
rithms for PDEVS;, including sequential and parallel variants
[11].

Ezperiment is the central term in JAMES II. Simulations

84

AT2AI-6: Himmelspach J. et al.: Component based models and simulation experiments for multi-agent systems in
James 11

may be carried out with a focus either on conducting ex-
periments with models or on experimenting with simulation
algorithms. This package provides support for creating flex-
ible experiments with support for a variety of simulation
jobs, e.g. for parameter optimisation and validation.

An experiment is defined as the execution of a set of sim-
ulation runs for answering a concrete question. The exper-
iment module has to combine the various, previously intro-
duced modules (see Figure 2).

A PlugIn mechanism [13] allows the flexible extension of
the simulation framework without the need to modify the
code of the core later on. Due to the strict separation be-
tween models and simulators, simulation algorithms can be
easily exchanged and thus evaluated. This makes the Plugln
mechanism a base for a reliable evaluation of new simulation
algorithms. The adaptation of a modelling and simulation
framework for certain user groups (especially of the user
interface) is crucial for its usability. This adaptation can
be easily done by the Plugln mechanism or by embedding
the complete JAMES II core (with all installed plugins) into
another JAVA application [18]. Modelling and simulation
applications whose individual requirements may even con-
tradict (e.g. the use for demonstration purposes in the field
of teaching simulation algorithms versus highly efficient im-
plementations of algorithms for efficient experiments) can
coexist in the framework [12, 11].

3. DIFFERENT MODEL SOURCES

«interface»
IModelReader

+read(ein ident : URI, ein parameters : HashMap) : IModel

«interface»
IModelWriter
+write(ein model : IModel, ein ident : URI)

ModelReaderWriterFactory

+getReader() : IModelReader
+getWriter() : IModelWriter

Figure 3: Interfaces and base factory class for read-
ing / writing models.

JAMES II does not only allow the integration of different
modelling formalisms / languages but also the usage of any
description languages for them. I.e. in JAMES II symbolic
and executable models are differentiated and only in the
case of models coded in Java both might be the same. In-
terfaces defining implemented models are used for accessing
executable models. This allows different implementations
of the classes for executable models, and thereby allows ef-
ficient and adoptable model realisations. This is a highly
required feature: different models may have completely dif-
ferent characteristics, such that different data structures in
combination with different simulation algorithms might prove
beneficial. For each description language a special reader
has to be designed (a model reader) which maps a model
description on instances of executable model classes. De-
pending on the reader any source (database, code files, ...)
can be used for retrieving a model.

The interface, which is provided by the framework and
has to be implemented by a model reader is shown in Figure
3. A model reader becomes accessible as a plugin by JAMES
II by setting up a simple plugin description file. The plugin
type description is given in Figure 4. If an XML plugin file
for the ModelReader extension point is found, JAMES 11 au-
tomatically installs the plugin and if later on an experiment
definition links to a model readable by the newly defined
model reader, this plugin is automatically used.

<7xml version="1.0" encoding="UTF-8" ?>
<plugin xmlns="http://www.informatik.uni—rostock.de/
mosi/cosa/plugintype”>
<id name="model_reader/writer_plugins” version="
1.0” />
<abstractfactory>james.core.data.model.
AbstractModelReaderWriterFactory</
abstractfactory>
<basefactory>james.core.data.model.
ModelReaderWriterFactory</basefactory>
<description>Support of diverse model readers/
writers.</description>
</plugin>

Figure 4: XML based Plugin type description file
for model readers and writers (defines an extension
point). Each reader/writer plugin must provide a
factory which is a descendant of the specified base-
factory.

JAMES IT uses a “late” reading mechanism. Thus models
are not read and instantiated if a new simulation configu-
ration is created by the experiment but if the simulation is
about to the started. Thereby the model reader is used on
the computer the model must be instantiated on — this re-
duces network load (in distributed setups), and prevents the
central (distributing) instance to become a bottleneck.

In addition to reading models JAMES II provides an in-
terface for the integration of model writers (ModelWriter).
Based on the interfaces of the model in memory a model
description can be written to any supported target. This
includes different storages and all description languages for
which writers exist.

3.1 Component-oriented Modelling in XML

While models can always be directly described in Java it
is possible to describe them by using a special XML-based
syntax as well. The XML-based variant eases the import and
export of models specified in a standard exchange format.
Furthermore, XML descriptions enable us to simply generate
and describe a broad range of experiments.

XML handling is based exclusively on entities that are
bound to XML Schema Definitions [25]. Schema Defini-
tions mainly define the syntax of an XML document and
thereby provide the means for rendering XML documents
valid or invalid. JAXB [28] is used to generate Java classes
that conform to XML Schema Definitions. Thereby, the
bound entities are able to transparently unmarshal XML
documents to Java objects and marshal Java objects back
to XML documents. This process has to be encapsulated
into ModelReader and ModelWriter implementations for in-
tegrating the XML descriptions into JAMES I1.

Execution of XML model components builds upon the
simulators as described above. To this end, the declara-
tive model definitions are automatically transformed to ex-
ecutable ones [25].

Based on XML-descriptions models can be specified in a
component-oriented manner [23]. Provided and required in-
terfaces of each model component have to be explicitly spec-
ified. Thereby internal details of a model are hidden and
direct dependencies between models eliminated. A set of
components may become customised and arranged to form
a composition according to the aim of an experiment. Pa-
rameters set on component instances are evaluated and de-
pendencies between components resolved.

85

AT2AI-6: Himmelspach J. et al.: Component based models and simulation experiments for multi-agent systems in
James 11

3.2 Agents and James I

In JAMES II agents can either be modelled (i.e. JAMES II
is used as a testbed for multi agent scenarios) [24], JAMES 11
can be used to create an environment in which “real” soft-
ware agents can be plugged into and evaluated [8], or agent
technology can be used to extend the simulation middleware
of JaMmES II.

JAMES II strictly separates between models and simula-
tors. A model is a “pure” picture of the system under study
and does not contain any simulation related information.
Every agent model in JAMES II has always to be based on a
supported modelling formalism. Agent specifics (e.g. com-
munication protocols, migration issues) are either inherently
supported by the modelling formalism used or they have to
be explicitly modelled. I.e. in JAMES II agents and the
environment they reside in are models. Agent models de-
scribed outside of JAMES II have to be converted into an
executable model of JAMES II before they can be simulated.
The model reader schema allows the usage of arbitrary agent
model repositories and it allows the usage of different agent
modelling languages, if there is a translation into executable
model classes of JAMES II. Later on we’ll present an example
of a multi agent simulation model, defined by using model
components which are stored in XML (as described above).

JAMEs II is well suited for the simulation of (large scale)
multi agent models because the usage of different simula-
tion algorithms for a model, e.g. different sequential and
distributed ones, is supported. E.g., in JAMES II models can
be executed by using a fine-grained parallel and distributed
setup if the simulation of a model on a single machine is no
longer possible (as long as there is an appropriate simulator
plugin). If several simulations shall be executed in parallel
(e.g. replications required because of stochastics) the model
reader schema takes care of creating agent models directly
on the hosts they shall be simulated on.

Thus the model reader schema enables flexibility for the
simulation of multi agent systems in regards to model sources,
computation schema used and up to a certain degree in re-
gards to the modelling formalism used.

4. EXPERIMENTS IN JAMES II

Experimenting is a difficult, time consuming (sometimes
event too time consuming [7]) and error prone task. Differ-
ent types of experiments have to be conducted in a simula-
tion study: runs for exploration are followed by validation
experiments, for making sure that the model is valid. In
addition, we might have to adjust some parameters by op-
timisation, or even re-design the entire model. Finally, we
will execute the experiments to answer our initial questions
we had in mind while creating the model. Consequently,
a model must be independent from the type of experiment
it is used in: we decided to create an explicit experiment
description, which just links the model to be experimented
with.

Reading/writing experiments.

JAMES II is not restricted to a concrete experiment def-
inition language. Any experiment definition is fine as long
as there is a suitable plugin for reading and converting the
experiment definition. For the plugin to be accessible by
JAMES II the interface IEzperimentReader has to be imple-
mented. A user interface may initiate the reading of an

XML-based experiment definition from a database. The
reader retrieves XML data and initialises the experiment
instance according to the experiment definition. Changes to
an experiment or a newly created experiment may be saved
by JAMES II using a so called experiment writer, which im-
plements the IExperiment Writer interface.

Job creation.

The support of different hardware infrastructures can re-
duce the overall time needed for an experiment if corre-
sponding hardware is available. Consequently, an experi-
ment definition in JAMES II is independent from the system
an experiment will be executed on. An experiment definition
usually comprises the parameters to be modified from sim-
ulation run to simulation run, how they shall be modified
(e.g. by an optimisation method), the number of replica-
tions (e.g. for achieving statistical reliability), and so on.
An experiment definition creates simulation configurations
(“model and simulation parameter combinations”) which are
transferred to a simulation runner. Depending on the sim-
ulation runner used, the simulation configurations will be
executed sequentially on a single host or by using a coarse-
or fine-grained parallel simulation on any (supported) hard-
ware infrastructure.

Simulation creation.

An executable model is created on the machine the simula-
tion will be executed on by using the model reader schema.
For creating a simulation from a job based on the XML
model components as described above, a ModelReader re-
trieves the XML-data of the components from the database,
unmarshals it, and configures the component(s) according
to the provided model parameters (e.g. create 200 or 400
agent instances in the model). If a remote access to the
model source (database) is possible, the model, or parts
of it, might reside anywhere in the world. The executable
model is created by using a ModelFactory which converts
the model components into an executable instance of the
target modelling formalism. Further details of the model
creation process can be found in [26].

If the model has been created, an instrumenter will take
care of attaching observers to the model. The selected data
sink will be attached and the simulators will be created and
instrumented. Afterwards the simulation is executed.

5. A MULTI AGENT EXAMPLE

Mobile ad-hoc networks (MANETS) are computer net-
works based on wireless communication. MANETS are char-
acterised by dynamic network topologies. Nodes induce
topology changes by appearing, disappearing, and moving
in a spatial environment. To provide fast and reliable con-
nections poses a severe challenge for MANETS, because MA-
NETs lack central infrastructure and bandwidth as well as
energy are strictly limited [3].

Network devices operating independently of the mains,
typically have limited capabilities in terms of memory, bat-
tery and performance. Complex operations require cooper-
ation among network nodes. To make cooperation possible,
resources and capabilities of nodes, in the following referred
to as services, have to be announced by providers and need
to be locatable be a requester. From the perspective of hu-
man users, services should be accessible in a transparent

86

AT2AI-6: Himmelspach J. et al.: Component based models and simulation experiments for multi-agent systems in
James 11

SocialOrg

<

Move

Call

—
Response

Figure 5: Conceptual model for evaluating service trading in mobile ad-hoc networks.

manner. Therefore, service descriptions, service matching
algorithms, incentive schemes, and distributed reputation
systems are developed in the project DIANE [4]. However,
these mechanisms need to be thoroughly evaluated [15].

Conducting experiments to evaluate service trading in MA-
NETs requires user models to represent network nodes as
autonomous actors, which move in a spatial environment
and announce and request services. Developers of service
trading protocols are mainly interested in the cost-benefit
ratio of protocols, if these are confronted with different kinds
of user models. However, MANETS are typically simulated
with special simulation systems, i.e. network simulators [17],
which concentrate on the lower layers of the OSI protocol
stack, e.g. routing protocols on the third layer. Within
theses simulation systems, models for representing move-
ment and service behaviour are simply calculated based on
stochastic distributions [29]. As network traffic in MANETSs
is sensitive to local accumulation of nodes and temporal
accumulation of network usage, more complex user mod-
els are needed, e.g. to allow a consistent modelling of mo-
tion and service behaviour and to incorporate social aspects.
Thereby, users need not merely move individually but may
form groups and move as clusters aiming at same destina-
tions and partly synchronising their schedules.

Please note, that the purpose of this simulation scenario
is not to test agents, but to use agent models for evaluating
service trading protocols. Thereby, the agent models are
part of the experimental setup.

Figure 5 shows a conceptual model for evaluating service
trading in MANETSs. The network consists of mobile nodes.
Network connection between nodes depend on their posi-
tions. Each node comprises a user model and a service trad-
ing model such that the trading protocol mediates all net-
work interactions and thereby provides transparent access
to services available in the network. Models are supposed to
exchange the following types of events:

Call A user initiates to announce, to revoke, or to search a
certain service.

Response The trading protocol reacts, after having per-
formed all necessary actions, to calls of the user with
according responses.

Message Trading protocols communicate over the network
with messages of arbitrary content.

Move Movement information in a two-dimensional spatial
environment.

SocialOrg Social organisation requests and responses.

User models initiate communication by sending calls to
the trading protocol. A call may indicate the publication

of or search for services. Calls are passed to the protocol
model, which answers user calls with Response events.

The concrete type of the user model and the trading pro-
tocol should be a variation point of the simulation model.
Different kinds of user and protocol models should be ex-
changeable independently of each other within one node.
For simulating service trading in MANETS with JAmEs II,
user and protocol models have been realized as model com-
ponents.

In the following we’ll show how the experiment definition
together with the model reader schema facilitates the flexible
experimentation with this component-based model.

5.1 Defining composition structures

Figure 6 shows the composition structure of the Manet
component. The Manet component can take parameters to
initialise the number of nodes to be simulated, the type of
the user model to be used, and the type of the protocol
model to be used inside each node.

The spatial environment represents a certain geographical
area containing streets and buildings and it keeps track of all
user positions. The network component models the trans-
port layer of the network. In real applications the whole
OSI stack is part of each node. Since we are interested in
higher level protocols the four lower OSI layers are pooled in
a centralised network component, which delivers messages to
nodes. The connectivity of each node is calculated according
to its position with respect to other nodes.

Each node contains a Protocol component and a User
component. From the point of view of the node component,
the user and protocol components are black boxes whose
couplings are defined by interfaces. The parameters user
and protocol, which may be set on a node component, de-
termine the type of sub components to be used. Each of
both can be easily replaced by another one which provides
the same interface. Three different versions of the user com-
ponent have been implemented up to now. They can be
composed into a node alternatively. We will now take a
look at different implementations of user components and
protocol components. All of these are realised themselves as
composite components.

The simple user contains an activity sub component that
manages login and logout behaviour. If logged in, the service
component becomes notified to start publishing services and
searching for services randomly according to a uniform dis-
tribution. Furthermore, the activity sub component selects
destination points randomly and calculates routes to them.
Routes are propagated to the Motion sub component, which
executes them with a certain walking speed. After reaching
a destination, a new route is requested from the activity
component.

The second user model realises an activity-based user be-

87

AT2AI-6: Himmelspach J. et al.: Component based models and simulation experiments for multi-agent systems in
James 11

SimpleUser (impl)

motion:
Motion

activity

service:
Service

activity: activity:
SimpleActivity Activity
1 1

ActivityUser (impl)

motion:
Motion

activity

service:
Service

SocialUser (impl)

motion: IS

Motion

move

social: social |
(] el | —
Social

status
L] activity

activity: status

SocialActivityl!

activity

service:

) . serv L
SocialService

social

social
SocC:

SocialEnv[0..1]

transport

sl i

protocol:String user:String

positions

positions

net:
Network

transport

[

[

ﬂ

protocol:String

user:String

d

nodes:Integer

Figure 6: Structure of the manet model with three alternative user models.

haviour. Network usage and moving is not modelled inde-
pendently of each other. Both depend on the activity a
user is currently executing. The Activity model generates a
schedule at the start of the day. The schedule contains fixed
activities, e.g. attending a lecture as well as flexible activi-
ties, such as learning, with different priorities and durations.
The current activity influence the Motion and Service sub
component. The service component generates service of-
fers and service requests according to the received activity.
Activities are not independent of the spatial context, but
each location is only suited for a certain set of activities.
The current activity constrains the choice of the next des-
tination and thereby the motion model. Thus, motion and
service behaviour are both based on activities.

The third user model extends the activity-based model
with social awareness. The sub component Social of each
user announces planned activities to the social environment
model. If users have planned similar activities and are spa-
tially close the social environment forms a group and selects
a group leader. The group leader chooses activities, which
all group members may adopt. Because an activity does not
uniquely define the location of performance, the group leader
chooses a location out of a set of suited ones and communi-
cates this choice to all group members. The group members
are free to choose a path to the location. Thus, social users

are synchronised with respect to the next joint activity and
the location where this activity will be performed.

5.2 Defining model behaviour

MotionModel

[s.path.size = 0] [s.path.size > 0]

/send(Reached /send(s.path.remove(0
o < () /L (s.p (0))

Timer

moving)
g WL TSend({TImer, 5s) <
Path/setPath() L y : J

Figure 7: Motion model as a statechart.

Composition structures define the composition hierarchy
of a model. The leaves of the model tree have to be equipped
with behaviour, which in JAMES II may be done using dif-
ferent modelling formalisms. Statecharts are used in the

88

AT2AI-6: Himmelspach J. et al.: Component based models and simulation experiments for multi-agent systems in
James 11

following to exemplify the definition of model behaviour.

Figure 7 visualizes the definition of the model behavior for
the component Motion as a statechart. The model Motion
starts in phase idle and waits for input. If path information
is received, the model goes to phase moving. Each time
phase moving is entered, a movement event is produced.
After a certain time, triggered by a special send operation
in phase moving, it is checked, whether the end of the path
was reached. If this is not the case, the model enters phase
moving again. If the end of a path is reached, the model
produces an event of type Reached and returns to phase
idle.

With SCXML [31] a proposal exists for representing state-
charts in a style accessible not only to computers — like XMI,
the exchange format for UML state machines [20] — but also
to humans. Figure 8 lists the definition of the Motion model
in SCXML.

<scxml

xmlns="http://www.w3.0rg/2005/07/scxml"

version="1.0" initialstate="idle">
<datamodel>
<data name="path"
src="../PathProc:Path"/>
<data name="posChange"
src="../geometry:Position"/>
<data name="move" src="../motion:Move"
expr="create"/>
</datamodel>
<state id="idle">
<transition event="../PathProc:Path"
target="moving">
<assign location="path"

expr="_eventdata"/>
</transition>
</state>

<state id="moving">
<onentry> <send event="Timer"
delay="5"/> </onentry>
<transition event="Timer"
cond="s.path.size() > 0"
target="moving">
<assign location="posChange"
expr="s.path.remove (0)"/>
<assign location="move"
expr="setChange (s.posChange)"/>
<send event="../motion:Move"
namelist="move"/>
</transition>
<transition event="Timer"
cond="s.path.size()==0" target="idle">

<send event="../PathProc:Reached"/>
</transition>
</state>
</scxml>
Figure 8: Definition of the Motion model in

SCXML.

5.3 Deriving Simulation Models

In the following 400 nodes are simulated with the trading
protocol Lanes and different user components inside each
network node. To simulate these different compositions,
an experiment has to be defined. Figure 9 lists an accord-
ing experiment definition in XML. The experiment induces
three different parameter combinations (|nodes|* |protocol |
|user|). Each combination results in a separate simulation
configuration.

<experiment
xmlns="http: //...de/cosa/experiment”
xmlns:xsd="http: //..org/2001/XMLSchema”
xmlns:exp="unihro/diane/experiment”
xmlns:net="unihro/diane/com/manet”>
<id>exp:experiment</id>
<model>net:interface</model>
<mparams>
<param name="nodes”>
<value>400</value>
</param>
<param name="protocol”>
<value>Lanes</value>
</param>
<param name="user”>
<value>SimpleUser</value>
<value>ActivityUser</value>
<value>SocialUser</value>
</param>
</mparams>
<targetFormalism>

dynpdevs
</targetFormalism>
<platform>.../cosa/jamesii</platform>

<observercfg>
diane.experiments.v05.0bsVis

</observercfg>

<sparams>
<startTime>0.0</startTime>
<endTime>32400</endTime>

</sparams>

</experiment>

Figure 9: Definition of an experiment in XML.

The experiment reader configures simulation job descrip-
tion, which are passed to an instance of the appropriate
ModelReader, which reads and creates the model according
to these.

Figure 10 shows the structure of a resulting simulation
model that was derived using “400” nodes, the “Lanes” pro-
tocol and the “social user” component. The outcome is an
executable PDEVS model [32], which was generated from
the composition structures and model behaviours [27]. The
parameter values are translated into a corresponding num-
ber of network nodes and are reflected in the internal struc-
ture of each node. After having created the model, observers
for collecting experiment data are attached to the model.

Figure 11 shows three simulation runs, each with 400
nodes. Users appear uniformly distributed between 0 and
60 minutes and immediately log into the network. Subfigure
11 a) depicts the run which uses the “simple user” model for
generating calls. For measuring the load of the network three
different types of messages are distinguished. All messages
that result from building up the lane structure are summa-
rized by the login trajectory. Messages for keeping the lane
structure valid are subsumed under intra lanes messages.
Messages that are used to answer service calls of users are
summarized within the inter lane message trajectory. Us-
ing simple user models results in a quite uniformly scattered
number of service messages during the whole online period.

The trajectories in subfigure b) are produced using the
“activity-based user” model. The effort for service related

89

AT2AI-6: Himmelspach J. et al.: Component based models and simulation experiments for multi-agent systems in

James II
! Manet
user | nodel:
Path Node
i Move Move - Move . :
Reached motion > 4E|; E»]toAOO.SouaIOrg
. Status SocialOr SocialOrg—| SocialOr ;C;l'SOCia|OI’
activity | 49—EE| E’] : g
SocialOrg “—'SocialOrg
Activit . i
service Environment
to400:Message
Response call =i g
u
Response "' Tcall
! tol:Message
: Message M
I Lanes A
: —Message - 7- messages
! I
: H I
1
I
! T
| e e e e e e e e e e = |
| 1 1 ‘
1
| - = o

Figure 10: Structure of the derived simulation model.

messages varies not so much from minute to minute, but
different periods with higher and lower numbers of service
messages can be distinguished. The periods reflect globally
scheduled user activities, e.g. attending a lecture. As indi-
cated by subfigure c) “social user” models show less distinct
global behaviour patterns. For further discussions of this
experiment please refer to [24].

6. CONCLUSION

JAMES II realizes a plugin-based architecture that allows
a flexible re-use of concepts in the area of modelling and
simulation. The core of JAMES II provides standard func-
tionality and the means to integrate additional functionality.
If an experiment is conducted all those parts come together.
Here we focused on the possibility to support different model
descriptions in JAMES I, taking a component-based declara-
tive modelling of a multi-agent system as an example. Even
though the model is based on a declarative schema the exe-
cution is still quite efficient. This is achieved by mapping the
declarative model (by a ModelReader) on executable model
classes, which can be executed efficiently.

We have shown how “external” component-based model
descriptions (here “COMO”) can be embedded into JAMES
II and that a component-based modelling of multi agent sys-
tem is manageable and useful. This mechanism can be easily
extended to integrate further different (component-based)
model descriptions. In addition we voted for an explicit ex-
periment definition and shortly sketched how an experiment
definition can be converted into a JAMES II experiment. The
strict separation of models (agents) and simulators eases the
support of different hardware and thus allows the efficient
execution of (many) small and large scale simulations, and
thus helps to avoid errors as discovered in [7].

7. REFERENCES

[1] V. Balakrishnan, P. Frey, N. B. Abu-Ghazaleh, and
P. A. Wilsey. A framework for performance analysis of
parallel discrete event simulators. In WSC ’97:
Proceedings of the 29th conference on Winter
simulation, pages 429-436, New York, NY, USA, 1997.
ACM Press.

[2] G. Clark, T. Courtney, D. Daly, D. Deavours,

S. Derisavi, J. M. Doyle, W. H. Sanders, and

P. Webster. The mobius modeling tool. In 9th
international Workshop on Petri Nets and
Performance Models (PNPM’01), pages 241-250.
IEEE, 2001.

[3] S. Corson and J. Macker. Mobile ad hoc networking
(MANET): Routing protocol performance issues and
evaluation considerations.
http://wuw.ietf.org/rfc/rfc2501.txt, Jan. 1999.
Network Working Group Memo (Request for
Comments: 2501).

[4] Diane. Diane-projekt: Services in ad hoc networks
(Dienste in Ad-Hoc-Netzen).
http://wuw.ipd.uni-karlsruhe.de/DIANE
(zugegriffen am 19. September 2007), 2007.

[5] K. Fall and K. Varadhan. The ns Manual (formerly ns
Notes and Documentation). The VINT Project, a
collaboratoin between researchers at UC Berkeley,
LBL, USC/ISI, and Xerox PARC., 2008. http:
//www.isi.edu/nsnam/ns/ns-documentation.html.

[6] J.-B. Filippi and P. Bisgambiglia. JDEVS: an
implementation of a DEVS based formal framework
for environmental modelling. Environmental Modelling
and Software, 19(3):261-274, March 2004. Elsevier
Science.

90

AT2AI-6: Himmelspach J. et al.: Component based models and simulation experiments for multi-agent systems in
James 11

[7]

[10]

[11]

[12]

[13]

[14]

a) Simple User

3000 T T T -
515) 5 login o©
E 2500 oo intralane x
E 2000 | % inter lane +
[}
o O o

1500 | + "
7] +4+ e+ + 4+ +
S 1000 | b ® e T S PP et
o]
é 500

[
0 50 100 150 200
b) Activity User

3000 Hr—t T T
% login &
2 2500 intralane * 7
£ 2000 | inter lane + i
o} L4t
s | ++ 4 R s g NN
g 1500 S o %?;g%@’h EERER P
S 1000 o "
[}
4 500 T
= 0 I

0 200
¢) Social User

@ 3000 =T T "logi
5 ogin O
g 2500 intralane *
5 2000 inter lane +
o

1500
0 + o+ +
% 1000 ++ T+ ++ o+ + +
8 500
= 0 M I 1

100

time [minutes]

Figure 11: Number of network message with different user models.

J. M. Galan and L. R. Izquierdo. Appearances can be
deceiving: Lessons learned re-implementing axelrod’s
’evolutionary approach to norms’. Journal of Artificial
Societies and Social Simulation, 8(3), 2005.

M. Gierke. Coupling Autominder and James.
Diplomarbeit, Universitdt Rostock, Jan. 2005.

G. N. Gilbert. Environments and languages to support
social simulation. In Social Science Microsimulation,
pages 457-458, 1995.

S. Hanks, M. E. Pollack, and P. R. Cohen.
Benchmarks, testbeds, controlled experimentation,
and the design of agent architectures. AI Magazine,
14(4):17-42, 1993.

J. Himmelspach. Konzeption, Realisierung und
Verwendung eines allgemeinen Modellierungs-,
Stmulations und Ezperimentiersystems - Entwicklung
und FEvaluation effizienter Simulationsalgorithmen.
Reihe Informatik. Sierke Verlag, Gottingen, Dec. 2007.
J. Himmelspach and A. M. Uhrmacher. Sequential
processing of PDEVS models. In A. G. Bruzzone,

A. Guasch, M. A. Piera, and J. Rozenblit, editors,
Proceedings of the 3rd EMSS, pages 239244,
Barcelona, Spain, Oct 2006.

J. Himmelspach and A. M. Uhrmacher. Plug’n
simulate. In Proceedings of the Spring Simulation
Multiconference. IEEE Computer Society, March 2007.
P. H. M. Jacobs, N. A. Lang, and A. Verbraeck.

[15]

[16]

[17]

18]

Web-based simulation 1: D-sol; a distributed java
based discrete event simulation architecture. In WSC
’02: Proceedings of the 84th conference on Winter
simulation, pages 793-800. Winter Simulation
Conference, 2002.

M. Klein, M. Hoffman, D. Matheis, and M. Miissig.
Comparison of overlay mechanisms for service trading
in ad hoc networks. Technical Report TR 2004-2,
University of Karlsruhe, Oct. 2004. ISSN 1432-7864.
F. Kliigl and F. Puppe. The multi-agent simulation
environment SeSAm. In H. K. Biining, editor,
Proceedings des Workshops Simulation in
Knowledge-based Systems, volume tr-ri-98-194 of Reihe
Informatik, Paderborn, April 1998. Universitét
Paderborn.

S. Kurkowski, T. Camp, and M. Colagrosso. MANET
simulation studies: The incredibles. ACM’s Mobile
Computing and Communications Review, 9(4):50-61,
2005.

A. Martens and J. Himmelspach. Combining
intelligent tutoring and simulation systems. In

P. Fishwick and B. Lok, editors, Proceedings of the
International Conference on Human-Computer
Interface Advances for Modeling and Simulation
(SIMCHI’05), pages 65-70, New Orleans, USA, Jan.
2005. SCS, The Society for Modeling and Simulation
International.

91

AT2AI-6: Himmelspach J. et al.: Component based models and simulation experiments for multi-agent systems in
James 11

[19] N. Minar, R. Burkhart, C. Langton, and M. Askenazi.
The SWARM simulation system: a toolkit for building
multi-agent simulations. Technical report, Santa Fe
Institute, June 1996.

[20] OMG. Unified Modeling Language: Superstructure
version 2.1 (document ptc/2006-04-02).
http://www.omg.org/cgi-bin/doc?ptc/2006-04-02,
Apr. 2006.

[21] K. S. Perumalla. psik: A micro-kernel for
parallel /distributed simulation systems. In PADS "05:
Proceedings of the 19th Workshop on Principles of
Advanced and Distributed Simulation, pages 59-68,
Washington, DC, USA, 2005. IEEE Computer Society.

[22] M. E. Pollack and M. Ringuette. Introducing the
Tileworld: Experimentally Evaluating Agent
Architectures. In AAAI-90, pages 183-189, Boston,
MA, 1990.

[23] M. Rohl. Platform independent specification of
simulation model components. In SCS, editor, ECMS
2006, pages 220-225, 2006.

[24] M. Rohl, B. Kénig-Ries, and A. M. Uhrmacher. An
experimental frame for evaluating service trading in
mobile ad-hoc networks. In Mobilitit und Mobile
Informationssysteme (MMS 2007), volume 104 of Lect.
Notes Inform., pages 37-48, 2007.

[25] M. Rohl and A. M. Uhrmacher. Flexible integration of
XML into modeling and simulation systems. In
Proceedings of the 2005 Winter Simulation
Conference, pages 1813-1820, 2005.

[26] M. Rohl and A. M. Uhrmacher. Composing
simulations from xml-specified model components. In
Proceedings of the Winter Simulation Conference 06,
pages 1083-1090. ACM, 2006.

[27] M. Rohl and A. M. Uhrmacher. Composing
simulations from XMUL-specified model components. In
Proceedings of the Winter Simulation Conference,
pages 1083—-1090. ACM, 2006.

[28] Sun. Java architecture for xml binding (JAXB).
http://java.sun.com/xml/jaxb, 2005.

[29] D. S. Tan, S. Zhou, J.-M. Ho, J. S. Mehta, and
H. Tanabe. Design and evaluation of an individually
simulated mobility model in wireless ad hoc networks.
In Communication Networks and Distributed Systems
Modeling and Simulation Conference 2002, San
Antonio, TX, 2002.

[30] A. Verbraeck. Component-based distributed
simulations. the way forward? In Proceedings of the
18th Workshop on Parallel and Distributed Simulation
(PADS’04), pages 141-148, 2004.

[31] W3C. State chart XML (SCXML): State machine
notation for control abstraction.
http://www.w3.o0rg/TR/2007/WD-scxml-20070221,
2007. W3C Working Draft 21 February 2007.

[32] B. Zeigler, H. Praehofer, and T. Kim. Theory of
Modeling and Simulation. Academic Press, London,
2000.

92

AT2AI-6: Hirsch B. et al.: Agent Programming in Practise - Experiences with the JIAC IV Agent Framework

This paper describes the agent framework JIAC IV, and the
various projects it has been applied in. The projects were
industry-funded as well as research-oriented. Our aim is to
convey the particular requirements that followed from this

the framework. We describe the projects and the impact
that JIAC IV had on them, and conclude with an analysis
and the current state of affairs.

however also the case that even though a large number of
researchers and practitioners work on agents, a much smaller
number has managed to breach the wall between academia

Agent Programming in Practise —
Experiences with the JIAC IV Agent Framework

Benjamin Hirsch Stefan Fricke
Benjamin.Hirsch@dai-labor.de Stefan.Fricke@dai-labor.de
Olaf Kroll-Peters Thomas Konnerth
Olaf.Kroll-Peters@dai-labor.de Thomas.Konnerth@dai-labor.de

DAl Labor

Technische Universitat Berlin

ABSTRACT 2. JIACIV

link, and the consequences for the further development of services, and personal information.

JIAC 1V has first been developed in 1998 [7] and has seen
a number of revisions since. Its focus was initially on sup-
porting telecommunication applications, but it quickly got
used in areas as different as information retrieval, telematic

The JIAC IV agent framework supports the development
of multi-agent systems (MAS) using BDI agents on FIPA [15,
16] compliant platforms. JIAC IV has been implemented us-

ing the Java programming language. Two building blocks

INTRODUCTION nent system [25] and the JIAC Agent Description Language
Agent technology has been around for a number of years (JADL) [20]. The basic architecture of a JIAC-based appli-
now, and the still growing number and size of the various cation is summarised in the JTJAC MAS meta-model, which
workshops and conferences in the field show that the im- is shown in Figure 1.
portance of agents and related technologies is high. It is Based on this core architecture, the JIAC-framework also

and industry. There are commercial frameworks available, be discussed in the following sections:

and companies advertise the fact that they employ agent

technology, but in general it can be said that the impact
that agent technology has had on the market is less that it
could have been. Reasons given for this failure — or even
whether or not to call it a failure — vary wildly. We maintain
that one of the reasons is the missing interaction between
agent researchers and industry, sometimes leading to solu-
tions that are not applicable or usable in “real” applications.

agentframework that has initially been financed by Deutsche
Telekom, and was from the very beginning designed to cope
with industry requirements. In a number of projects of dif-

2.1 Agent and Service-model

JIAC 1V (Java Intelligent Agent Compontentware) is an

are written in the language JADL [20].

ferent domains, the framework has been adapted and further

and proceeds to describe various projects that have been im-

with a discussion of the experience made and the lessons

Jung, Michel, Ricci & Petta (eds.): AT2A1-6 Working Notes, From
Agent Theory to Agent Implementation, 6th Int. Workshop,
May 13, 2008, AAMAS 2008, Estoril, Portugal, EU.

refined. 2.1.1 Knowledge
This paper gives an overview over the JIAC IV agent
framework, with a high level view of the features (Section 2),

plemented using JIAC IV (Section 3). The paper concludes

learned during those projects (Section 4).
mapped to a subset of OWL [22].

constitute the basic agent architecture: the JIAC compo-

includes a list of enhanced features that cover the manage-
ment and security aspects as well as the software lifecycle,
i.e. engineering, deployment and runtime. All of these will

As can be seen in the JIAC MAS meta-model (Figure 1),
JIAC has explicit notions of goal, rule, plan, service, and
protocol. Each JIAC agent constitutes it’s own component
system and is able to accommodate any number of different
components that implement either the agents’ behaviour or
the agents’ capabilities. While some of these components
are implemented using Java-beans, our notion of compo-
nents also covers concepts like ontologies or scripts which

The central anchor for this component based approach is
the agents factbase, which stores the agents world model and
is accessible from all components. The knowledge stored
in this factbase is represented by ontologies that describe
the data and its relations. While these ontologies described
in JADL are less expressive than OWL-lite, they can be

Furthermore, as JIAC-agents are intended to operate in

Not for citation with an open world model.

93

open and dynamic environments, their knowledge represen-
tation is based on 3-valued logic [19] and therefore allow to
reason with uncertainty. Consequently, JIAC-agents operate

AT2AI-6: Hirsch B. et al.: Agent Programming in Practise - Experiences with the JIAC IV Agent Framework

Comparison Function

1
<<InstanceQf>>

Category

§H T
—

Platform PlatformType | Ontology g
<=<RunningOn=> “EUSESFF .
i ; Fact
} AgentProperties }
[[g [—
| <einsiancet> ‘ . .=
g 777777 Goal LocalAction
Agent AgentType Agéanole ’ Kn&wledge
1 . = Conversation
ReactionRule UserProtocol 1 Protocol
PlanElement .g —DE
g = ER PlanElement
’ Plan " ProviderProtocol |
" N I
MobileAgentType AgentBea‘n BeanProperty PlanElement I
<<invokes>> }
_____________ |
"Service 1 = ServicePlanElement
Figure 1: JIAC IV MAS meta-model
2.1.2 Acting compliant speech acts for communication, the communica-

Based on this knowledge representation and its factbase,
each agent employs a version of a BDI-cycle [8] in which
its state-goals are evaluated against the factbase and appro-
priate capabilities are selected and triggered as necessary.
These capabilities are called plan-elements and come in dif-
ferent versions. They can be local actions as well as ser-
vices and they can be implemented by either a JavaBean
or in JADL. Furthermore, plan-elements are allowed to in-
voke other plan-elements. However, as the system trans-
parently looks up services from other agents if there is no
local plan-element that can fulfil the goal, the difference be-
tween these plan-elements is more a matter of the preferred
implementation language and has no effects on the runtime
behaviour. Additionally, JIAC-agents can also deal with
simple rules that provide a quick reaction to changes in the
environment [20].

2.1.3 Semantic service selection

To support the dynamic and flexible selection of plan-
elements, the action- and service-descriptions all contain se-
mantic descriptions of preconditions and effects based on
the JADL-ontologies. This allows the agent to verify both,
whether an action is applicable and whether it reaches de-
sired effect. Furthermore, it enables a semantic service match-
ing, so that available services may be selected dynamically,
without prior adaptation from the developer.

As an enhancement to this action selection and the BDI-
cycle, JIAC agents support planning from first principles —
using a UCPOP algorithm [24] they can, if no appropriate
plan-element can be found, try and build a chain of services
that will lead them to the desired state of affairs. Note that
this goes further than just providing a number of pre-defined
plans that the agent can choose from. The agent’s execution
will first try and find plans or services that match his goal,
and only if it does not find any it will start planning.

2.1.4 Communication

As we have already mentioned, JIAC employs service-
based interaction. More specifically, while JTAC uses FIPA

tion between two JIAC-agents is always handled via service
calls. Every service call is wrapped in a so called meta-
protocol (which is essentially a modified FIPA Request pro-
tocol), which automatically takes care of security require-
ments, error handling, data exchange and negotiation pro-
tocols between agents. The actual exchange of messages
between agents during one service session however is not
restricted, as long as both agents can agree on a common
protocol.

While service provision always occurs between two agents,
the meta protocol also allows to precede the actual provi-
sion with a provider selection, where the service user can
request a service from many agents and use any suitable
protocol such as for example the contract net protocol [26]
to select the most suitable provider. It can here use the se-
mantic service description that each service has, including
pre-condition, effect, and QoS information.

2.2 Infrastructure - Management and Secu-
rity
Based on the core features we explained in the previous
section, JTAC employs a list of advanced infrastructure func-
tionalities which have proven differently useful in application
development:

2.2.1 Dynamic Components and Mobility

One of the signature features of JIAC IV is its ability to
exchange components during run-time. As stated earlier,
components may be actions, services, rules, ontologies, but
also so-called agent beans, i.e. Java components.

Furthermore, JIAC agents support strong mobility, mean-
ing that they can be moved between hosts during run-time
without having to stop execution — this presupposes how-
ever that the agents does not need software or services such
as databases that are only available at certain hosts.

These two ability of the framework allows the quick adap-
tation of systems and applications, as the agents can au-
tomatically find and use new components, or can indepen-
dently move to other hosts to e.g. reduce communication.

94

AT2AI-6: Hirsch B. et al.: Agent Programming in Practise - Experiences with the JIAC IV Agent Framework

2.2.2 Security

While the dynamicity that follows from the component
exchange and the strong mobility of agents can be quite
powerful, it is also a potential security threat in real world
systems. Therefore, JIAC contains elaborate security mech-
anisms on all levels. For example, it provides a public key
infrastructure interface to authenticate agents, and supports
encrypted communication between agents [9].

The Framework has been certified by the German Federal
Office for Information Security (BSI) following the Common
Criteria Level 3 [10]. This makes it worldwide the only agent
framework to be security certified.

2.2.3 Accounting Features

As a further extension to the service mechanism, JIAC
IV provides a management interface through which complex
accounting and tariff schemes can be implemented [18]. This
is important when agents move into the mainstream and
offer services to other agents, and want to provide intelligent
and dynamic billing methods. The accounting features have
been tested in the course of the project Berlintainment [28].

2.3 Tools and Methodology

One last, but nevertheless important aspect of JIAC is its
iterative methodology (as shown in Figure 2) that supports
large projects by not only defining analysis and design but
also including methods to deal with customers and team
interaction. The methodology has been applied and refined
in numerous projects that we have done at the DAI Labor
with industrial and research partners.

]

. y_ -
Requirements —~ @ &= Deployment
Management
. Deployment
Requirements Model
Model
A AR AR
MAS Role MAS Integration
Architecture Model
/! 0
// _—F u | -
)‘/ Model W\ Code ™7 ™ —
» »

Role Implementation

Modeling

System and
Ul Derivation

Figure 2: JIAC methodology - iterative and incre-
mental process model in SPEM notation.

Supplementary with this methodology, JTAC comes with
its own IDE which is implemented as Eclipse' plugin [27]. Tt
provides textual and graphical editors for all parts of agent
programming, including an ontology editor, an agent role
editor, a knowledge builder, a repository for agents, and
more. The IDE has extensive help functionality and has a
built in tutorial to help the user get acquainted with JIAC
and JADL.

3. PROJECTS

During last ten years we have used JIAC in many research
projects in different domains such as personalised informa-

"Mttp://www.eclipse.org

tion services, security, healthcare, entertainment, among oth-
ers. In the following, we describe some of these projects and
the experiences we made.

3.1 URLAUB

The goal of the project URLAUB (German for holiday),
running from September 2001 until August 2002, was a per-
sonalised system for for holiday planning. Unlike traditional
booking systems, URLAUB created recommendations based
on user preferences for climate, lodging, activities, and so
on. These preferences were stored in a profile which was
then used for providing future recommendations as well as
for comparisons with other users’ profiles. An agent-based
approach was taken and combined with advanced filtering
techniques in order to integrate a number of different travel
agencies and related travel information sources, such as cli-
mate data, politics, and cultural or sports characteristics.
Additionally, a device independent user interface, adaptive
user management, the ability to pre-book, as well as feed-
back mechanisms set the system apart from standard travel
booking sites.

3.1.1 Setup and Methodology

The task-oriented JTAC methodology was applied to the
analysis and design, giving rise to seven task areas with a
total of about 90 identified tasks, comprising, among others,
the access and monitoring of remote sources, the managing
of user profiles, user interfaces and devices, the processing of
travel requests, information filtering as well as notification
tasks. 17 roles were identified and subsequently mapped
onto agent types. Each agent type combined a number of
related tasks, identified through analysis of interaction be-
tween tasks. Non-functional requirements such as availabil-
ity and reaction time was also taken into consideration. A
total of 65 services where identified and assigned to 13 agent
types. During deployment, several instances of each agent
type were created in order to avoid bottlenecks, and critical
functionality was distributed over several platforms running
on different servers. In the first release, each user was as-
signed a unique user agent managing her preferences and
recommendations.

3.1.2 Lessons Learned

The usage of agents to model the domain lead to a scal-
able and manageable system. New users are added by creat-
ing new user agents for them. The flexible service delivery
schema made it easy to install redundant filtering agents
for efficiency purposes being necessary after the number of
users increased from 20 in the beginning to more than 200.
However, with an increasing number of users we noticed a
significant slow down in the overall answer behaviour of the
system. This was mainly caused by a huge number of per-
sonal agents (one per user) that were running but inactive
most of the time. The intuitive decision to provide one agent
for each user proved to be a rather problematic design deci-
sion.

By suspending non-active agents automatically, the load
on the system could be reduced to a minimum. The early
overhead of modelling travel and profile data was compen-
sated as soon as the system has been expanded with new
features, travel agents, and information sources.

Another issue was the connection between user interfaces
and the underlying system, as the user interface was event

95

AT2AI-6: Hirsch B. et al.: Agent Programming in Practise - Experiences with the JIAC IV Agent Framework

oriented rather than goal oriented, and the synchronisation
of the two models proved difficult.

3.2 PIA

PIA (Personal Information Agent) [4] is an ongoing project
that started in 2003 with the aim to create a complete agent
based solution for the personalised provision of information
and news. Depending on an individual’s personal interests
and habits the systems provides relevant information at the
right time. For example, it provides news in the morning and
entertainment and event related information in the evening.
Different filtering methods such as content-based and col-
laborative filtering [6] were implemented using agents. Ac-
cording to the particular needs, information is brokered to
users using SMS, MMS, e-mail, or HTTP.

3.2.1 Setup and Methodology

The complexity was broken down into three tiers, one for
the task of information extracting from different — typically
external — sources, the other for information filtering, and
the third for user personalisation and the provisioning of
information. A highly distributed system with hundreds of
agents — most of them being extractor agents — running on
approximately 30 agent platforms was built. The most im-
portant part was the co-ordination filtering framework which
resides on the filtering layer. Filtering agents utilising dif-
ferent methods of content-based and collaborative filtering
techniques compete against each other in order to fulfill the
users’ information needs. So-called filter manager agents are
monitoring, and controlling these filtering agents depend-
ing on information about the system state and estimations
about the most promising filtering strategies. Additionally,
rewards are computed on the basis of historical data, sig-
nificance, as well as the users’ feedback. As a result, the
fitness of a filtering agent concerning a given information
request changes over time. This yields to an adaptation of
the system over time [5].

3.2.2 Lessons Learned

The PIA project is still ongoing, and has had a num-
ber of major revisions since its inception. The first project,
while showing the power of using different agents to imple-
ment a variety of filtering and extraction functionalities, also
showed the weaknesses of the system, some of which were
conceptual, others related to the engineering approach. For
example, extraction and filtering algorithms were computa-
tionally so expensive that they practically shut down agent
communication on their nodes, leading to erratic behaviour
as agents would not receive messages in time and there-
fore cancelled service calls. Different strategies of using the
power of the agent paradigm, including using JIAC’s plan-
ning capabilities to find good filtering strategies were work-
ing, but too slow for a production environment. The reac-
tion time of the system grew with the number of users using
the system, and was unacceptable even with a low number
of concurrent users (a dozen). Another bottleneck was the
directory facilitator (DF) implementation, as the amount of
read and write calls lead to the system literally taking hours
to start up. The problem of scalability and responsiveness
could be traced back a combination of generic Java problems
with prioritising threads on the one hand, and the design of
JIAC IV to make heavy use of the DF as well as exchanging
a lot of (often redundant) data within the meta protocol.

Another important problem was related to the operational
availability and determinism. On the one hand the adap-
tation mechanisms made the system intentionally nondeter-
ministic — leading to a high probability that an information
request executed at two different time points would lead to
different results. But often obscure results occurred as a con-
sequence of unavailable content sources or crashed agents.
In order to manage the large amount of agents, manage-
ment functionalities were implemented and integrated into
the agents, allowing for example automatic re-start in case of
long timeouts. Also, administrators may manipulate these
managed entities by use of a management console.

The current system, while still based on the idea of dis-
tributed filtering and extraction modules, is strongly limited
in the number of agents. The dynamic delegation of filtering
tasks to suitable agents in combination with agent mobility
for load balancing purposes proved to be unsuitable for real-
time behaviour. Therefore, once the co-ordination schemes
were well understood, we concentrated related functionali-
ties into one agent. Around 50 extractor agents perform the
most crucial work of updating the content database which
is now located on one server. All the filtering tasks are now
controlled by one filtering agent which has the knowledge to
decide which of the methods to apply for a given informa-
tion request. lL.e., all co-ordination that has been subject to
inter-agent co-ordination mechanisms in the versions before,
are now subject to internal control of an agent.

3.3 Common Criteria Certification

In order to establish whether the security features of JTAC
are indeed industry grade, we did a security certification fol-
lowing the Common Criteria [1, 2, 3]. The Common Criteria
are a worldwide accepted security standard in information
technology. A defined process is used to check for secu-
rity holes and issues. The security features are checked by
independent reviewers and certified by an accredited insti-
tute. JTAC IV has been tested for security leaks by reviewers
of T-Systems and certified by the Bundesamt fiir Sicherheit
in der Informationstechnik, the federal office of IT security.
The fact that the whole process took about two years and
cost more than one million euros gives an idea of the scope
of the certification process.

The security certification of JTAC IV was special in two
respects. On the one hand, our research results had to be
adapted to industry standards. On the other hand, it was a
learning experience not only for us but also for the reviewers
and certification institution because it was the first time that
they had to certify a product with generic security features,
rather than a concrete application.

3.3.1 Setup and Methodology

During a certification process, the reviewers examine the
target product according to the criteria defined by the Com-
mon Criteria. They examine weaknesses within the func-
tionality of the system, but also within the development
environment and lifecycle of the product. The criteria are
identical for all product classes and only differ in the evalu-
ation level (also called EAL). The EAL defines the level of
detail with which the criteria have been examined (For ex-
ample, checking source code versus only checking use-cases).
The choice of evaluation level reflects how detailed the eval-
uation has been, and has to be mentioned together with the
certification. In the case of JIAC IV we chose EAL 3. This

96

AT2AI-6: Hirsch B. et al.: Agent Programming in Practise - Experiences with the JIAC IV Agent Framework

L 4
(o]
Y - Local Platform
LDAP ication | B
Application . .

Services

User Interface

Q(i [W g -
b B B I

.........................

Java Virtual Machine

() =

Remote Platform

Operating System

Hardware

Figure 3: The target of evaluation

means that the reviewers executed tests independently from
us, and checked the platform as well as the development
environment for weaknesses on a very detailed level.

Because the certification process examines all parts of the
product for weaknesses, we used a scaled down version of the
agent framework, as shown in Figure 3. If we had not re-
duced the functionality of the framework, the effort needed
to execute the certification would have been too much, not
only for us but also for the reviewers and certification au-
thority. This however was the result of the two-year long
process of the certification, as we originally had planned to
certify the whole framework. While the reduction was made
in order to make the associated costs manageable, the effort
involved in scaling down the framework was quite extensive
too. For example, some documents describing features like
high-level design, security targets, and more, had 300 itera-
tions before the reviewers where content. The large amount
of iterations between us and the reviewers was the result not
only of the adaptation of the target platform, but also the
problem of adapting the fairly high-level descriptions of the
Common Criteria to our framework. Generally, only static
security targets are certified, so that the dynamic aspect of
JIAC IV was something that forced the reviewers to adapt
the criteria.

3.3.2 Lessons Learned

There are a number of remarks that need to be made here.
On the one hand, it appeared that the requirements of se-
curity targets in the “real world” are not easily adapted to a
research environment. On the other hand, many processes
generally used had to be adapted to cater for the concept of
generic security, as they did not cover the special cases. For
example, the requirement of having tests cover 100% of the
code is simply not possible with generic security [17]. Gen-
erally however we can state that the security functionality of
our framework has been certified according to internation-
ally accepted standards. Also some of the requirements that
are given in an industry setting but that do not necessarily
make sense in a research environment have been adapted by
our institute. For example, we learned that extensive tests
do not necessarily mean an increase in time for the imple-
mentation, but can actually shorten the development time
and make the product more stable.

In summary, we learned the following from the certifica-
tion process:

e The JIAC IV agent framework can cope with interna-

tional industry standards and requirements.

e The transfer of research results into industry was quite
hard.

e Commercial security requirements can be met by agent
frameworks.

e Common processes and best practices of quality as-
surance make sense and support a product design that
has an industrial focus.

3.4 Nessi

A currently running project of our lab is the Network Se-
curity Simulator (Nessi) [11]. In the context of this project,
devices within a large telecommunications network and pos-
sible threats are simulated. Using the simulator, the be-
haviour of attackers, threats, and possible counter measures
can be evaluated.

3.4.1 Setup and Methodology

While the initial model used one agent per device for the
simulation, the current implementation maps subnets onto
agents. This change in the design was necessary to allow the
system to scale to large networks of thousands of devices.
Currently we simulate systems with about 100 subnets and
about 3500 single devices.

One chief advantage of using agents in this project is the
ability to simulate life cycles of the devices very easily. Fur-
thermore, the abilities of agents support the requirements of
the modelling of the simulated devices.

3.4.2 Lessons Learned

Depending on the target application, the “obvious” map-
ping of devices to agents is not necessarily the smartest one.
Using aggregations allows to scale the system without loos-
ing the advantage of agents or having less usable results.

4. CONCLUSION

There were a number of other projects implemented using
JIAC 1V, the ones above give a reasonable overview over the
type of projects, as well as the experience we made. In this
section we will try and summarise the pros and cons of using
agents in general, and JIAC IV in particular.

One recurring theme that maybe did not come out clearly
in the project descriptions was the disconnect between de-
signing the system, and providing convincing and easy to
use user interfaces (UI). There are two issues here that need
to be addressed. The first is that for industrial projects, the
presentation layer is often as important as the underlying
framework — it is therefore not sufficient to provide func-
tional but unpolished interfaces. This is nothing particular
to agent based systems (other than sometimes the lack of
responsiveness if a web-query requires different services to
be executed. While the communication overhead does con-
tribute to the high latency, it often comes with the territory
of complex applications.) The second issue is more relevant
to agents, and pertains to the actual human-computer inter-
action. Within a system here different agents interact and
require user input in different situations, where users should
take advantage of the flexibility of the system, providing a
UI that allows for this flexibility while being easy and intu-
itive to use is a very difficult problem. Different paradigms,

97

AT2AI-6: Hirsch B. et al.: Agent Programming in Practise - Experiences with the JIAC IV Agent Framework

namely the task-oriented versus the goal oriented paradigm
clash, and there are no easy ways to combine the two.

Another common complaint was the need to use JADL to
program agents. Developers that were not familiar with the
agent concept tended to write trivial services and plans, and
instead moved the system logic into agent beans, thereby
effectively circumventing advantages that JIAC IV provided
in lieu of being able to program in their familiar language
Java. We have tried to make the use of JIAC as simple
and intuitive as possible by providing powerful tools, but
the tools do not take away the fact that developers need to
understand the agent- and service paradigm and be familiar
enough with logical expressions to design pre-conditions and
effects.

When implementing projects with dozens or hundreds of
agents running on a number of platforms, another issue
showed. While the distribution of agents allowed for scalable
and flexible systems, the problem of deployment — getting
everything running in the first place — was and is an of-
ten neglected problem. In most of our projects we put a
lot of effort into integration and deployment management
to ensure that any system built would be executable on the
target system. Typical issues include the provision of all rel-
evant dependent libraries (often different developers would
use slightly different and slightly incompatible versions of
the same library), adapting the system to the target network
(including the configuration of firewalls and subnets), and
the compatibility across different operating systems. An-
other side effect of large systems was that it became a chal-
lenge to keep track of running and dead agents over different
platforms. Eventually we implemented a platform monitor
that allowed the monitoring of agents.

Another issue in the context of scalability is the applica-
tion of methodologies to the problem at hand. While often
it is straightforward and elegant to map entities directly to
agents, we found that when scaling application to serve hun-
dreds or thousands of users, or incorporate a large number of
functionalities, scalability broke down (in terms of number
of agents as well as communication overhead). In a number
of projects we therefore ended up mapping aggregations of
entities to agents in order to keep the system load manage-
able.

One very prominent feature of JIAC IV, the ability to
exchange components of agents during run-time, was never
used. Also the planning component, that allowed agents to
build plans from first principle never made it into a running
project, mainly because the requirements were known, and
there was never enough time to implement alternative ser-
vice solutions that would have been needed to actually find
alternative plans. We did however employ the planning in
small example projects.

It must be said however that in spite of all the mentioned
issues and problems, we found that JTAC IV has met indus-
try standards and has successfully been applied in many dif-
ferent domains, ranging from healthcare and entertainment
to information retrieval and personalisation to simulation
and high security applications.

4.1 JIAC TNG — the Next Step

Based on our experience of using JIAC IV in large industry-
driven projects, we are currently working on the next ma-
jor release. There, a number of changes are introduced.
First of all, we defined a number of agent types of different

complexities to cater for the wish of being able to use sim-
ple lightweight agents together with intelligent goal-oriented
agents in one system. One of the reasons for performance
issues in our projects was the fact that even for simple reac-
tive tasks, a developer had to employ a goal oriented agent,
which of course required more resources than necessary. Ad-
ditionally, we will allow a simple message based communica-
tion as an alternative to the service metaphor, because even
though the meta-protocol proved quite useful, it was too
much overhead for certain situations (e.g. simple inform-
type messages).

Furthermore, we want to rework some of the core imple-
mentations of JIAC in order to achieve better stability and
performance. While we think that the concepts and ideas
of JTAC IV are mostly still good and appropriate, much has
happened on the technical level. There are for example new
libraries for component systems or threading, and we think
that these will greatly improve the stability of our agent
platform.

Our experience in recent projects is that a lot of empha-
sis is put on the aspect of composability of functionality on
a very abstract level. Following the service oriented archi-
tecture approach [14] and business process modelling (for
an overview see e.g. [21]), we are working on a mapping
from BPMN (Business Process Modelling Notation) [23] to
our agent framework [13, 12] in order to allow for high-level
abstract design of an agent system that later can automat-
ically be transformed into a (more or less) running system.
Three current projects explicitly focus on the “easy service
creation” and the support of powerful tools to connect sim-
ilarly powerful services to a workflow. Goal is to allow for
a modelling of systems on a level that is abstract enough to
be easily understandable yet flexible enough to be scalable
and adaptive.

While we do emphasise the workflow aspect of applica-
tions, we do see the need to goal orientation, and are cur-
rently working on a language that allows the seamless in-
tegration of services, semantics, and goal oriented program-
ming.

5. REFERENCES

[1] Common Criteria, part 1: Introduction and general
model, version 2.1, Aug 1999.

[2] Common Criteria, part 2: Security functional
requirements, version 2.1, Aug 1999.

[3] Common Criteria, part 3: Security assurance
requirements, version 2.1, Aug 1999.

[4] S. Albayrak. The role of Al in shaping smart services
and smart systems. In KI 2007: Advances in Artificial
Intelligence, volume 4667 of LNAI, page 1. Springer,
2007.

[5] S. Albayrak and D. Milosevic. Situation-aware
coordination in multi agent filtering framework. In
C. Aykanat, T. Dayar, and 1. Korpeoglu, editors, The
19th International Symposium on Computer and
Information Sciences (ISCIS 04), Antalya, Turkey,
volume 3280 of LNCS, pages 480—-492. Springer, 2004.

[6] S. Albayrak and D. Milosevic. Strategy coordination
approach for safe learning about novel filtering
strategies in multi agent framework. In D. Yeung
et al., editors, Advances in Machine Learning and
Cybernetics, volume 3930 of LNAI pages 30—42.
Springer Berlin, 2006.

98

AT2AI-6: Hirsch B. et al.: Agent Programming in Practise - Experiences with the JIAC IV Agent Framework

(7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

S. Albayrak and D. Wieczorek. JIAC - an open and
scalable agent architecture for telecommunication
applications. In S. Albayrak, editor, Intelligent Agents
in Telecommunications Applications - Basics, Tools,
Languages and Applications. IOS Press, Amsterdam,
1998.

M. E. Bratman. Intentions, Plans, and Practical
Reason. Havard University Press, Cambridge, MA,
1987.

K. Bsufka. Public Key Infrastrukturen in
Agentenarchitekturen zur Realisierung dienstbasierter
Anwendungen. Phd thesis, Technische Universitéit
Berlin, 2006. http://nbn-resolving.de/urn:nbn:de:
kobv:83-opus-13536.

Bundesamt fiir Sicherheit in der Informationstechnik.
BSI-DSZ-CC-0248-2005 for Java Intelligent Agent
Componentware IV Version 4.3.11 from DAI-Labor
Technische Universitit Berlin. Certification Report
BSI-DSZ-CC-0248-2005, Bundesamt fiir Sicherheit in
der Informationstechnik, Jan 2005.

R. Bye, S. Schmidt, K. Luther, and S. Albayrak.
Application-level simulation for network security. In
First International Conference on Simulation Tools
and Techniques for Communications, Networks and
Systems (StmoTools), 2008.

H. Endert, B. Hirsch, T. Kiister, and S. Albayrak.
Towards a mapping from BPMN to agents. In

J. Huang, R. Kowalczyk, Z. Maamar, D. Martin,

I. Miiller, S. Stoutenburg, and K. P. Sycara, editors,
Service-Oriented Computing: Agents, Semantics, and
Engineering, volume 4505 of LNCS, pages 92—106.
Springer Berlin / Heidelberg, 2007.

H. Endert, T. Kiister, B. Hirsch, and S. Albayrak.
Mapping BPMN to agents: An analysis. In

M. Baldoni, C. Baroglio, and V. Mascardi, editors,
Agents, Web-Services, and Ontologies Integrated
Methodologies, pages 43-58, 2007.

T. Erl. Service-Oriented Architecture: Concepts,
Technology, and Design. The Prentice Hall
Service-Oriented Computing Series from Thomas Erl.
Prentice Hall, Indiana, USA, August 2005.
Foundation for Intelligent Physical Agents. FIPA
Agent Communication Language Specifications, 2002.
Foundation for Intelligent Physical Agents. Interaction
Protocol Specifications, 2002.

T. Geissler and O. Kroll-Peters. Applying security
standards to multi agent systems. In Proceedings of the
First International Workshop on Safety and Security
in Multiagent Systems, Sasamas’04, AAMAS’04, 2004.
J. Keiser, B. Hirsch, and S. Albayrak. Agents do it for
money — accounting features in agents. In

M. Dastani, A. E. F. Segrouchni, A. Ricci, and

M. Winikoff, editors, ProMAS 2007 Post-Proceedings,
volume 4908 of LNAI, pages 44-58. Springer
Berlin/Heidelberg, 2008.

S. C. Kleene. Introduction to Metamathematics.
Wolters-Noordhoff Publishing and North-Holland
Publishing Company, 1971. Written in 1953.

T. Konnerth, B. Hirsch, and S. Albayrak. JADL — an
agent description language for smart agents. In

M. Baldoni and U. Endriss, editors, Declarative Agent
Languages and Technologies IV, volume 4327 of LNCS,

21]

22]

[23]

[24]

[25]

[26]

[27]

28]

pages 141-155. Springer Berlin / Heidelberg, 2006.

F. Lautenbacher and B. Bauer. A survey on workflow
annotation & composition approaches. In M. Hepp,
K. Hinkelmann, D. Karagiannis, R. Klein, and

N. Stojanovic, editors, Semantic Business Process and
Product Lifecycle Management. Proceedings of the
Workshop SBPM, volume 251 of CEUR-WS, 2007.
D. Martin, R. Hodgson, I. Horrocks, and P. Yendluri.
Owl 1.1 web ontology language, 2006.
http://wuw.w3.org/Submission/2006/10/.

Object Management Group. Business Process
Modeling Notation (BPMN) Specification. Final
Adopted Specification dtc/06-02-01, OMG, 2006.
http://www.bpmn.org/Documents/
OMGFinalAdoptedBPMN1-0Spec06-02-01.pdf.

J. S. Penberthy and D. Weld. UCPOP: A sound,
complete, partial-order planner for ADL. In
Proceedings of Knowledge Review 92, pages 103—-114,
Cambridge, MA, October 1992.

R. Sesseler and S. Albayrak. JTAC IV - an open,
scalable agent architecture for telecommunications
applications. In Proceedings of the First International
NAISO Congress on Autonomous Intelligent Systems
(ICAIS 2002). 1ICSC Interdisciplinary Research, 2002.
R. G. Smith. The contract net protocol: High-level
communication and control in a distributed problem
solver. IEEE Transactions on Computers,
(C-29(12):1104-1114, Dec 1980.

E.-O. Tuguldur, A. Hefler, B. Hirsch, and

S. Albayrak. Toolipse: An IDE for development of
JIAC applications. In Proceedings of PROMAS0S:
Programming Multi-Agent Systems, 2008.

J. Wohltorf, R. Cissée, and A. Rieger. Berlintainment:
An agent-based context-aware entertainment planning
system. IEEE Communications Magazine,
43(6):102-109, June 2005.

99

AT2AI-6 Working Notes

100

AT2AI-6: Innocenti B. et al.: Resource Coordination Deployment for Physical Agents

Resource Coordination Deployment for Physical Agents

*
Bianca Innocenti
Institut d’Informatica i
Aplicacions
Universitat de Girona
Girona, Spain

ABSTRACT

When developing a multi-agent architecture for controlling
a single robot, as the one described here, agents share re-
sources and a coordination mechanism is required to solve
possible resource usage conflicts. Moreover, some the re-
sources involved in a robot act in the physical world, and
the agent exchange on the resource usage can cause some
disruptions on the physical robot behavior. So, in addition
to coordination method, a mechanism to effectively imple-
ment the resource exchange from one agent to another one is
needed. In this paper we present a methodology to achieve
a resource exchange among different agents that mitigates
any possible disruption in the physical robot behavior. The
methodology comprises a Sugeno fuzzy system to determine
the time window interval required to perform an smoothing
change. Our methodology has been tested in a Pioneer 2DX
of ActivMedia Robotics.

Keywords

Distributed coordination, physical resource exchange, au-
tonomous robot architecture

1. INTRODUCTION

There is an increasing interest on the use of Agent Tech-
nology for developing robots as physical agents [14, 15, 19,
23]. In the majority of the approaches a multi-agent system
model a collection of robots. There are some examples in
building multi-agent systems for controlling a single robot,
too. For example, in [20] a multi-agent architecture is pro-
posed to control a single robot in which two types of agents
are distinguished: elemental agents, with basic skills, and
high-level agents, responsible for integrating and coordinat-
ing various elemental agents. All the agents in the Neves
approach deal with reactive robot global capacities. In [1], a
multi-agent system is proposed for the navigation system, in
which five agents (map manager, target tracker, risk man-
ager, rescuer, and communicator) are coordinated by means

*This work was partially supported by the Spanish MEC
Project DP12006-09370 and by the DURSI Automation En-
gineering and Distributed Systems Group, 00296.

Jung, Michel, Ricci & Petta (eds. AT2A1-6 Working Notes, From
Agent Theory to Agent Implementation, 6th Int. Workshop,
May 13, 2008, AAMAS 2008, Estoril, Portugal, EU.

Not for citation

Beatriz Lopez
Institut d’Informatica i
Aplicacions
Universitat de Girona
Girona, Spain
bianca.innocenti@udg.edu beatriz.lopez@udg.edu

Joaquim Salvi
Institut d’Informatica i
Aplicacions
Universitat de Girona
Girona, Spain
joaquim.salvi@udg.edu

of a bidding mechanism to determine the action to be carried
out.

Multi-agent approaches facilitate the robot development
with higher abstract level modelling capabilities than tradi-
tional single-agent, module-based approaches [23]. Today’s
robots still exhibit simple behaviors compared with humans,
and their ability to perform high level reasoning and coop-
eration is limited [19]. AI has matured enough to offer-
ing planning techniques, adaptation and learning methods.
Modelling all such cognitive capabilities in a single agent-
based robot architecture seems an unfeasible task, and the
multi-agent approach offers a new way of combining such Al
techniques. A multi-agent architecture provides modularity,
distributedness, flexibility and robustness: agents can be
added, changed or modified without caring about the other
agents [16].

As any robot architecture, resource usage is a key point.
While most of the traditional single-agent approaches cen-
tralize their use, multi-agent technology offers both central-
ize and decentralize methods for resource sharing. For exam-
ple, Neves [20] follows a centralized approach while we follow
a decentralized one. In any case, a coordination mechanisms
is required so that agents use the shared resources without
conflict.

The particularity of the robot case, however, remains on
the fact that we are dealing with physical resources, and
special attention should be paid when the resource changes
from one agent to another one. That is, let us suppose that
an agent A is using the robot motor resource, maintaining
the robot at a fast speed to the North coordinate. Then,
a second agent B, after coordination, gets the robot motor
resource. Agent’s B goal is to move the robot towards the
West and at a low speed. Thus, changing the motor resource
from A to B could cause a disruption on the robot action.
For example in the experiment shown in Figure 1 there are
two agents governing the robot’s movement, the avoid ob-
stacle agent (avoid) and the go to a point agent (goto). The
robot’s initial position is (z;,y;) = (0,0)m and the destina-
tion point is (z4,ye) = (5,0)m. The trajectory described by
the robot is shown, as well as the agent that is controlling
the robot movement during the trajectory execution. We
can see an abrupt robot movement as a consequence of the
resource exchange between the two agents of the architec-
ture at © = 2.4m approximately (see circle in the figure). Of
course this could be necessary in dangerous situations, but
probably this is not a desired behavior in most of the cases.
More often, the agent resource exchange should not affect
the robot performance.

101

AT2AI-6: Innocenti B. et al.: Resource Coordination Deployment for Physical Agents

0.5F

¥im]
=]
L

051 Goto

Awvoid Goto

Goto

Awoid

1] 05 1 15 2 25 3 35 4 45 5
xim]

Figure 1: Example of abrupt resource control ex-
change.

From our understanding, there is a current gap between
agent theory and agent implementation regarding this is-
sue of deploying coordination agreements in the physical
world. Particularly in [12] we present the multi-agent ro-
bot architecture that provides a coordination mechanism to
deal with shared resources, but suffers from such a prob-
lem. The contribution of the current paper is to introduce
a resource exchange methodology in order to cover this gap
and that complements and improves our previous work. Re-
garding theory, we have followed the MaSE methodology to
describe our architecture.

This paper is organized as follows. First, we describe in
section 2 the multi-agent architecture we have used for phys-
ical agents as mobile robots. Then, in section 3 we explain
the coordination deploy methodology to avoid abrupt robot
behavior changes. In section 4 we show the results we have
obtained when implementing the method on a multi-agent
architecture for controlling on a Pioneer 2DX of ActivMe-
dia Robotics. Finally, we end with some related work and
conclusions.

2. AUTONOMOUS ROBOT MULTI-AGENT
ARCHITECTURE WITH DISTRIBUTED
COORDINATION

Our architecture, ARMADiCo, (Autonomous Robot Multi-
agent Architecture with Distributed Coordination) has been
designed to be a general purpose mobile robot architecture
such that it can be applied to a wide range of mobile robots.
In this paper we illustrate our architecture with the Pioneer
2DX robot but in a near future we will test it with other ro-
bots that are in our laboratory. The multi-agent framework
allows an easy customization of the architecture to a given
robot, by adding the appropriate agent that represents the
real robot.

Agent coordination in the architecture is distributed, thus
from the micro level (individual agents) emerge a macro level
behavior (global system behavior) [3]. Engineering of emer-
gence systems is still an open issue. Recent studies argue in
favor of the use of a scientific methodology for their design
[6]. This methodology distinguish two phases: theory and

practice. Theory follows a top-down design: goals to roles
and then to local behaviors. In this phase, current agent
methodologies can help [3]. On the other hand, practice
is a top-down process: from microscopic behavior, to phe-
nomena and then to macroscopic behavior. Even though
experimentation is the only known tool for this phase, sev-
eral alternatives as information flows, design patterns and
others have been proposed to understand the global system
behavior [4].

From our experience, we have used the MaSE [5, 25]
methodology in the first phase. MaSE is a UML based
methodology that has some coincidences with the informa-
tion flows approaches [4] in order to help in the second ex-
perimentation phase. MaSE proposes several steps in the
definition of a multi-agent system. In Figure 2 the result-
ing agent class diagram is shown, as well as the messages
sent from and received by each agent. This diagram does
not include, for the sake of the figure complexity, the ba-
sic FIPA agents, as the Directory Facilitator (DF) agent,
but they are considered in the architecture. Finally, when
running our agents, we can check how, from the individual
agent implementation arises the adequate robot behavior.

For the sake of length we focus on the remaining of this
section on the description of two possible agent interactions
with conflicting resources, and then on the explanation of
the distributed coordination mechanism defined in the ar-
chitecture.

2.1 Use cases

In order to illustrate the interactions of the agents in order
to achieve a global robot behavior, we present two possible
use case of the whole architecture, identifying some possi-
ble conflicting situations related to the utilization of shared
resources.

2.1.1 Case 1. Planning a robot movement.

The task planning agent receives from the interface agent
missions to achieve. In order to conduct them, it has a set
of procedures similar to PRS [7], in which missions are de-
composed into a set of tasks. Eventually, one of this tasks
could involve the re-positioning of the robot. So, the task
planning agent request to the path planning agent the opti-
mal (in some aspect) trajectory from the current location to
the desired one (see RequestPath arrow at the top of Figure
2). The path planning agent responds with the trajectory
and the energy needed to reach the destination point (see
InformPathEnergy arrow at the top of Figure 2).

Moreover, the task planning agent sends this informa-
tion to the battery charger agent (see RequestViability ar-
row). In turn, this latter agent asks the path planning agent
for a trajectory from the desired location to closest bat-
tery charger point (RequestPath arrow from battery charger
agent to path planning agent). When the battery charger
agent receives the answer from the path planning agent (In-
formPathEnergy arrow), it knows if there is enough energy
for achieving the target position and returning back to the
charger point (see InformViability arrow). In case there is
not enough energy, the battery charger agent informs about
the corresponding risk to the task planning agent. Thus, the
task planning agent could change the task or not; however,
in the latter case, it is assuming the possibility that the bat-
tery charger interrupts the task execution, as shown in the
next scenario. Other alternatives, as merging trajectories

102

AT2AI-6: Innocenti B. et al.: Resource Coordination Deployment for Physical Agents

ReqguestPath

FathPlanning

—

InformPathEnergy

Informmission

Interface - Re

TaskPlanning

InformPathEnery
i RequestPath
urceCoordination

Reqt ian ¥

Infarmviability
Reguestviabil ity

BatteryCharger

InformCurrentLocation &

ResourceCoordination -

. InformBatteryLevel

Localization Informcurrentl ocation

InformTrajectary
RequestTrajectary

InfarmCurrentLacation

InformTrajectory
RequestTrajectory

InformTrajectany

InformCurrentP osition

InformTrajectory
ResourceCoordination

BatterySensor

GoTa

GaThrough

InfarmCoordinatesUpdate InformClosegtsideOblect

Sonar

InformclosestObjects

ResourceCoordination

InfarmCurrentSpeeds

ResourceCoordination

oordination ensorReading

Avoid
InformCurrentSpeads

/‘ InfarmEurrentPasition

J——

InformCurrentSpeeds
nfarmSensarReading

Raobot

Encoder InformCuyéntPosilior/

InformSensorReading
- InformCurrentPositiony

Figure 2: Agent Class Diagram. Boxes are agents and arrows indicates message flow (from an agent and to

an agent).

that search a charger point while going to the destination
point, are also considered.

As a summary, the task planning, battery charger and
path planning are the agents involved in this scenario. Par-
ticularly, the path planning agent can be considered as a
shared resource between the task and battery charge agents,
and it provides the trajectory and energy required to move
the robot to a destination point.

2.1.2 Case 2. Moving the robot.

Once the task planning agent knows the required trajec-
tory T, to reach a destination position, it sends this trajec-
tory to the goto and gothrough agents (see InformTrajectory
and RequestTrajectory outgoing arrows of the task planning
agent in Figure 2). This trajectory T is a sequence of points
Pi,...,Dpn to reach.

The goto agent, who knows the current position and head-
ing (InformCurrentPosition arrow outgoing from the en-
coder agent), calculates the linear and angular velocities
necessary to reach the first point of the trajectory, pi. The
gothrough agent does the same calculations but considering
obstacles at the side of the robot (in the case that the ro-
bot is in a hallway or narrow place). On the other hand, the
avoid agent is constantly looking for obstacles in front of the
robot in order to dodge them. Then, after coordination (see
ResourceCoordination arrow among these three agents), one
of them, the winner, sends the computed commands to the
robot agent (InformCurrentSpeeds arrow).

Once the robot has reached the first position of the trajec-

tory p1, the goto and the gothrough agents continue with the
next one, p2, and so on until the last point of the trajectory
Pr, is reached.

It could be the case, however, that when the goto agent
is sending a request to the robot agent to move towards the
p; point, the battery charge agent realizes about the battery
level is under the minimum security level required. This
could happen, for example, when the robot has performed
a larger trajectory than the planned one due to the pres-
ence of obstacles. Then, the battery charger requests a new
trajectory 7" to the goto agent in order to reach a charger
position as soon as possible.

In these scenario, then, three agents (goto, avoid, gothrough)
are sharing the same resource: the robot agent to which they
send conflicting commands. In turn, the goto agent is a re-
source of the task planning and battery charger agents, since
it can receive conflicting trajectory requests from them.

2.2 Distributed coordination

Coordination among agents is necessary when there are
several agents trying to use the same robot resource at a
given time. For example, a conflict can arise between the
task planning and charge battery agents when trying to re-
quest different destination positions to the path planning
agent (case 1) or when requesting different positions to the
goto agent (case 2). Also, among the avoid, the goto and
the gothrough agents when trying to request conflicting ac-
tions to the robot agent (case 2). Note then, that the path
planning agent, the goto agent and the robot agent can be

103

AT2AI-6: Innocenti B. et al.: Resource Coordination Deployment for Physical Agents

considered shared resources, depending on the situation.

One solution to the problem is that the conflicting re-
sources, being agents, solve by themselves the conflicting
situation in a centralized way (with an auction, for exam-
ple). However, we have adopted a decentralized approach
in which the agents involved in the conflict decide which of
them take the resource control. This decision avoids having
a single agent arbitrating the overall architecture that could
become a bottleneck when the number of agents is high.

So, in ARMADIiCo, when an agent enters in the system, it
provides to the DF agent information about the resources it
uses. Then, the DF sends back to the agent the identification
of the other agents using the same resources. Thus, any new
agent in the system knows which are the set of agents to
which it needs to coordinate in case of conflict.

To decide what agent wins the shared resource in case
of conflict, each agent computes a normalized utility value
(between [0,1]) regarding its actuation. The procedure to
compute the utility is only known by the agent itself. The
outcome of the computation, that is, the utility value, is the
one used for coordination. The utility computation has been
described in [12], and other approaches as for example [18]
can also be followed.

In a given moment, there is only one agent that uses the
resource in conflict. This agent sends its utility to the other
agents who share the resource. When another agent in the
architecture has a higher utility, it takes the control of the
resource, and starts sending to the remaining agents the
value of its utility. Thus, the agent who has a higher value
of utility wins the resource.

For example, suppose the use case 2, in which the ro-
bot agent is the shared resource, that is currently controlled
by the goto agent. This control agent is informing to the
gothrough and the avoid agents about its utility. In a given
moment, the goto agent has a utility value of 0.5, and the
avoid agent of 0.7; being 0.7 the higher value. Then the
avoid agent takes the control of the situation, and it is the
only one that request some actuation to the robot agent.

After a coordination agreement is achieved (a new win-
ner is decided), additional computation is also required to
adequate the robot physical actuation that encompass the
resource exchange between the two agents.

3. COORDINATION DEPLOYMENT ME-
THODOLOGY FOR PHYSICAL AGENTS

When an agent, after coordination, obtains the opportu-
nity to use a robot shared resource, the agent should proceed
on the resource usage taking into account its impact on the
physical world in a similar manner than control fusion [9,
12, 22]. For doing so, we propose a method based on the
information used in the coordination process.

Let a. be the agent that wins the resource, and let a;
be the agent that loses the resource (it has been using the
resource until now). For example, if the shared resource is
the robot agent, a, could be the goto agent, and a; could
be the avoid agent. Let u,, and u; be the utilities of a,, and
a; correspondingly (so uw > u;). In [12] details of the utility
computation are given. Also in this previous work arises the
problem of smoothing the resource exchange, which we are
tackling in this paper.

Let a, be the shared resource (agent that owns a shared
robot resource). The resource is characterized by n parame-

ters that configure the possible actions requested to the re-
source (for example, robot commands). Then let aw, , - - -, Gw,
be the actions requested by the winner agent and a;,, ..., a;
the ones of the loser agent.

First of all, we need to determine the time window frame
t s available in order to perform the resource action exchange,
that is, how much time we have to change from the current
action of the loser agent to the required action of the winner
agent. This time depends on the criticality of the robot
state:

n

e The robot is changing from a critical to a non critical
situation

e The robot is changing from a non critical situation to
a critical one

How ty is computed in both cases is shown below.

Then, a progressively change from each loser action ay,
to each winner action a., is performed according to the
following expression (that extends the work presented by

[9)):
6w(ti7uw) * Quw; + 6l(tz) *ap,;
614}(ti7uw) + 6l(tz)

where 8, (i, uw) is the contribution of a., in time ¢;, and
01(t;) is the contribution of a;;. Time ¢; is measured in
robot cycles. So after the first cycle since the winner agent
obtains the resource, t1, the contribution of ¢; should be
higher than the one of the d,,. As cycles go on, the value of
& wins importance; in a given moment, ¢y, the action value
should be the one of the winner agent, so d,, should have
the highest value (1) and ¢; the lowest one, (0).

According to this desired behavior, é,, and §; have been
defined in [0, 1] as follows:

(1)

S (i,) = %’J wt (2)
§i(t:) = ;‘—f * (ty — t;) (3)

Note that the resource exchange is performed by the win-
ner agent that knows all the information regarding the util-
ities of the loser agent, as well as the actions. However,
the information about the loser agent is a ”snapshot” of the
loser agent values in the moment that the resource exchange
is performed, while the values of the winner agent can be up-
dated in each robot cycle. This is the reason that o (i, tw)
changes also according to u,,, while in Equation 3, u; is sta-
tic.

The summary of the coordination deployment algorithm
is shown in Figure 3. The 2.2 step is briefly described, but
involves the agent utility computation, coordination infor-
mation exchange and others.

In the remaining of this section, we give details of how ty
is computed, and we illustrate the overall methodology with
an example.

3.1 Time window frame from critical to non-
critical situations

The coordination exchange from critical to non-critical
situations can happens, for example, when the loser agent
is the avoid agent, the winner the goto agent, and the robot
agent is the resource agent. In this situation, the avoid agent

104

AT2AI-6: Innocenti B. et al.: Resource

Coordination Deployment for Physical Agents

1. Find the time window frame (i)

2. While u, is the resource winner and t¢; < ty

do

{
2.1 Compute current action parameters

_ Sw(tiuw)*aw, +6;(ti)*ay,
Ge = S (ti,uw) +01 (1)

2.2 Execute a.
2.3 Next i

Figure 3: Coordination deployment algorithm.

has dodged an obstacle, and now, the goto agent wins the
resource in order to continue to the next robot goal position.

Then, the time window frame t; depends on how much
different the actions are between the loser and the winner
ones. For measuring this difference, we use the Tchebychev
distance [24] applied to the most critical action parameters,
as follows:

(4)

The critical Parameters(l, .. .,n) function is defined for each
shared resource, and returns the set of critical parameters

of the resource. For example, in the case of the robot agent,

the critical parameter is the linear velocity.

So, if this distance is large, the exchange period should
be long, while if the distance is short, the period of change
should be close to 0. The concepts of large and short can be
easily modelled following fuzzy variables, and then comput-
ing the time window frame ¢; according to a fuzzy system.

Particularly, we have followed a Sugeno fuzzy system. In
such a system, we distinguish the input variables, the output
variables and the rules. There is a single input variable "diff”
that represents the action parameters difference according to
the distance function defined in Equation 4.

The dif f variable is defined in [0,100], since the maximum
velocity of the robot is 100cm/s. Four different fuzzy values
are defined for the fuzzy variable: equal, small, medium,
and big. A gaussian membership function is associated to
each value. Figure 4 shows the functions used for each fuzzy
value.

maxm'iticalPara’meta‘s(1 n) (|a"wi —ay |)

equal small medium big

40 60 70 100

50
input variable "diff"
Figure 4: Input fuzzy values of the diff variable.

There is a single output variable too, that represents the
length of the time window frame, t;. Each value of ¢; in
[0,10] represents the number of cycles required to change
from the current action parameters to the new ones. Four

different values have been defined for ¢;: null, short, medium,
long. In a Sugeno system, each value of a output variable is
a linear combination of the input variables. That is:

tre =c1xdif f+c2 (5)

In our case, we have taken ca = 0 (otherwise there will be
always a delay in sharing the resource even though when the
required actions are the same), and the following ¢1 coeffi-
cients for each ¢ty values have been defined:

trnu =0xdiff

tishort = 3% dif f

tfmedium =5x* dlff

triong = 10 xdif f

Regarding the rules, four possible rules have been con-
sidered, according to the input and output possible values.
These are the following ones:

R1. If diff is equal then t; is null

R2. If diff is small then t; is short

R3. Ifdiff is medium then ¢y is medium
R4. If diff is big then ¢y is long

Finally, the output value of ¢y is defuzzified by using the
weighted mean. As the cycle time of the robot is 100ms, it
is possible to neglect the required time to calculate ¢¢, since
all the calculations can be done before a cycle elapses.

3.2 Time window frame from non-critical to
critical situations

The coordination exchange from a non critical situation
to a critical one happens, for example, when the loser agent
is the goto agent, the winner the avoid agent, and the robot
agent is the shared resource. In this case, the avoid agent
has detected a dangerous situation and the time required
to react to it, t., is critical. Then, t; = t.. Note that ¢,
is known by the winner agent who applies the coordination
deployment method. In the next section we show how to
calculate t. for a particular situation.

3.3 Example

The robot agent is shared by the avoid and the goto agent.
The conflicting actions requested to the robot agent are the
velocities (linear and angular) to which the robot should
move. In order to illustrate the coordination deployment
mechanism, let us suppose two different scenarios: when the
avoid agent obtains the resource and when the goto agent
obtains the resource.

In the first scenario, we have the following configuration:

e a, is the robot agent, with 2 parameters: the linear
and the angular velocities.

aw is the avoid agent, with a,, = 20cm/s (linear ve-
locity), and aw, = —1ldegrees/s (angular velocity).
The avoid agent has a utility value of u,, = 0.7.

a; is the goto agent, with a;, = 76cm/s, ai, =
— l4degrees/s, and u; = 0.6.

Since the situation is characterized as a critical one, t; is
set to the critical time computed by the avoid agent. The
critical time is computed as the time to collide with the ob-
stacle, that is, the distance to the object divided by the cur-
rent linear speed. Finally, the second step of the algorithm

105

AT2AI-6: Innocenti B. et al.: Resource Coordination Deployment for Physical Agents

of Figure 3 is applied, obtained an smoothing behavior in
the global robot control.

In the second scenario, we have the following configura-
tion:

e a, is the robot agent, as in the previous scenario.

e a, is the goto agent, with aw, = 46cm/s, aw, =
19.4degrees/s, and u,, = 0.77.

e q; is the avoid agent, with a;;, = 20cm/s, ai, =
Odegrees/s and u; = 0.28.

This scenario corresponds to a transition from a critical
to non critical situation. The critical Parameters(1,2) of
the robot agent is the first one, that is, the linear veloc-
ity. Then, the time window frame t; is set according to the
Sugeno fuzzy system. The difference between the two linear
velocities is the following:

dif f = |aw, —ai,| = [46cm/s — 20cm/s| = 26cm/s

Such value partially fulfills the small and equal fuzzy values
of the dif f input variable of our Sugeno fuzzy system. As
a consequence, the resulting output variable t; is set to 3
cycles.

4. EXPERIMENTAL RESULTS

In order to test ARMADiCo we have implemented an ad
hoc multiagent platform, programmed in C+4 on Linux.
This implementation decision is based on the fact that the
majority of the commercial platforms have an agent that
centralizes the functioning of the entire platform and they
are not capable of dealing with systems that need to re-
spond in real time. The robot used for experimentation is
a Pioneer 2DX of ActivMedia Robotics. This robot has a
minimal sensor configuration: two encoders and eight ultra-
sound sensors. A complete description of the robot, as well
as its dynamics can be found in [13].

In order to test the coordination deployment methodology
proposed in this paper, we have implemented the following
agents: interface agent, (very simple) task planning, path
planning, goto, avoid, sonar, encoder, and robot agents. In
this configuration, the robot agent is the shared resource
between the goto and avoid agents.

4.1 Experimental setup

Two different ways of taking the resource control have
been tested. The first one occurs when the agents change
abruptly the control over the shared resource and the second
one, when the proposed method is used. Thus, we have two
main configurations:

e Abrupt: changing the control abruptly

e Smoothing: using our proposed method. That is, us-
ing Equation 1 to have a smoothing behavior when
exchanging the resources after coordination.

In order to test the whole behavior of the architecture, we
propose the scenario shown in Figure 5, in which the robot
must go from room A to room B. For doing so, the task
planning agent provides to the goto agent the corresponding
trajectory necessary to pass through the doors.

Smooth trajectory

Abrupt trajectory

A | |

Figure 5: Example of a trajectory with our method-
ology.

4.2 Results

Figure 5 shows an example of the trajectory described by
the robot, when using the abrupt exchange of resources (grey
line) and using the proposed methodology (black line). As
can be seen in this figure, at the points (z,y) = (1.5,3.3)m
and (z,y) = (6.3,2.4)m approximately, there are abrupt
changes in the trajectory described by the robot using the
abrupt resource exchange methodology (grey line), but they
are avoid using the smoothing algorithm (black line).

In order to compare the results, the following measures
have been considered:

e Travelled Distance (TD): the distance travelled by
the robot to reach the goal.

e Final Orientation (FO): the heading of the robot
at the goal position.

e Total Time (TT): the total amount of time the robot
needs to achieve the goal.

e Precision (P): how closed to the goal position is the
center of mass of the robot.

e Time Goto (TG): the total time the goto agent has
the robot control.

The experiments consisted of five executions in the sce-
nario for each configuration. Table 1 shows the average and
standard deviation of each evaluation measure. Even though
mean values are not so different among the two situations,
deviations are enhanced.

106

Table 1: Comparison of the results of the three
tested situations.
Parameters Abrupt Smoothing
TD 11.96 £ 0.103m | 11.99 £ 0.17m
FO 2.14 £0.47° 2.16 £ 0.85°
T 69.37 + 2.43s 64.39 + 1.24s
P 99.648 £ 0.08% 99.82 + 0.05%
TG 73.86 + 3.23% 51.25 + 5.41%

AT2AI-6: Innocenti B. et al.: Resource Coordination Deployment for Physical Agents

Comparing the abrupt change of control with the smooth-
ing one, the most significant improvement is the total time
(TT) needed to reach the goal. In the smoothing configura-
tion, TT has decreased meaning that the cruising speed can
be maintained for more time and changes between agents
with a short duration are almost eliminated, achieving softer
trajectories. At the same time, the time the goto agent has
the control (T'G) has been decreased, while the avoid agent
has the control in more consecutive cycles. So, when an
agent takes the resource control, it does it for a larger time
using our methodology than without using it, thus, the agent
can effectively follow their own goals for a larger period of
time; and consistently the robot global behavior is more co-
herent.

5. RELATED WORK

As stated in the introduction, there are some works re-
lated to the use of multi-agent system for a single robot
architecture [20, 1, 21]. In [16], several agents are organized
in a spreading activation network, so that each one is defined
with a set of pre- and post-conditions. When an agent accu-
mulates enough activation (i.e., the pre-conditions are satis-
fied over a given threshold), it becomes active. Conflicting
interactions among agents (for example, when parallel actu-
ation requires a three hands robot) are solved according to
different selection parameters. These parameters establish
the urgency to fulfil the different goals. This approach pro-
posed by Maes’s work is more related to coordination (even
though at a lower level than our approach and other recent
ones [1], [20]) than to the physical resource exchange issue
we are dealing here. From our understanding, none of the
previous authors address the problem of filling the gap be-
tween coordination agreement and coordination execution in
multi-agent systems when dealing with physically-grounded
shared resources.

In the literature of control, however, there are several pro-
posals to perform this resource exchange. For example, in
[10], several controllers are used to control each wheel of
the robot. The controllers are modelled as finite automata
whose inputs are the location of the robot and the output,
the values -1,1 and 0. After each controller produces its
output, a central module performs the average of the total
vote of the outputs, determining the desired increase in the
movement.

Gerkey in [9] presents a similar idea but instead of having
an explicit module that fusions command controls, all the
controllers actuate directly on the motors, being these ele-
ments the ones that overlap the control signals and achieve
the resulting movement. He proved that the presence of
“malicious” controllers degrade the overall performance or
produce a catastrophic failure when the proportion of them
is higher enough.

Another example is presented in [22]. In particular, the
authors use fuzzy logic to model the control actions coming
from the heterogeneous controllers and to decide, in accor-
dance with the dynamic model of the robot, what combi-
nation of control actions should be carried out at any given
moment. We are also using a fuzzy system but with a dif-
ferent purpose. Instead of using it to compute the final
command value, we use a fuzzy system to compute the time
interval required to perform the resource exchange.

The change of commands in a robot has also been studied
at the task level in behavioral-based architectures. For ex-

ample, in [18], an adaptation method to deal with conflicting
behavior interactions is proposed. After several trials, the
robot learns the appropriate sequence of behaviors. Even
though Mataric’s proposal is closer to coordination mecha-
nism than our resource exchange problem, some similarities
can be found with our approach. That is, we are also propos-
ing a sequence of action combination (transition phase) that
facilitates the resource exchange between two agents. Note,
however, that in [18] and also in [17], only one of the behav-
iors is active at a time.

From the agent community, physical resources has been
studied by the holonic manufacturing community [8]. How-
ever, most of these approaches (see for example [11]) are
mapping a robot to an agent (or a machine to an agent),
conversely to our approach, in which we are building a multi-
agent system for a single robot.

6. CONCLUSIONS AND FUTURE WORK

There is an increasing interest in the use of agent technol-
ogy to develop robots as physical agents, and there starts to
be some examples of the use of multi-agent systems for build-
ing a single robot architecture. In this paper we describes
a multi-agent architecture with this purpose, ARMADiCo
and we focus on the importance of the deployment of the
coordination outcomes since they affect the robot global be-
havior. That is, when defining such architecture, several
robot resources are shared by different agents. So, a coor-
dination mechanism is required in order to avoid conflicting
resource uses. This is something that most of the theoretical
studies considers. However, when trying to deploy coordi-
nation mechanism to the physical world, as in robots, there
is gap related to how the resource exchange is performed;
and that matters. In this paper we describe a coordination
deployment methodology to cover such a gap. The method-
ology comprises a Sugeno fuzzy system to determine the time
window interval required to perform an smoothing resource
exchange.

The methodology presented has been tested using a Pio-
neer 2DX of ActivMedia Robotics. The results show that
the robot maintains a cruising speed more constant when
using our coordination method than without it, as a conse-
quence of reducing the number of short resource exchanges
between agents, and achieves in the end a smoothing global
behavior when moving through a space with obstacles.

As a future work, we are considering new experimental
configurations with the incorporation of additional agents
and resources. Consequently we are analyzing other possi-
ble resource allocation methods of the multi-agent literature
(as for example [2]). We are also studying the definition of
more complex scenarios that involve higher cognitive capa-
bilities. Finally, we are also analyzing the use of new and
still open paradigms as information flows [4] that helps in
the understanding of the global emergence multi-agent sys-
tem behavior.

7. REFERENCES

[1] D. Busquets, C. Sierra, and R. Lépez de Mantaras. A
multiagent approach to qualitative landmark-based
navigation. Autonomous Robots, 15:129 — 154, 2003.

[2] Y. Chevaleyre, P. Dunne, U. Endris, J. Lang,

M. Lemaitre, N. Maudet, J. PAdget, S. Phelps,
J. Rodriguez-Aguilar, and P. Sousa. Issues in

107

AT2AI-6: Innocenti B. et al.: Resource Coordination Deployment for Physical Agents

[5]

6

8]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

multiagent resource allocation. Informatica, 30:3 — 31,
2006.

T. De Wolf. Panel discussion on engineering
self-organising emergence.
http://www.cs.kuleuven.be/ tomdw/presentations/
presentationSASOpanel2007.ppt, 2007. SASO 2007
10-07-2007, MIT, Boston/Cambridge, MA, USA.

T. De Wolf and T. Holvoet. Using UML 2 activity
diagrams to design information flows and
feedback-loops in self-organising emergent systems.
Proceedings of the Second International Workshop on
Engineering Emergence in Decentralised Autonomic
Systems (EEDAS 2007), pages 52 — 61, 2007.

S. A. DeLoach. Analysis and design using MaSE and
agentTool. Proceedings of the 12th Midwest Artificial
Intelligence and Cognitive Science Conference
(MAICS 2001), 2001.

J. Fromm. On engineering and emergence. SAKS/06,
Workshop on Adaptation and Self-Organizing Systems
(nlin.AO), arXiv:nlin/0601002v1 [nlin.AO], 2006.

M. Georgeff and A. Lansky. Procedural knowledge.
Proceedings of the IEEE, 74(10):1383 — 1398, 1986.

C. Gerber, J. Siekmann, and G. Vierke. Holonic
multiagent systems. Research RR-99-03, Deutsches
Forschungszentrum fiir Kiinstliche Intelligenz GmbH,
1999. www: http://www.dfki.de.

B. Gerkey, M. Mataric, and G. Sukhatme. Exploiting
physical dynamics for concurrent control of a mobile
robot. Proceedings ICRA ’02. IEEE International
Conference on Robotics and Automation, 4:3467 —
3472, 2002.

K. Goldberg and B. Chen. Collaborative control of
robot motion: robustness to error. In Proceedings of
the 2001 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 655—-660, 2001.
H. Hsu and A. Liu. A flexible architecture for
navigation control of a mobile robot. IEEE
Transactions on Systems, Man, and Cybernetics: Part
A: Systems and Humans, 37(3):310-318, 2007.

B. Innocenti, B. Lépez, and J. Salvi. A multi-agent
architecture with cooperative fuzzy control for a
mobile robot. Robotics and Autonomous Systems,
(55):881 — 891, 2007.

B. Innocenti, P. Ridao, N. Gascons, A. El-Fakdi,

B. Lépez, and J. Salvi. Dynamical model parameters
identification of a wheleed mobile robot. 5th
IFAC/EURON Symposium on Intelligent Autonomous
Vehicles (preprints), 2004.

G. A. Kaminka. Robots are agents, too! In
Proceedings of the 6th International Joint Conference
on Autonomous Agents and Multiagent Systems, 2007.
Invited talk.

G. A. Kaminka. Robots are agents, too! AgentLink
News, pages 16 — 17, December 2004.

P. Maes. The dynamics of action selection. Proceedings
of the 11th International Joint Conference on Artificial
Intelligence (IJCAI-89), pages 991 — 997, 1989.

M. Matarié. Behavior-based control: Examples from
navigation, learning, and group behavior. Journal of
Ezperimental and Theoretical Artificial Intelligence,
special issue on Software Architectures for Physical
Agents, 9 (2-3):323 — 336, 1997.

18]

(19]

20]

21]

(22]

23]

24]

(25]

F. Michaud and M. Matari¢. A history-based
approach for adaptive robot behavior in dynamic
environments. Proceedings of the second international
conference on Autonomous Agents., pages 422 — 429,
1998. ISBN:0-89791-983-1.

R. Murray, K. /i\stré')m, S. Boyd, R. Brockett, and

G. Stein. Future directions in control in an
information-rich world. IEEE Control Systems
Magazine, 23, issue 2:20 — 33, 2003.

M. C. Neves and E. Oliveira. A multi-agent approach
for a mobile robot control system. Proceedings of
Workshop on "Multi-Agent Systems: Theory and
Applications” (MASTA’97 - EPPIA’97) - Coimbra
-Portugal, pages 1 — 14, 1997.

Y. Ono, H. Uchiyama, and W. Potter. A mobile robot
for corridor navigation: A multi-agent approach.
ACMSE’04: ACM Southeast Regional Conference.
ACM Press., pages 379 — 384, 2004.

A. Saffiotti. The uses of fuzzy logic in autonomous
robot navigation. Soft Computing, 1(4):180 — 197,
1997.

O. Sauer and G. Sutschet. Agent-based control. IET
Computing & Control Engineering, pages 32 — 37,
2006.

R. Wilson and T. R. Martinez. Improved
heterogeneous distance functions. Journal of Artificial
Intelligence Research, 6:1 — 34, 1997.

M. F. Wood and S. A. DeLoach. An overview of the
multiagent systems engineering methodology. Lecture
Notes in Computer Science. Vol. 1957/2001, Springer
Verlag., pages 207 — 221, 2000.

108

AT2AI-6: Jensen A.J. et al.: Reactive agent mechanisms for scheduling manufacturing processes

Reactive agent mechanisms for scheduling manufacturing
processes

Ask Just Jensen
University of Southern

Kasper Hallenborg
University of Southern

Yves Demazeau
CNRS

Denmark Denmark LIG Laboratory
Maersk McKinney Moller Maersk McKinney Moller 38000 Grenoble, France
Institute Institute Yves.Demazeau@imag.fr

5230 Odense M, Denmark
just@mmmi.sdu.dk

ABSTRACT

This paper will present an agent based solution to control
chemical processes in a manufacturing environment; items
should undergo chemical reactions in different chemical baths
to be processed by the system. Recipes for the processes
only specify minimum and maximum times for each bath,
and recipes depend strongly on characteristics of the item.

We have applied the PACO paradigm for reactive agents
to develop control software for the system, and we have de-
signed simple physical force-like interaction mechanisms, so
agents manage to fulfill their individual and global goals.
We outline the problem and argue why the PACO approach
suits this problem, before explaining in detail how the agents
are designed and the interactions established for the plan-
ning to be successful.

We conclude the paper by presenting results of the agent-
based approach, based on data and scenario recipes from the
real system.

1. INTRODUCTION

All industrial companies have experienced radical changes
in market demands in recent years. Mass series and stan-
dardized products have been replaced by order based pro-
duction and a high degree of user customization. It falls back
on the manufacturing system as strong requirements for high
flexibility. In some setups flexibility could be meet by low
switching times, but ideally the system should be able to
handle a large variety of items concurrently in an efficient
way. This require new control algorithms. We no longer
have dedicated hardware optimized for a specific produc-
tion. Global optimization is typically NP-complete or inap-
propriate due to a dynamic production environment, where
constant changes will lead to continuous replanning. Thus
flexible manufacturing systems have been a focused research
area for decades [3, 4, 13, 18], and multi-agent technologies
are a natural approach for the control software of such sys-
tems.

The paper is organized as follows. First we discuss the
general problem of the researched case. Next we relate the
problem to previous work, and shortly describe the PACO

Jung, Michel, Ricci & Petta (eds.): AT2A1-6 Working Notes, From
Agent Theory to Agent Implementation, 6th Int. Workshop,
May 13, 2008, AAMAS 2008, Estoril, Portugal, EU.

Not for citation

5230 Odense M, Denmark
hallenborg@mmmi.sdu.dk

paradigm used for the agents in our case. In detail we will
describe and discuss how PACO agents are organized, mod-
eled, and implemented to solve the problem at hand together
with results from real world scenarios. Finally we will bring
some concluding remarks and present ideas for future work
of this ongoing research.

1.1 The problem

The researched case is conducted in collaboration with
Denmark’s most well-known manufacturer of high-end audio
and video products. The process is known as an anodization
process that increase the corrosion resistance of aluminum.
In a generalized and simplified form, the problem could be
described as a number of chemical baths, which the items
have to visit according to a prescribed recipe. Besides con-
taining information about which baths to visit and in what
order, the recipe also give an allowed time-span for the item
to stay in each bath. Items are grouped on bars with the
same recipe, but a mix of different bars (= different recipes)
could processed at the same time.

The system consist of about 50 baths, and a typical recipe
would have roughly 15-25 baths to visit, even though all
recipes do not have to visit all kind of baths, there is still
room for additional baths of the same type to overcome bot-
tlenecks as the processing times in the bath types vary a lot.
Three slightly overlapping cranes move the bars from one lo-
cation to another within the array of bars. Apart from the
baths and cranes, an important part of the system is the
input buffer, where typically around 30 bars are waiting to
be processed. Figure 1 gives an overview of the system.

C,'s domain
C,‘s domain C,‘s domain

!!!!@ j!!!!!!!! gl

Input buffer

Output
Input

Figure 1: Generalized overview of the system

Another issue is the dynamical production environment,

AT2AI-6: Jensen A.J. et al.: Reactive agent mechanisms for scheduling manufacturing processes

which has great impact on the system’s ability to recover
and finish the current bars, but also run as best as possible
under partly breakdowns. Examples of unpredictable error
conditions could be that the temperature of a bath is too low
and must be heated before continuing, crane breakdowns,
liquid level of a bath too low, rapid orders, etc.

1.2 Related work

The problem is classic - we want to optimize the through-
put of a system, by optimizing the flow between subprocesses
and handle the inflow correctly to utilize the system as much
as possible. In abstract terms we have a number of tasks,
qi for i = 1,2,... n, with k; subtasks®, Qi1,Qi2y s Qiky; -
The subtasks are interconnected and their order cannot be
changed, and should be handled as visits to processing sta-
tions - determined by the recipe. The agents, which could be
the baths and cranes, must coordinate their local activities
for the global plan to be optimal. From a modeling point of
view the TAEMS? Framework [8, 16] would be an obvious
choice as a modeling tool to describe the structure of the
plan.

GPGP is a set of generic coordination mechanisms for co-
operative agents in a task environment proposed by Keith
Decker [9]. GPGP is a generalized extension of the PGP
(Partial Global Planning) algorithm, which is capable of
handling deadlines for the tasks of agents. GPGP could be
applied in our case as well, but the homogeneity of the task
structures and flow-oriented approach of our case, appeal for
other approaches as well. GPGP would be an appropriate
candidate if the recipes were more flexible, e.g. the order of
bath to visit could be changed dynamically.

Clement and Barrett also introduce the Shared Activity
Coordination (SHAC) [6], which provides a general approach
for interleaving planning and exchange of plan information
among agents based on shared activities.

Both Parunak et al. and Valckenaers et al. have con-

ducted extensive research on organizing and structuring agents

in a manufacturing environment as well e.g. [19, 22]. Fur-
thermore Valckenaers et. al have inspired by the principles
of stigmergy of swarm intelligence developed some novel ap-
proaches to scheduling in holonic and flexible manufacturing
[15, 21]. The simple reactive principles of coordination that
characterize ant-based approaches appeal very much to our
case except that ants are usually very independent, and in
our case we more have a string of tasks that cannot be re-
ordered.

Other approaches exists as well, but in general they are
focused on the agent performing different tasks in the envi-
ronment, where the tasks can be regarded as atomic actions.
That would make the baths and the cranes to our agents,
but in our case the tasks are not atomic in the sense that
duration of a task in not fixed.

In principle planning approaches search a solution space
to find an appropriate valid plan to a constraint satisfaction
problem (CSP). There is no guarantee that the plan is op-
timal, as the problem often are NP-complete. In our case
the task durations vary between the minimum and maxi-
mum times specified in the recipes, which give us inequality
constraints that complicates the problem even more. In tra-
ditional planning we try to find an optimal plan among valid

'note that the number of subtasks might be different for
each taskgroup
2Task Analysis, Environment Modeling and Simulation

plans, but using the PACO approach we strive for an valid
plan using simple reactive mechanisms on a configuration
that might be optimal, but not necessarily valid.

1.3 PACO approach

PACO is a contraction of coordinated patterns [12] and
takes a simple approach of the agents. PACO focus on reac-
tive agents situated in an environment, where all agents are
considered as partial solutions of a global problem [14].

The PACO paradigm states that agents are purely reac-
tive, thus they do not hold an updated internal representa-
tion of themselves, other agents, or the environment, so they
have to respond all changes of the environment. Whenever
a new bar is introduced, or unforeseen or expected events
happen within the system, such as a crane breakdown or a
bath needs cleaning, it is a new event to the agents, and
they will search for a new equilibrium state through their
interactions.

Each agent under PACO is defined by three fields, which
divide the agent model in coherent components

Perception field determine what the agent can perceive
about its environment.

Communication field determine which agents an agent
can interact with.

Action field determine the space in which an agent can
perform its action.

From a system point of view the PACO paradigm also
splits the system into conceptual parts, which follows the
VOWELS formalism [7]. Basically the VOWELS formalism
decomposes the problem into four components of the MAS
domain of a system, described by the vowels-initiated con-
cepts

Agents are the classic entities to consider, when developing
a MAS system, as agents are determined to be the
local actors carrying out the tasks. Autonomy is in
focus here to emphasize that agents have goals and
are self-determined [23].

Environment is the space in which the agents exist, move,
and interact. The space could be both informational
and conceptual, but typically the environment is rep-
resented by a model of the physical space of the MAS
community.

Interactions could be formed as abstract as speech inter-
actions, but the PACO paradigm usually apply inter-
actions as forces, spring-like or electrostatic forces.

Organization: Similar to humans, agents can benefit from
being organized, either explicitly defined in classic or-
ganizational structures, or the organization could em-
erge from simple interactions among the agents. Or-
ganizations often serve the purpose of grouping agents
with similar or related actions or behaviors as usually
exploited by PACO.

2. AGENT DESIGN

In this section we will describe and discuss how the PACO
approach has been applied to the scheduling problem in the
researched anodization system. The following subsections
cover each part of the VOWELS formalism.

110

AT2AI-6: Jensen A.J. et al.: Reactive agent mechanisms for scheduling manufacturing processes

2.1 Environment

In this case the environment is the baths and cranes.
The environment is modeled as passive resources, which the
agents can ask about their status and book for specified time
slots. Baths are accessed through a bath controller, which
makes baths of the same type look as only one bath, capable
of containing more than one bar at a time. These baths can
be asked about free space in a given direction from a given
agent or about whether or not a free time slot for a required
timeframe exists in specific period. If the space is occupied,
then the bath can tell, which agent is blocking.

2.2 Agents

The recipe for each bar of items is split into a number of
agents. One agent is created for each step of the recipe, and
all agents of one bar forms a group. An agent is born with
some knowledge, as it knows which kind of bath it must go
into, it holds the allowed minimum and maximum time to
stay in the bath, and it knows its predecessor and successor
agent of the group. It does not know the rest of the agents
in the group and it does not have a possibility to commu-
nicate with them. To succeed, an agent must visit a bath
of the right type, but not necessarily at the right time. The
agent has a size equal to the time slot it occupies in a bath,
because time is the only interesting axis of all decisions, as il-
lustrated in figure 2. Therefore by its representation, agents
can be seen as physical manifestations of the problem in fo-
cus. T'wo bars ¢; and ¢;, split up into two groups of agents,
[qi,l, qi,2, ... Qi,n} and [Qj,h 45,2, -- qi,m] added to the virtual
model in random places could look like figure 2.

Ui Ui+1 Ui+2 Ui+3 Ui+4
.
E

i) i, i, i))

Figure 2: Three agents from each agent group occu-
pying timeslots in the baths

2.2.1 Perception, communication, and action

As stated earlier the PACO paradigm defines three delim-
ited fields.

The perception field consists of the predecessor of the
bar, as the movement of that agent affects the forces
(described below) applied to an agent. Furthermore
the agents above and below (in the time domain) that
want to visit the same bath are also observed, to avoid
overlap of agents in the same bath.

The communication field solely consists of the predeces-
sor, as it should be notified if the agent could meet its
goals.

The action field consist of the baths of the requested type,
and organization secures that an agent only sees one

particular bath, even if the bath type is duplicated in
the system.

2.2.2 Agent goals

An agent has two main goals:
e Go in the right bath
e Stay close to the predecessor agent of its group

When both goals are satisfied, for all agents of a group, the
bar represented by the group has a valid way to be processed
by the system. Furthermore an agent has some constraints:

e Keep distance to both the min and max time
e Help the successor to stay close

e Help other agents in same bath type to fulfil goals

Constraints are added to make agents cooperate with others
in fulfilling their goals too. When agents from two groups
share interests to the same time slot for a given bath they
have to be able to negotiate about, who will win the timeslot.

2.3 Interactions

Agents move around in the virtual world in discrete steps.
They calculate a force vector v as responses to input/output
from the three fields. Each discrete time step has two sub-
steps, first all agents calculate which way to go and at what
speed. When all agents have new direction and velocity
vectors the moves are taken, so force calculations are done
according to the current situation.

2.3.1 Basic forces

The most basic behaviors of the agents come from their
primary goals and are modelled with two forces; a spring
force and a gravity force.

The spring force represents the attraction to the predecessor,
if any, and attracts the agent towards the point where the
predecessor of the previous bath ends, so the bar can move
from one bath to another, which is a criteria for a plan to
be valid.

A spring force is denoted: F' = —kx. F being the force,
k the spring constant and x the distance. This gives us:
Fs = —kparent(x — ©p). kparent being a static constant,
x the position of the agent and x, the ending point of the
predecessor.

To make the system stay in motion, until a valid equilib-
rium is reached, an extra parameter, a predecessor multiplier
(pm), is added. Each time a spring force is calculated the
agent will check if it has come closer to its predecessor. If it
has not, it will increase p,,, to enhance the attraction force

F,= (1)

Pm is bounded. It can newer go beneath 1 or above some
fixed value, in our case fitted through experiments to be 3.
It is increased with the same percentage each time the agent
has not come closer to its goal and is decreased again with
the same percentage, when the agent starts moving.

The second force, the gravity force, tries to pull the agent
up. Up in the virtual model represents beginning of time in
the real world. The gravity force is given by: F'g =mg. m
being the mass of the agent and g the gravity acceleration.
The mass of all agents is the same, and therefore we have

_kparent(w - :cp) *Pm

111

AT2AI-6: Jensen A.J. et al.: Reactive agent mechanisms for scheduling manufacturing processes

F, = kg, kg being a static constant force vector. This
gravity force is only applied to an agent when it is floating
freely. If the agent is in contact with another, in the direction
pulled by the force, the counterforce from the contact will
cancel out the gravity force. The total force is denoted F';

Ft:Fs+Fg (2)

With only these two simple forces, a set of agents can be
added and align them self. See figure 3.

Ui Ui+ 1

Ui+2

time

Figure 3: Illustration of the basic forces for the

agents

Spring forces serve to compact the plan of a agent group
for a bar, to minimize the total processing time for a bar,
whereas the gravity force works to compact the entire plan
for all bars in order to maximize utilization.

2.4 Organizations

To make the interaction between the agents more flexible,
a number of social laws are introduced:

Law 1: If there is a certain amount of free space around the
agent, increase size to

Tcu'r'rent = Tmzn + X(Tmaz - Tmzn) (3)

X being a static constant and Teyrrent, Tmin, and Tmae
being respectively the current, minimum and maxi-
mum time slots of the agent.

Law 2: If another agent, using the bath, comes closer than
a given distance, then shrink the current size until
Tmin plus a given margin is reached.

Law 3: If the successor is unable to reach its second goal,
then increase Teyrrent until Thyqz is reached.

2.4.1 Options for problem solving

If an agent needs to go in a direction blocked by other
agents, it should be able jump over, push or switch place
with one of the blocking agents, as illustrated in figure 4.
For this purpose three laws are introduced. They are re-
spected when agent A wants to go in a direction blocked by
agent B.

Law 4: If F; for A is greater than the current size of B,
and a time slot of at least A..in is available between
the end of B and the length of F;, then A jumps to
the other side of B, without notice.

Law 5: If there are no room for A on the other side of B,
but B is trying to move in the opposite direction, and

Ui Ui+1

Ui+2

time

Figure 4: Illustration of a conflict between two agent
groups

if the size of F'; for A is greater than half of Bin,
then they switch place.

Law 6: If none of two previous laws have applied, but A
still wants some or all of the time slot assigned to B. A
starts a negotiation based on the general satisfaction
of group A and B3. If A wins, B is pushed away,
otherwise they will have to stay.

3. SYSTEM SETUP

The agent-based control that is described in the previous
section, is just one part of the entire setup. The control
software is coupled to a realistic simulation model, which
is created in the AutoMod software - a defacto standard for
creating simulation tools to manufacturing applications. We
interact with the model using the same protocol that would
be used on the real system, so we are as close as possible to
the real world, but it allows us to test the control software
much easier. In addition it give a perfect setup to test and
compare different strategies and fit the coefficients of the
forces on the desktop.

Regarding unforeseen events the reactive approach de-
scribed above has the strength that we can make some time
slots or bath unavailable, so agents are pushed and then have
to renegotiate for a equilibrium. It requires no change of the
agents decision logic.

4. DISCUSSIONS

The real challenges of applying the PACO paradigm to an
agent-based control system like the problem presented above
is the design and fitting of forces used for interactions. In
this section we discuss some of the experienced issues for the
case.

4.1 Avoid in-group competing agents

The agent group, which spawns from the creation of agents
for a single bar of items, is not modeled or implemented as a
sole entity in the system. Thus no overall goal or intensions
of the group can be directly implemented, but must be real-
ized through the aggregation of sub-goals met by the agents
within the group. The tension appearing inside a group due
to the spring forces of the agents, can to some degree lead
to competitions among agents within a group, but the flex-
ibility laws presented in section 2.4 make it easier for the

3Information about the satisfaction is withdrawn from the
attached observer agent

112

AT2AI-6: Jensen A.J. et al.:

Reactive agent mechanisms for scheduling manufacturing processes

system to reach an equilibrium and dampen the inter-agent
tensions. Particular laws 1 and 3 are added to cope with
these side effects of the basic forces. Law 1 simplifies the
process of attraction and stabilize the movements of a suc-
cessor agent to its predecessor, due to the expansion of the
current time slot for an agent in a bath, if it is too hard to
pack the schedule for a bar tighter. Whereas law 3 more di-
rectly connects the plan of a group and increase robustness
in the coordination process.

4.2 Handling oscillating task shifts and stick
to suitable schedule slots

Without doubt the most challenging part of optimizing
the overall plan for the system is to decide when and how
conflicts between agents should be solved. No method or
measurements exist to validate if a current configuration is
optimal or jumps between the agents should be handled.
Clearly from laws 4 and 5 of section 2.4.1, trivial conflicts are
handled without contracting classic local optimization prin-
ciples. Especially to avoid oscillating shifts between agents
from different groups that have interest in the same bath,
law 6 serves the purpose of dampen inter-group tensions.

Other approaches could be applied as fallback methods, if
the other laws fails, such as

e Only allow shifts that do not overrule other shifts within
a certain time period.

e Transaction principle - make the shift, and roll back
if the system performance degrade after a predefined
number of planning steps.

RESULTS

In order to validate the PACO paradigm for the agents,
we have to test if the control system can create valid plans
for the bars. We measure that as a satisfactory rate of an
agent group, where a full valid plan would have 100% satis-
factory rate, which means that for a given bar all visits to
baths in the recipes comply with the minimum and maxi-
mum timeframes, and that moves between two consecutive
visits are connected with no stops.

Naturally an indicator of the strength in the approach
is the dynamic reactiveness, because the core problem is a
classical optimization problem, but as it is NP-complete, the
system do not have the time to find an optimal solution in a
real world scenario. Thus the number of time steps required
for the system to find an acceptable solution is of primary
importance.

In figure 5 the average computation time required per
agent to calculate the forces and move the agents are shown.
Naturally the computation time increases significantly for
scenarios with more than one bar, but in all cases it stay
below 0.5 ms per agent on an average PC. It is reasonable
efficient, as we can see from figure 6 that the agents relative
fast move to a rather stable level of their satisfaction rate.

Figure 7, which is a zoom of figure 6, also shows that valid
plans (satisfaction rate = 100%) are only created in the 1
group scenario. From the graph of the 5 group scenario it
is easy to see that we still have some fluctuations around a
level of 90% satisfaction. For 15 and 25 groups the picture
is a little more blurred, and more mechanisms should be
applied to meet the 100% level.

Finally in figure 8 we see that the end-time (when it have
visited all requested baths) of the last bar is decreasing,

S.

0.7

0.6 -

0.5

0.4

) b i

Ak
W M‘« |’
; UIUMMMJNH\MMLhllJUMWJMMHUM!IHHuHJd‘JLlMMMWMMMMMMMMMMMMMHWMMMMMWUMWMMWMM

1 agent group (bar)

5 agent groups (bars) E

15 agent groups (bars)

25 agent groups (bars)
I |

w

Nm'mﬁ |

“\m\h”“”““” M\“

\‘U‘H\\Hh“
il A

ms/agent

-0.1

02 L L L L L L L
0 500 1000 1500 2000 2500 3000 3500

time steps

4000 4500 5000

Figure 5: Average computation time per agent per
time sted for scenarios with 1, 5, 15, and 25 agent
groups

satisfaction rate

0.4 4

02 R

1 agent group (bar)

5 agent groups (bars)

15 agent groups (bars)

25 agent groups (bars)
| !

L L
0 500 1000 1500 2000 2500 3000

time steps

Figure 6: Satisfaction rate for test with 1, 5, 15, and
25 agent groups

0.95

ik

o ey g

A A \leH

satisfaction rate

1 agent group (bar)
5 agent groups (bars)
15 agent groups (bars)
25 agent groups (bars)
. I

600

time steps

800 1000

Figure 7: Satisfaction rate for test with 1, 5, 15, and
25 agent groups

so the algorithm is creating more efficient plans. Jumps
between agents during the planning process will naturally
lead to increased production time before the plans starts to
settle again.

6. CONCLUSIONS
We have applied the PACO paradigm that suits the low-

113

AT2AI-6: Jensen A.J. et al.: Reactive agent mechanisms for scheduling manufacturing processes

22000

20000

18000

10000 -

14000

12000

end time

8000 - -

6000 |- -

Tagent group (bar)

5 agent groups (bars) |

15 agent groups (bars)

25 agent groups (bars)
| |

4000

L
3500

2000

L L
2500 3000

time steps

L L L L
0 500 1000 1500 2000 4000 4500 5000

Figure 8: End time for the last bar of scenarios with
1, 5, 15, and 25 agent groups

flexible setup of a production environment. Besides design-
ing the interaction mechanisms for the case, we have ex-
tended the model with a number of laws to cope with general
problems among the agents.

The approach is radical different to many other paradigms
of MAS in production environments, such as GPGP, as agents
are not modeled as the resources of the environment, such
as robots, baths, etc. Here agents originate from the real
issues at hand.

The presented model and design are generalized from the
case, so the results would easily map to similar problems
that can be modeled with reactive agents.

From the results we see that not all problems related
to in-group tension and conflicts among agents are fully
solved, but the approach has shown promising results, and
we strongly belive that the future work will bring the ex-
pected results.

7. FUTURE WORK

We will continue working on the case, and several strate-
gies and modifications have already shown promising results

e We will introduce the concept of active, sleeping and
locked agents, so an agent goes from being active to
sleeping, when it no longer has intentions to move, and
others should not expect to be able to negotiate with
it. The agent is not finally locked, so if the forces are
growing too large, the agent is awaked again. Only
when it no longer accepts impact from the environ-
ment, it is considered locked.

e Snapshots. Like with transactions we can make a snap-
shot of a current plan and allow the system to con-
tinue a number of steps in the current direction. If
no improvements can be measured we roll back to the
snapshot and with modified parameters we continue in
another direction.

e Predecessor validation could be introduced to dampen
oscillations and improve the settling time. By prede-
cessor validation we mean that an agent is more likely
to go in the direction of its predecessor, if the prede-
cessor seems to be settled.

e We will investigate the impact of extending the scope
of the agent interactions, so the field do not only con-

sists of successors and predecessors. Also interactions
between non-consecutive interests to a bath could in-
fluence agent intensions of sticking to a bath or forming
multiple jumps.

Acknowledgement

We would like to thank all the participants in the DECIDE
project, which is supported by the The Ministry of Science,
Technology and Innovation in Denmark. A special thank to
Bang & Olufsen [1] and Simcon [2] for their support, feed-
back, and creation of the simulation model of the system.

8. REFERENCES
[1] Bang & Olufsen. http://www.bang-olufsen.dk/,
2007.

[2] Simcon. http://www.simcon.dk/, 2007.

[3] S. Bussmann, N. R. Jennings, and M. Wooldridge.
Multiagent Systems for Manufacturing Control.
Springer, 2004.

S. Bussmann and K. Schild. An agent-based approach
to the control of flexible production systems. In 8th
IEEE Int. Conf. on Emerging Technologies and
Factory Automation (ETFA 2001), pages 169-174,
Antibes Juan-les-pins, France, 2001.

F.-T. Cheng, C.-F. Chang, and S.-L. Wu.
Development of holonic manufacturing execution
systems. In Manufacturing the Future - Concepts,
Technologies € Visions, pages 77-100. Advanced
Robotic Systems International, 2006.

B. J. Clement and A. C. Barrett. Continual
coordination through shared activities. In AAMAS
’03: Proceedings of the second international joint
conference on Autonomous agents and multiagent
systems, pages 57-64, New York, NY, USA, 2003.
ACM.

J. L. T. da Silva and Y. Demazeau. Vowels
co-ordination model. In AAMAS ’02: Proceedings of
the first international joint conference on Autonomous
agents and multiagent systems, pages 1129-1136, New
York, NY, USA, 2002. ACM Press.

K. Decker. TAEMS: A Framework for Environment
Centered Analysis € Design of Coordination
Mechanisms, chapter 16, pages 429-448. Wiley
Inter-Science, 1 1996.

K. Decker and J. Li. Coordinated hospital patient
scheduling. In In Proceedings of the Third
International Conference on Multi-Agent Systems
(ICMAS98), pages 104-111, 1998.

K. S. Decker. Environment Centered Analysis and
Design og Coordination Mechanisms. PhD thesis,
Department of Computer Science, University of
Massachusetts, May 1995.

S. M. Deen, editor. Agent-Based Manufacturing -
Advances in the Holonic Approach. Springer, April
2003.

Y. Demazeau. Coordination patterns in multi-agent
worlds: Application to robotics and computer vision.
In IEEE Collogium on Intelligent Agents. IEEE, 2
1991.

A. Giret and V. Botti. Analysis and design of holonic
manufacturing systems. In 18th International
Conference on Production Research (ICPR2005), 2005.

[4]

(6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

114

AT2AI-6: Jensen A.J. et al.: Reactive agent mechanisms for scheduling manufacturing processes

[14] Y. Gufflet and Y. Demazeau. Applying the paco
paradigm to a three-dimensional artistic creation. In
5th International Workshop on Agent-Based
Simulation, ABS’04, pages 121-126, Lisbon, Portugal,
5 2004. SCS.

[15] Hadeli, P. Valckenaers, M. Kollingbaum, and H. V.
Brussel. Multi-agent coordination and control using
stigmergy. Computers in Industry, 53(1):75-96, 2004.

[16] B. Horling, V. Lesser, R. Vincent, T. Wagner,

A. Raja, S. Zhang, K. Decker, and A. Garvey. The
TAEMS White Paper, January 1999.

[17] 1. IGN. Generalisation modelling using an agent
paradigm. Technical Report AG-98-07, AGENT, 1998.

[18] G. Maionea and D. Naso. A soft computing approach
for task contracting in multi-agent manufacturing
control. Computers in Industry, 52(3):199-219, 1996.

[19] H. V. D. Parunak, A. D. Baker, and S. J. Clark. The
aaria agent architecture: From manufacturing
requirements to agent-based system design. Integrated
Computer-Aided Engineering, 8(1):45-58, 2001.

[20] W. Shen, D. H. Norrie, and J.-P. A. Barthés.
Multi-Agent Systems for Concurrent Intelligent Design
and Manufacturing. Taylor & Francis, 2001.

[21] P. Valckenaers, P. V. Hadeli, M. Kollingbaum, H. van
Brussel, and O. Bochmann. Stigmergy in holonic
manufacturing systems. Integrated Computer-Aided
Engineering, 9(3):281-289, 2002.

[22] P. Verstraete, B. Germain, P. Valckenaers, Hadeli, and
H. V. Brussel. On applying the prosa reference
architecture in multiagent manufacturing control
applications. In Multiagent Systems and Software
Architecture, Erfurt, pages 31-47, September 2006.

[23] M. Wooldridge and N. R. Jennings. Intelligent agents:
Theory and practice. Knowledge Engineering Review,
10(2):115-152, 1995.

115

AT2AI-6 Working Notes

116

AT2AI-6: Locatelli M. et al.: An Agent Model for Collaborative Ubiquitous Environments

An Agent Model for Collaborative
Ubiquitous-Computing Environments

Marco P. Locatelli, Marco Loregian, Giuseppe Vizzari
Department of Informatics, Systems and Communication
University of Milano-Bicocca,
viale Sarca 336, 20126 Milano (ltaly).
{locatelli,loregian,vizzari}@disco.unimib.it

ABSTRACT

Besides technological challenges, there is a growing interest
on how pervasive computing can deeply affect the way in
which people interact and accomplish collaborative tasks.
Context awareness plays a crucial role for communities, wh-
ere the degree of participation of a single user dynamically
changes in relation to the distance from the place where
practices occur and in relation with the ability of gather-
ing the right information at the right time, and in a proper
way. In this paper, we adopt an interpretation of pervasive
computing as an environment, populated by interconnected
smart devices, where users can interact with each other, in-
dividually or in groups, to accomplish collaborative tasks.
In other words, we aim at modeling, designing and real-
izing Collaborative Ubiquitous Environments (CUEs). We
present an agent based model, balancing the management
of such a complex scenario between agents and a structured
multifaceted environment.

1. INTRODUCTION

Since Weiser’s seminal work [23], the challenges to perva-
sive computing have changed thanks to the rapid advances
in electronics, distributed systems engineering, and mobile
computing in general [20]. In particular, several middleware
technologies have been proposed as the glue to keep devices
connected in a seamless way, and to allow people to take ad-
vantage from cooperating devices. In spite of a multiplication
of technological approaches [14] — to optimize network per-
formance, reliability, and so on — less attention has been
paid on how pervasive computing platforms can adapt to
the way in which people act, so to reach an optimization in
terms of targeted practices and behaviors.

In this work, we adopt an interpretation of a pervasive
computing scenario as an environment, populated by in-
terconnected active devices, where users can interact with
each other, individually or in groups, to accomplish col-
laborative tasks [4]. In other words, we aim at modeling,
designing and realizing Collaborative Ubiquitous Environ-
ments (CUEs) [11].

Among the many challenges that these scenarios pose to
several research communities in the Computer Science and

Jung, Michel, Ricci & Petta (eds.): AT2A1-6 Working Notes, From
Agent Theory to Agent Implementation, 6th Int. Workshop,
May 13, 2008, AAMAS 2008, Estoril, Portugal, EU.

Not for citation

Engineering areas [25], we focus on the fact that the rele-
vant entities in an pervasive computing system must be able
to opportunistically take advantage of mutual interaction to
obtain information or to exploit specific services, in order to
ultimately satisfy users’ needs. These entities should thus
be considered as highly autonomous components driven by
specific individual motivations, and capable of establishing
high-level interactions with each other. These considerations
have lead to consider the agent-based and multi-agent sys-
tems (MAS) paradigm as a suitable and effective approach
to the modeling, design and engineering of CUEs.

In particular, the approach described in this paper is fo-
cused on the definition of proper structures and mechanisms
for environments [24] that can provide agents with informa-
tion, through their perceptions, and with means of action
and interaction. An environment of this kind can be used
to structure and organize a system in order to achieve the
desired overall resulting behaviour by means of simple agent
specifications and architectures.

In our perspective, a proper CUE can be enacted only if
the constitutive entities are:

e cooperative: i.e., able to operate in strict collabora-
tion by coordinating their actions according to specific
patterns of interaction. These patterns define must
policies, supplying coordination patterns to decide who
has to be involved in a task and with which role. Mem-
bers have to respect them under any condition;

e context-aware: i.e., able to perceive and share infor-
mation about the context so to adapt themselves and
to collaborate in a loosely coupled manner — without
requiring direct contact or communication. This side
of interaction defines opportunities rather than strict
rules, may policies, supplying information to the in-
volved entities in a less prescriptive way, as their exe-
cution is decided by evaluating awareness information
and members’ state.

These two aspects of a CUE must be properly integrated
in order to allow the composing parts of the system in choos-
ing and enacting the most suitable actions to be carried out
in order to exploit their contextual situation to fulfill users’
needs. To support cooperation among entities we provide
them both with an environment to coordinate their behav-
iors and with a separate environment to share and perceive
awareness information. In this work, we consider the agents’
environment not only as a necessary element of the MAS
model, but also as an exploitable abstraction supporting the

117

AT2AI-6: Locatelli M. et al.: An Agent Model for Collaborative Ubiquitous Environments

| Cooperative application i e
! -

¥ pr Community “06\{\6
i e . fulcrum 2002 ;\"\e
.-~ assertion X2 - W\
- _— OO o5
/ C pag ‘e“
NN —— - pt?
reaction s
-~ Personal

<4 Fijeld diffusion

Awareness graph

Figure 1: Elements of the reference model.

definition of suitable solutions to face the requirements of
CUEs.

The main aim of this paper is to illustrate how a MAS
model provide support for the design of CUE; the reference
model (CASMAS, Community-Aware Multi-Agents Situated
Systems [3]) is presented in the following Section. It must be
stressed the fact that the model is aimed at the realization of
systems that are focused on a given community, encapsulat-
ing thus its coordination patterns and the context-awareness
policies. These systems are thus aimed at supporting a rel-
atively small number of users (e.g. the persons working and
studying in a Department of a University, the different work-
ers of a firm) and technological appliances supporting their
activities. The details of the language defined to specify the
behaviours of agents in CASMAS is introduced in Section 3.
Section 4 presents related work, and concluding remarks end
the paper.

2. THE CASMAS MODEL

Ubiquitous-computing systems can shape up as constel-
lations of dynamically defined and interacting communities
of human and technological entities. In the model we are
presenting, each entity is represented by two sets of agents
belonging to two separate classes — grouped in two logi-
cal modules, — defined according to roles: agents can either
enact cooperation mechanisms (within the communities to
which entities belong), or supply the entities with informa-
tion related to context awareness [1].

2.1 Cooperation module

Even if CASMAS (Community-Aware Multi-Agents Situ-
ated Systems) is designed to provide support to communities
of persons, the communities of agents that compose an in-
stance of CASMAS do not try to mimic human behaviors
and social organizations. Agents are organized in commu-
nities with the purpose of autonomously coordinating their
activities and acting to satisfy users’ needs. In other words,
even if a device is personal and somehow used to qualify a
person, its behavior does not directly reflect the behavior of
any person: devices interact with each other by means of
agents gathering in autonomous communities and enacting
(agent-processable community) policies that describe users’
needs.

Communities of entities are established in the coopera-
tion module by aggregation points called community fulcra.
Community fulcra are designed to contain characteristic in-
formation: entities gather around them to exploit such in-
formation and contribute to the definition of a community.
Entities connect to community fulcra by means of coopera-
tion agents (C-agents) (Fig. 1).

Entities own a distinct C-agent for each of the communi-
ties in which they participate: when created, all C-agents
are provided with generic inferential capabilities and with a
set of entity-specific statements and rules. By connecting to
a community fulcrum, C-agents standing for different enti-
ties can share information and acquire community-specific
behaviors that are either defined at design time or injected
in the fulcrum by other entities.

A statement is the unit of information on which an agent
reasons and it is characterized by an owner, a list of re-
ceivers, and an access control to allow modification only by
the owner.

Information (asserted as statements by agents) are shared,
and behaviors (rules, also in the form of statements, that ex-
press how to infer from other statements) can be asserted
in the fulcra and acquired by other agents (Sect. 3). Intel-
ligent behaviors are thus deployed as a result of distributed
inferential capabilities of the interconnected computational
sites. The blackboard approach makes the environment very
flexible with respect to dynamic situations — e.g., entities
joining and leaving communities — since variations of inter-
action patterns among entities can be dynamically managed
through mechanisms allowing for the (de)activation of be-
haviors.

In addition, each entity owns a personal fulcrum for its
inner coordination (each C-agent is also connected to this
fulcrum) and, in case of human entities, for the coordination
of the various technological entities that refer to the same
person.

The behaviors of C-agents are influenced by the degree
of participation of entities in communities, according to ad-
ditional context information that is supplied by the aware-
ness module. In other words, when a specific application
domain is modeled, it is necessary to define which factors
concur in the characterization of an entity with respect to a
community and the context. The degree of participation is
then evaluated by weighting such information according to
a domain-specific function.

2.2 Awareness module

The context awareness facet of an ubiquitous computing
environment can encompass several different aspects, such
as the physical position of an entity as well as its logical
(sometimes social) role, such as the responsibility in an or-
ganization or a project.

Aim of the awareness module is to manage this kind of
information, and entities are therein represented by specific
awareness agents (A-agents).

The (spatial, social, organizational) environments in which
entities are situated are modeled as awareness graphs, also
called topological spaces, and A-agents are connected to their
nodes, also called sites, accordingly.

Each community can refer to one or more graphs (one
for each aspect), therefore, each entity needs an A-agent for
each of them. Similarly, the same graph could support more
than one community. However, different communities may

118

AT2AI-6: Locatelli M. et al.: An Agent Model for Collaborative Ubiquitous Environments

have different perceptions of the same aspect (e.g., different
notions of distance in a spatial arrangement) thus requiring
a more precise definition of interaction on awareness graphs.

The awareness module has been designed according to
the perception-reaction paradigm [21]: the behaviors of A-
agents are driven by the perception of signals, called fields,
emitted by other agents and propagated across the aware-
ness graph (e.g., to notify presence in a specific site). The
propagation of fields is mediated in intensity according to
a graph-specific and community-specific distance function
evaluated in and between sites. When a field reaches a site
its intensity is computed according to the weight of the arc
connecting the current site to the one from which the field
is coming, and then the field (if sufficiently intense) can be
propagated to adjacent sites. If the field reaches a site where
an A-agent is connected, and if it is relevant to the A-agent,
the agent evaluates its local intensity according to a char-
acteristic (sensitivity) function: possibly, the A-agent can
then emit new fields as the result of inner computation, and
reach other A-agents.

For example, the closeness of some entities can be con-
sidered a fundamental awareness information: A-agents can
have a sensitivity function based on “intensity of the per-
ceived presence field greater than z” where a high threshold
can be set to perceive entities in the close neighborhood
while a lower threshold can be set to perceive also entities
further apart.

2.3 Integrating the two aspects

Additionally, A-agents can provide information for the co-
operation module, to possibly trigger some reaction in the
C-agents. To this aim, special agents bridging information
between the two modules are defined: manager agents (M-
agents) are specialized C-agents that can translate informa-
tion expressed in terms of fields (exported by the A-agents)
into statements that C-agents can understand (by publish-
ing them into the personal fulcrum), and, in the other di-
rection, import fields in A-agents when requests for propa-
gation come from C-agents (e.g., when a device localizes an
entity). Finally, each community fulcrum has an M-agent
enforcing inter-entity coordination by causing the propaga-
tion of general community awareness information on aware-
ness graphs (e.g., causing devices to join the community
when they are needed), and by applying access policies and
preventing unauthorized entities to join the community.

Entity

Personal N\
fulcrum

Community
fulerum

Community ,/
fulcrum

Graph

! !
: . :
1b) | Entity ic)
i ¥ i
i :
i i
i i

Craph Entity |
site

Figure 2: Notation used to represent the entities.

To better represent the instances of CASMAS (e.g., with
respect to scenarios), the graphical notation presented in
Fig. 2 was defined. Each entity — composed of the elements
in a) — is drawn as a rounded rectangle, and can be linked
to multiple fulcra and topological spaces. A C-agent is in-
stantiated for each connection to a fulcrum, and an A-agent
is instantiated for each connection to a topological space.

An entity such as a person’s PDA can be connected to
a fulcrum of an entity that represents a person, instead of

being connected to a community fulcrum. The notation used
to depict such situation is showed in c); in this case, a C-
agent is created when an entity connects to another one.

) |

Large Display

center

right

Large Display Large Display
left

Inkjet printer

Physical topology
of CUE

Physical topology
of CUE

|
| Positioning

! system

PDA

1 Alex
(A)

Alex

CUE GROUP ©

Figure 3: Overall and detailed views of the instan-
tiation of CASMAS for the scenario.

Fig. 3 presents the details of a CASMAS instance sup-
porting a CUE scenario modeled by means of the CASMAS
approach. In particular, on the left there is an overall view of
a set of CUE (domain) entities that are reified and associated
to a CASMAS entity. It must be noted that different tech-
nological appliances are represented as entities (e.g. large
displays, printers), as well as human actors. They are gen-
erally connected both to the workgroup community fulcrum
and with the topological space of the building in which the
CUE is situated. A detailed view of the same instantiation
of CASMAS specific for Alex is presented on the right side
of the figure: Alex’s personal fulcrum, with the associated
M-agent, a C-agent that links her to the Atelier community
and an A-agent that localizes her on the topological space.
Alex’s PDA is modeled by its fulcrum and the C-agent link-
ing the PDA to Alex’s personal fulcrum.

This structure of the environment allows both the distri-
bution of awareness information, on the topological repre-
sentation of CUE’s physical aspect and the sharing of state-
ments guiding the coordination of activities of entities be-
longing to the community based in the CUE. The entities
act as a bridge between the two aspects of the CUE, being
able to perceive and generate awareness information, on one
hand, and to exploit it for supporting the coordination of
their activities on the other. In the following, the basic lin-
guistic structures to define the behaviours and interactions
of the different agents of the CASMAS model will be briefly
presented.

119

AT2AI-6: Locatelli M. et al.: An Agent Model for Collaborative Ubiquitous Environments

3. CASMAS LANGUAGE

A simple language has been defined for CASMAS agents.
Basic elements are called primitives and allow for simple op-
erations. Primitives can be combined in more complex struc-
tures: mechanisms or actions. The former are employed by
C-agents, the latter by A-agents.

A primitive implements an elementary function useful
for the agents. The primitives used by the C-agents oper-
ate on statements and are: assert, modify, retract (erases
a statement), loadBehavior, translate, and propagate. The
primitives used by the A-agents are: emit, export, transport
(moves the agent to another site), and t¢rigger (changes the
agent’s state). These primitives are contextualized in the
following where mechanisms and actions that apply them
are presented.

3.1 Mechanisms

A mechanism is a set of (at least two) rules that im-
plements a mode of interaction that can be adopted by the
C-agents. In particular, a mechanism is composed by a rule
to execute the operation(s) and a rule to notify when the
mechanism can not be executed — no feedback is otherwise
necessary.

A mechanism has the following (basic) form:

(defrule <execute-rule-name>

(<fulcrum-name>::allow (what <wish-statement-name>)
(state TRUE) (to ?entityId))

(<fulcrum-name>: :wishTo (what <wish-statement-name>)
<slot>+)

<consistency-statement>+

=>

<operation>+)

(defrule <notify-rule-name>

(<fulcrum-name >::allow (what <wish-statement-name>)
(state FALSE) (to 7entityId))

(<fulcrum-name>::wishTo (what <wish-statement-name>)
<slot>+)

=>

(assert (_PERSONAL_::notifyFailure (what <wish-statement-name>)
[(on <statement-id>)])

The activation of the execution rule (line 1) and of the
notification rule (10) is guarded by an allow statement (2
and 11) with the state set respectively to TRUE or FALSE,
meaning that the entity can (or is forbidden to) execute the
mechanism.

If the check is referred to the entity that is executing the
mechanism, then the 7entityId (3) should be changed to
7myId; if it is referred to the requester, it should be changed
to ?ownerId (matched on the owner slot of the wishTo state-
ment, that is a basic property of each statement). Moreover,
both rules match a wishTo statement that expresses the re-
quest for activation of the mechanism by an entity. The
execution rule can check other consistency conditions for
the specific mechanism, for example, a device with a small
screen can ensure a proper display only of short messages:

(defrule _COMMUNITY_::showMessage
(_COMMUNITY_: :wishTo (owner ?applicantId)
(what "showMessage") (message ?message))
(_COMMUNITY_::allow (what "showMessage")
(state TRUE) (to 7applicantId))

(test (< ?message ?MAX_LENGTH))
?display<-(display)

=>
(modify ?display (currentMessage 7message))

Mechanisms can be generally classified according to the
purpose for which they are designed, i.e., according to the
kind of interaction between agents they supply (Fig. 4):

Translation mechanisms are used by C-agents to move
information from a source fulcrum to a target one. The
information to be moved and the possible elaboration of such
information (before it is entered in the target fulcrum) are
expressed as statements, and the translation is enacted as
an assertion in the target fulcrum.

Membership mechanisms are used by M-agents of per-
sonal fulcra to induce the acquisition of behaviors by the
C-agents of the entity from the community to which they
belong. In practice, M-agents assert a member0f statement
in the personal fulcrum; the statement quantifies the de-
gree of participation of the entity to the community. Degree
computation is based on awareness information perceived by
the entity in relation to the specific community. Then, C-
agents can activate the rule of the membership mechanism
to load the behavior according to the degree of participation
through the loadBehavior primitive. Membership mecha-
nisms do not contain a wishTo statement since they only
describe mandatory C-agent reactions to the presence of the
member0f statement.

Propagation mechanisms are used by M-agents — of any
fulcrum — to respond to the willingness of C-agents to prop-
agate awareness information within an awareness space by
using the propagate primitive. Propagation mechanisms
are in charge of the conversion between a statement and the
field’s format representing information perceived and to be
propagated by the A-agents on the topological space.

Awareness mechanisms are used by M-agents to insert
into their fulcrum the awareness information contained in
the above mentioned fields; insertion is accomplished by
means of the assert primitive. Awareness mechanisms are
in charge of the conversion between the field’s format and
the awareOf statement representing awareness information
in the target fulcrum.

3.2 Actions

The A-agents have a small set of actions that specify
whether and how agents change their state or position, and
propagate information on the topological space. Trigger and
transport are the actions to change state and position, re-
spectively.

Trigger defines how the perception of a field causes a
change of state in the receiving agent, while transport de-
fines how the perception of a field causes a change of posi-
tion in the receiving agent. Emit is the action to propagate
information on the topological space; this action can also
be viewed as the activating part of a sort of asynchronous
communication among agents. In fact, asynchronous inter-
action among agents takes place through a field emission—
propagation—perception mechanism. An agent emits a field
when its state is such that it can be source for it. Field
values propagate throughout the space according to the dif-
fusion function of the field. Field diffusion along the space
allows the other agents to perceive it. Perception function,
characterizing each agent type, defines the second side of an
asynchronous interaction among agents: that is, the possible
reception of broadcast messages conveyed through a field, if
the sensitivity of the agent to the field is such that it can
perceive it.

In CASMAS these actions are implemented as rules, and

120

AT2AI-6: Locatelli M. et al.: An Agent Model for Collaborative Ubiquitous Environments

i Cooperative application |
___________ *_ —_———————

Community

\ fulerum

Awmrenéss
(awareOf) |

B

Membership
(loadBehavior)

Figure 4: Mechanisms provided by CASMAS.

they can fire both on an importedField and on a field per-
ceived from the site where the agent is situated. In the
following, _AW_ is where imported fields are asserted by the
M-agent, _SPACE_ is the topological space where the A-agent
is situated.

The situated fact reifies on which site an agent is situ-
ated. The match between the siteId of field and the one
of situated ensures that the field is perceived from the site
where the agent is situated.

(defrule transport
(or
(_AW_::importedField (type ?type) (intensity 7intensity)
(data 7data) (to 7myId))
(_SPACE_::field (site 7sitelId) (type ?7type)
(intensity ?intensity) (data ?data))
)
[<conditions-on-field>]
(_SPACE_: :situated (agent 7myId) (onSite ?siteld))
(test (neq 7siteld ?NEWSITE_ID))
(state ?state)
[<conditions-on-state>]
=>0
(transport ?NEWSITE_ID)

The NEWSITE_ID must be the site where the agent has to
move in reaction to the perceived field. If necessary, the des-
tination site can be computed instead of defined explicitly.
The transport is executed only if the destination site differs
from the current site where the agent is situated.

(defrule emit
(or
(_AW_::importedField (type ?type) (intensity 7intensity)
(data ?data) (to ?myId))
(_SPACE_::field (site 7siteld) (type ?7type)
(intensity ?intensity) (data ?data))
)
<conditions-on-field>
(_SPACE_::situated (agent ?myId) (onSite ?siteId))
(state ?state)
[<conditions-on-state>]
=>
(emit "FIELD_TYPE" ?intensity [?datal))

© ® N OO AW N e

11
12
13
14

In accordance with the model, the emit is possible only
on the site where the agent is situated, so the site is not a
parameter for emit. Moreover, the data parameter is used
to associate an information to the field and it is optional.

(defrule trigger
(or
(_AW_::importedField (type ?type) (intensity 7intensity)
(data ?data) (to ?myId))
(_SPACE_::field (site ?siteld) (type ?type)
(intensity 7intensity) (data ?data))
)
<conditions-on-field>
(_SPACE_::situated (agent ?myId) (onSite ?siteld))
(state ?state)
[<conditions-on-state>]
=>
(trigger ?NEWSTATE)

If conditions are satisfied, a change of state is triggered.

4. RELATED WORK

The focus of this paper is on the design of pervasive com-
puting environments, particularly with respect to commu-
nities of persons: such communities are first-class concepts
both in CASMAS and in the realized supporting infrastruc-
ture and, therefore, they are present both at the model and
the implementation level. From this point of view this work
differs from other existing proposals that employ agents and
agent—based infrastructures simply as a middleware for the
design and implementation of pervasive computing systems
(see, e.g., [8, 18]).

Moreover, CASMAS is a model to let software applica-
tions coordinate and share awareness information; it is not
mainly intended to (re)implement software applications, al-
though it is possible. Instead, approaches such as BEACH [22]
or iROS [6] provide support to the development of software
applications from data management up to user interfaces.
Differently from these proposed approaches, CASMAS de-
fines the concepts of community fulcrum, topological space,

121

AT2AI-6: Locatelli M. et al.: An Agent Model for Collaborative Ubiquitous Environments

and entity, and collaborative ubiquitous-computing environ-
ments are built on them.

CASMAS agents are programmed declaratively (by rules),
and they can be classified as reactive agents [5]. Differently
from the FIPA approach!, that is based on the direct ex-
change of messages, and in general from approaches based
on Agent Communication Languages (ACLs) [7], interac-
tions among CASMAS agents are mediated by a space both
in the coordination module, by exchanging information in
fulcra, and in the awareness module, by propagating infor-
mation on topological spaces.

The coordination module is naturally implemented th-
rough DJess because it allows to directly map the agents and
the fulcra to the inferential systems and to the shared work-
ing memory, respectively. Moreover, it provides some useful
features such as the sharing of rules that are fully exploited
by CASMAS. Among other platforms for pervasive comput-
ing environments, the following experiences seem interesting
for comparison:

The Gaia project is a leading effort in the field of perva-
sive computing systems. Gaia [19] is an operating systems
for pervasive computing environments that are called Ac-
tive Spaces. In an Active Space everything (users, actions,
contexts) is managed by agents with different specifications,
belonging to different classes — like CASMAS agents. A
generic distinction defines Context Providers, Context Syn-
thetizers and Context Consumers. In the last class are es-
sentially all the application agents. As for CASMAS, this
separation requires that each agent embeds some logic capa-
bility but information on context is replicated across several
agents, and not shared to gather agents, also the character-
ization (i.e., the configuration) of similar entities is totally
independent from an agent to another.

Finally, with respect to the awareness module, other
approaches have been analyzed during our research, before
basing the current implementation on DJess:

e a framework for MMASS based applications [2], sup-
plies computational support to the abstractions and
mechanisms defined by the model, and if properly in-
tegrated with a suitable middleware (the MAIS reflec-
tive architecture [17]) supporting network communica-
tion it can provide a reasonable support to the realiza-
tion of the awareness model. However, this framework
lacks the possibility of giving declarative descriptions
of behaviors, a feature that is currently exploited to
facilitate the task of deploying CASMAS modules;

an artifact-based approach [15], supporting the design
and engineering of MAS environment, through the adop-
tion of TuCSoN tuple centres [16], could be adopted
to represent the internal spatial structure of the topo-
logical layer as well as the various related mechanisms
(e.g. field diffusion), realized in the form of reaction
rules considering the TuCSoN [16] approach to artifact
implementation. This approach, however, is mainly fo-
cused on the realization of infrastructures supporting
agent interaction and coordination, while DJess also
supports the realization of simple reactive agents and
to describe their reactive behaviors in term of rules,

!Foundation for Intelligent Physical Agents (FIPA) stan-
dard specifications available at http://www.fipa.org/
repository/standardspecs.html

and to distribute the execution of agents and topologi-
cal spaces in a transparent way for the system designer
and of course for the agents too;

the TOTA middleware [13] offers a rich and sophisti-
cated support to the design and engineering of Per-
vasive Computing applications exploiting the abstrac-
tions of agents and MAS environment. However, one of
TOTA’s most distinguishing features is the possibility
to diffuse and keep updated context—awareness infor-
mation in a dynamic environment, and in particular it
offers the possibility to maintain the structure of Co-
Fields over a changing network. In this case, however,
the structure of the network is not very important in
determining the context of a given node. Instead the
CUE scenario generally requires the capability to in-
tegrate several topological spaces, related to different
aspects of the CUE.

CONCLUDING REMARKS

This paper has briefly presented an approach to the mod-
eling and design of pervasive computing systems supporting
the coordinated activities of members of communities. In
particular, the CASMAS model was introduced as a support
for the representation and management of both awareness
and coordination facets of a CUE. The CASMAS concep-
tual model allows for the design of systems focusing more on
collaborative tasks — application objectives — rather than
on technological issues. The model was applied to represent
and manage different types of CUES, in the healthcare con-
text [10] and for the definition of smart environments in a
educational facilities [9, 12]. Future works are aimed on one
hand at a concrete experimentation of the approach and the
supporting infrastructure in the above introduced contexts.

In addition to this form of evaluation of the adequacy of
the modeling approach and the realized supporting infras-
tructure, we also working on instruments supporting a sim-
ple configuration of the CUE, its structure, rules and laws
for the management of awareness and coordination policies.
This aspect is particularly important due to the specific na-
ture of this kind of application: in fact, even if a thorough
analysis of methodological aspects of CUE definition must
still be carried out, we envisage a specific role of CUE de-
signer to manage the phases leading from an analysis of the
specific application scenario (including the involved actors
and devices, as well as the relevant facets of the specific
notion of context), to the definition of a set of spatial and
logical layers of representation, each one endowed with an
internal structure, active entities and patterns of interaction
among them.

S.

6. REFERENCES

[1] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies,
M. Smith, and P. Steggles. Towards a better
understanding of context and context-awareness. In
HUC 99, pages 304-307, London, UK, 1999.
Springer-Verlag.
S. Bandini, S. Manzoni, and G. Vizzari. Towards a
platform for multilayered multi agent situated system
based simulations: focusing on field diffusion. Applied
Artificial Intelligence, 20(4-5):327-351, 2006.
F. Cabitza, M. P. Locatelli, M. Sarini, and C. Simone.
CASMAS: Supporting collaboration in pervasive

122

AT2AI-6: Locatelli M. et al.: An Agent Model for Collaborative Ubiquitous Environments

[11]

[12]

[13]

[14]

[15]

environments. In Pervasive Computing and
Communications, 2006. PerCom 2006. Fourth Annual
IEEE International Conference on, pages 286-295.
IEEE, 2006.

R. H. Campbell. Beyond global communications: the
active world. In PerCom, page 211. IEEE Computer
Society, 2005.

A. Hector. A new classification scheme for software
agents. In ICITA ’05: Proceedings of the Third
International Conference on Information Technology
and Applications (ICITA’05) Volume 2, pages
191-196, Washington, DC, USA, 2005. IEEE
Computer Society.

B. Johanson, A. Fox, and T. Winograd. The
interactive workspaces project: experiences with
ubiquitous computing rooms. IEEE Pervasive
Computing, 1(2):67-74, 2002.

Y. Labrou, T. W. Finin, and Y. Peng. Agent
communication languages: the current landscape.
IEEE Intelligent Systems, 14(2):45-52, 1999.

T. C. Lech and L. W. M. Wienhofen. AmbieAgents: a
scalable infrastructure for mobile and context-aware
information services. In 4rd International Joint
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2005), July 25-29, 2005, Utrechit,
The Netherlands, pages 625-631. ACM Press, 2005.
M. P. Locatelli and M. Loregian. Active coordination
artifacts in collaborative ubiquitous-computing
environments. In B. Schiele, A. K. Dey, H. Gellersen,
B. E. R. de Ruyter, M. Tscheligi, R. Wichert, E. H. L.
Aarts, and A. P. Buchmann, editors, Aml, volume
4794 of Lecture Notes in Computer Science, pages
177-194. Springer, 2007.

M. P. Locatelli and C. Simone. Supporting care
networks through an ubiquitous collaborative
environment. In C. Nugent and J. Augusto, editors,
Smart Homes and Beyond, volume 19 of Assistive
Technology Research. 10S Press, 2006.

M. P. Locatelli and G. Vizzari. Awareness in
collaborative ubiquitous environments: the
multilayered multi-agent system approach. ACM
Transactions on Autonomous and Adaptive Systems,
2(4), 2007.

M. P. Locatelli and G. Vizzari. Environment support
to the management of context awareness information.
In D. Weyns, S. Brueckner, and Y. Demazeau, editors,
Proceedings of Engineering Environment-Mediated
Multiagent Systems 2007, pages 162—-169, 2007.

M. Mamei and F. Zambonelli. Programming pervasive
and mobile computing applications with the TOTA
middleware. In 2nd IEEE International Conference on
Pervasive Computing and Communication
(Percom2004), pages 263-273. IEEE Computer
Society, 2004.

C. Mascolo, L. Capra, and W. Emmerich. Middleware
for mobile computing (a survey). In E. Gregori,

G. Anastasi, and S. Basagni, editors, Neworking 2002
Tutorial Papers, volume 2497 of Incs, pages 20-58,
2002.

A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and
L. Tummolini. Coordination artifacts:
environment-based coordination for intelligent agents.

(16]

(17]

(18]

(19]

(20]

(21]

(22]

23]

(24]

(25]

In N. R. Jennings, C. Sierra, L. Sonenberg, and

M. Tambe, editors, 3rd international Joint Conference
on Autonomous Agents and Multiagent Systems
(AAMAS 2004), pages 286—293. ACM Press, 2004.

A. Omicini and F. Zambonelli. Coordination for
Internet application development. Autonomous Agents
and Multi-Agent Systems, 2(3):251-269, Sept. 1999.
Special Issue: Coordination Mechanisms for Web
Agents.

B. Pernici, editor. Mobile Information Systems:
Infrastructure and Design for Adaptivity and
Flexibility. Springer, 2006.

M. D. Rodriguez, J. Favela, A. Preciado, and

A. Vizcaino. Agent-based ambient intelligence for
healthcare. AI Communications, 18(3):201-216, 2005.
M. Romaén, C. Hess, R. Cerqueira, A. Ranganathan,
R. H. Campbell, and K. Nahrstedt. Gaia: a
middleware platform for active spaces. SIGMOBILE
Mob. Comput. Commun. Rev., 6(4):65-67, 2002.

M. Satyanarayanan. Pervasive computing: Vision and
challenges. IEEE Personal Communications, pages
10-17, Aug. 2001.

C. Simone and S. Bandini. Integrating awareness in
cooperative applications through the reaction-diffusion
metaphor. Computer Supported Cooperative Work,
11(3-4):495-530, 2002.

P. Tandler. The beach application model and software
framework for synchronous collaboration in ubiquitous
computing environments. Journal of Systems and
Software, 69(3):267-296, 2004.

M. Weiser. The computer for the 21st century. In
Scientific American, volume 265 of 3, pages 94-104,
1991.

D. Weyns, A. Omicini, and J. Odell. Environment as a
first class abstraction in multiagent systems.
Autonomous Agents Multi-Agent Systems, 14(1):5-30,
2007.

F. Zambonelli and H. V. D. Parunak. Signs of a
revolution in computer science and software
engineering. In Proceedings of Engineering Societies in
the Agents World III (ESAW2002), volume 2577 of
Lecture Notes in Computer Science, pages 13-28.
Springer—Verlag, 2002.

123

AT2AI-6 Working Notes

124

AT2AI-6: Mari M. et al.: Enhancing Multi-Agent Systems with Peer-to-Peer and Service-Oriented Technologies

Enhancing Multi-Agent Systems with Peer-to-Peer and

Service-Oriented Technologies

Marco Mari, Agostino Poggi, Michele Tomaiuolo and Paola Turci
Dipartimento di Ingegneria dell'lInformazione,
Universita degli Studi di Parma,
Viale G.P. Usberti, 181/A, 43100, Parma, ltaly
Tel. +39 0521 905708, Fax +39 0521 905723

{mari, poggi, tomamic, turci}@ce.unipr.it

ABSTRACT

Peer-to-peer and service-oriented technologies have emerged as
the dominant means for realizing scalable and interoperable
distributed applications. This incontrovertible fact seems to
nullify the expectation of multi-agent system researchers that
agents could play a fundamental role in realizing such
applications. However, from a deeper analysis, it is plain that
neither peer-to-peer nor service-oriented technologies can provide
by themselves the autonomy and social and proactive capabilities
of agents. Motivated by such evidence, several research works
have been undertaken with the aim of tackling the problem of
integrating peer-to-peer and service-oriented technologies with
multi-agent systems. This paper deals with this issue as well. In
particular, it shows how the JADE software framework can take
advantage of two such technologies both for realizing the
infrastructure of distributed multi-agent systems and for
supporting the interaction with non-agentized systems.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
— multiagent systems.

General Terms
Management, Performance, Experimentation.

Keywords

peer-to-peer technologies. srvice-oriented technologies, JADE.

1. INTRODUCTION

One of the main challenges of multi-agent systems is to make the
realization of scalable distributed systems easy [9][6] and as a
consequence to become the main means to support legacy systems
interoperability. In the last years, however, two technologies,
peer-to-peer and service-oriented, have made an impressive
progress and seem to have good chances of competing with multi-
agent systems as the main means for the realization of scalable
and interoperable systems. Conversely, neither of these two
technologies is able to provide by themselves the autonomy and
social and proactive capabilities of agents and thus the realization
of flexible adaptive distributed systems may be difficult.

Jung, Michel, Ricci & Petta (eds.): AT2AI-6 Working Notes, From
Agent Theory to Agent Implementation, 6th Int. Workshop,
May 13, 2008, AAMAS 2008, Estoril, Portugal, EU.

Not for citation

Confirming what has been said above, most people involved in
multi-agent systems research are firmly convinced that an
integration of multi-agent systems with the aforementioned
technologies seems to be the most suitable solution for the
realization of scalable and interoperable distributed applications.
As a matter of fact, in the last years a lot of work has been
presented for the integration of multi agent systems with one or
both of the two technologies [24][12][13][4].

This paper is situated in this context. In particular, it shows how
JADE, one of the best known and most used software framework
for the development of multi-agent systems [2][14], has been
extended with these technologies both to support the realization of
multi-agent systems and to facilitate the interoperability with
peer-to-peer and service-oriented systems. The next two sections
respectively describe the peer-to-peer and the service-oriented
extensions of the JADE software framework. Section 4 presents a
JADE multi-agent system that has been realized exploiting the
extensions of JADE and that supports collaboration via an
information and expert finder service. Finally, section 6
summarizes the contributions of our work and points out future
lines of research.

2. EXTENDING JADE WITH PEER-TO-
PEER TECHNOLOGIES

The traditional, client-server model describes systems where
computational resources and data are centralized in few servers,
which respond to requests of clients. On the other hand, clients
are supposed to have little capabilities and rely on the resources
of servers for most of their tasks. The multi-agent model reverses
this paradigm and describes systems organized in a peer-to-peer
fashion, where each participant potentially has some resources to
share and some services to offer to the community of agents.
Thus, according to the context, each agent is able to play either
the role of client or server.

JADE implements FIPA specifications for multi-agent systems,
and so enables the realization of peer-to-peer distributed systems,
constituted by smart and loosely coupled agents communicating
by means of asynchronous ACL messages.

Nevertheless, JADE does not exploit some important features of
modern peer-to-peer networks, in particular:

1. The possibility to build an “overlay network”, hiding
differences in lower level technologies and their related
communication problems;

125

AT2AI-6: Mari M. et al.: Enhancing Multi-Agent Systems with Peer-to-Peer and Service-Oriented Technologies

2. The possibility to build a completely distributed, global
index of resources and services, without relying on any
centralized entity.

Some multi-agent systems, like Agentscape, approached the same
issues by developing a dedicated peer-to-peer network layer [17].
For JADE, we choose to integrate agent platforms into an already
existing and used peer-to-peer environment like JXTA, thus,
benefiting from a well tested system and exposing services to
other entities participating in the networkr.

2.1 IXTA-MTP

In the course of some large projects based on agent technologies
like Agentcities and @lis TechNet [18][1], some recurring
problems emerged at the level of connection among remote
platforms. The importance of these problems invariably grows
with the cardinality and geographical extension of the
interconnected infrastructure, and has been acknowledged in other
similar large scale environments.

Most peer-to-peer networks specifically address this kind of
problems allowing the connection of peers located behind
firewalls, Network Address Translators (NATs) and Dynamic
Host Configuration Protocol (DHCP) servers, or requiring
different and particular protocols like HTTP or WAP. To this end,
peer-to-peer networks create an overlay infrastructure above
underlying diverse and problematic links in order to realize a
more abstract and homogeneous ground and simplify the
communications among peers.

One of the most used technologies for this purpose is JXTA [15].
JXTA technology is a set of open, general-purpose protocols that
allows any connected device on the network (from cell phones to
laptops and servers) to communicate and collaborate in a peer-to-
peer fashion. The project was originally started by Sun
Microsystems, but its development was kept open from the very
beginning. JXTA comprises six protocols allowing the discovery,
organization, monitoring and communication between peers.
These protocols are all implemented on the basis of an underlying
messaging layer, which binds the JXTA protocols to different
network transports.

JXTA peers can form peer groups, which are virtual networks
where any peer can seamlessly interact with other peers and
resources, whether they are connected directly or through
intermediate proxies. JXTA defines a communication language
which is much more abstract than any other peer-to-peer protocol,
allowing to use the network for a great variety of services and
devices. A great advantage of JXTA derives from the use of XML
language to represent, through structured documents, named
advertisements, the resources available in the network. XML
adapts without particular problems to any transport mean and it is
already an affirmed standard, with good support in very different
environments, to structure generic data in a form easily
analyzable by both humans and machines.

With respect to connectivity, JXTA does not suppose a direct
connection is available between all couple of peers. Peers can use
the Peer Endpoint Protocol to discover available routes for
sending a message to a destination peer. Particular peers, called
routers, are in charge of responding to such queries providing
route information, i.e. a list of gateways connecting the sender to
the intended receiver. A gateway acts as a communication relay,

where messages can be stored and later collected by their
intended recipient, overcoming problems related to limited
connectivity.

JADE, on the other hand, offers an extensible mechanism for the
transport of messages among platforms, in the form of pluggable
Message Transport Protocols (MTPs). The default
implementations are based on IIOP and HTTP, which are both
limited by the requirement of a direct connection between sender
and receiver.

Exploiting the extensibility of JADE platforms, a JXTA-MTP has
been developed at the University of Parma, which overcomes
these limitations. To transport messages between two platforms,
the new MTP uses JXTA pipes which are bound to specific
endpoints (typically an IP address and a TCP port) only
dynamically. JXTA pipes are advertised on the network in the
same way as other services offered by peers, and provide a global
scope to peer connectivity.

The JXTA-MTP implementation allows using not only plain
JXTA pipes, but also secure ones with encryption and signature
mechanisms guaranteeing privacy, integrity and authenticity of
exchanged messages.

2.2 JXTA-ADS

What usually happens in a multi-agent platform is the
cohabitation of multiple agents interacting in a common and
cohesive environment, making use of a formal communication
language defined by its own syntax and semantics, in order to
complete tasks demanded by users. For the communication to be
constructive, it is necessary to provide agents with a system
allowing them to reciprocally individuate offered services. This
happens thanks to the presence of a yellow pages service,
provided by the platform, which can be consulted by agents when
needed. However this often limits the search inside a single
platform. Solutions are possible, which allow the consultation of
other yellow pages services, but they necessitate the a priori
knowledge of the address of the remote platform where services
are hosted or listed.

An alternative solution is represented by a yellow pages service
leaning on a peer-to-peer network like JXTA, thanks to which
each network device is able to individuate in a dynamic way
services and resources of other network devices.

Technologies inherent to web services are imposing WSDL as a
standard language to publicize all different available resources. In
FIPA, a simpler formalism is defined to describe services and
resources exposed by agents and linked to their own domain
ontology. JXTA does not establish any constraint on the way to
describe and invoke services. JXTA protocols simply provide a
generic framework, allowing the use of any mechanism, also
WSDL or FIPA service descriptions, to exchange information
needed to invoke a service.

Particular peers, called rendezvous peers, are in charge of
indexing resources made available in the network and find them
when requested by other peers. Rendezvous peers can also
communicate queries to each other, if they do not possess the
right information, thus enabling the discovery of advertisements
beyond the local network.

126

AT2AI-6: Mari M. et al.: Enhancing Multi-Agent Systems with Peer-to-Peer and Service-Oriented Technologies

In fact, in JXTA, resources are described by advertisements,
which are essentially XML documents collecting metadata of
available resources. Advertisements are not stored on some single
machine, such as a server, or on a hierarchical infrastructure.
They are distributed among rendezvous peers, which implement a
distributed algorithm, called shared resource distributed index
(SRDI), for the creation and management of the index of
resources available in the network. On the basis of some indexed
attributes, the mechanism can solve queries made anywhere in the
rendezvous network. Basically, the global index is a loosely
consistent distributed hash table, where the hash of an indexed
attribute is mapped to some peer responsible for storing the actual
advertisement.

FIPA has acknowledged the growing importance of the JXTA
protocols, and it has released some specifications for the
interoperability of FIPA platforms connected to peer-to-peer
networks. In particular, in [7] a set of new components and
protocols are described, to allow the implementation of a DF-like
service on a JXTA network. These include:

Generic Discovery Service — a local directory facilitator, taking
part in the peer-to-peer network and implementing the Agent
Discovery Service specifications to discover agents and services
deployed on remote FIPA platforms working together in a peer-
to-peer network.

Agent Peer Group — a child of the JXTA Net Peer Group that
must be joined by each distributed discovery service.

Generic Discovery Advertisements — to handle agent or service
descriptions, for example FIPA df-agent-descriptions.

Generic Discovery Protocol — to enable the interaction of
discovery services on different agent platforms. It’s a
request/response protocol to discover advertisements, based on
two simple messages, one for queries and one for responses.

The JADE development environment does not provide any
support for the deployment of real peer-to-peer systems because it
only provides the possibility of federating different agent
platforms through a hierarchical organization of the platform
directory facilitators on the basis of a priori knowledge of the
agent platforms addresses. Therefore, at University of Parma the
JADE directory facilitator has been extended to realize a peer-to-
peer network of agent platforms thanks to the JXTA technology
[15] and thanks to two preliminary FIPA specifications for the
Agent Discovery Service [7] and for the JXTA Discovery
Middleware [8].

This way, JADE integrates a JXTA-based Agent Discovery
Service (ADS), which has been developed in the respect of
relevant FIPA specifications to implement a GDS. Each JADE
platform connects to the Agent Peer Group, as well as to other
system-specific peer groups. The Generic Discovery Protocol is
finally used to advertise and discover agent descriptions, wrapped
in Generic Discovery Advertisements, in order to implement a DF
service, which in the background is spanned over a whole peer

group.

3. EXTENDING JADE WITH SERVICE-
ORIENTED TECHNOLOGIES

Industry is increasingly interested in executing business functions
that span multiple applications, thus requiring high-levels of
interoperability and a more flexible and adaptive business process
management. The most appropriate response to this need seems to
be having systems assembled from a loosely coupled collection of
Web services. This technical area appears to be an interesting
environment in which the agent technology can be exploited with
significant advantages. As a matter of fact, several researches
belonging to the agent community have dealt with the issues
concerning the interconnection of agent systems with W3C
compliant Web services, with the aim of allowing each
technology to discover and invoke instances of the other. One
evident benefit of this is the central role that agents could play in
a service-oriented scenario, by efficiently supporting distributed
computing [3] and allowing the dynamic composition of Web
services.

The proposed integration approaches [11][16][19] denote
different shades of meaning of the same idea, i.e. a wrapper or an
adapter module playing the role of mediator between the two
technologies. Most of them have adopted the gateway approach,
providing a translation of WSDL descriptions and UDDI entries
to and from FIPA specifications, thereby limiting the
communication to simple request-response interactions. One
approach [21], which differentiates quite substantially from the
others, realizes a FIPA compliant JADE Message Transport
System for Web Services enabling agents to interact through the
Web with Web services preserving the FIPA compliant
communication framework. But, as stated by the author himself, it
only provides a solution for an integration at a low level, leaving
a number of issues at higher levels unresolved.

These efforts towards an integration of the two technologies,
which imply a mapping between two different ways of thinking
about communication patterns, are in our opinion appreciable but
at the same time quite arguable or at least unnecessarily complex.

In the following, we try to explain our point of view, analyzing
and comparing the two technologies.

As far as FIPA is concerned, we can assert that the inter-agent
communication is dealt with in several documents and definitely
represents an important part of the overall specifications. In our
attempt to be concise and rigorous, we can state that FIPA
specifications target autonomous agents expected to communicate
at a high level of discourse, whose contents are meaningful
statements about agents’ knowledge and environment. The FIPA
Agent Communication Language is based on the speech act
theory; messages are communicative acts that, by virtue of being
sent, have effects on the knowledge and environment of the
receiver as well as the sender agent. Furthermore, the language is
described using formal semantics based on the modal logic. From
this it clearly emerges the communication complexity which
characterizes multi-agent systems compared to the very simple
conversation patterns of the Web services.

It is only fair to say that Web services are also suitable for high-
level communication patterns and that in the last years several
efforts have been carried out in order to provide description
languages enabling service orchestration and choreography and

127

AT2AI-6: Mari M. et al.: Enhancing Multi-Agent Systems with Peer-to-Peer and Service-Oriented Technologies

moreover to make Web services semantically described.
Nevertheless, the main goal is still to improve interoperability
between entities that are not necessarily characterized by
sophisticated reasoning capabilities. Finally, it is important to
highlight that, in spite of the efforts dedicated to maintaining the
service session, the nature of Web services is almost stateless in
contrast with agents that are in essence stateful.

To sum up, the two entities, Web services on the one hand and
agents on the other hand, and the corresponding communication
patterns are very different from a semantic point of view. That
raises doubts about a possible mapping between the two worlds,
for two main reasons: (i) the essential differences between the two
communication patterns, which imply a loss of descriptive power
in the mapping and (ii) the unnecessary overhead that this
mapping inevitably causes.

3.1 The Proposed Solution

Bearing in mind what said above, we have implemented a
framework which allows a single agent to directly communicate
with the world of Web services without passing through the FIPA
ACL messages. When the agent needs to invoke a Web service it
creates, by using our framework, the SOAP message and sends it
to the provider; likewise the agent can provide its services as Web
services. For the implementation of our framework we exploited
AXIS2 as it is one of the most updated implementations of the
Web Services standards. We have followed a similar approach
also in the case of the publishing and discovery of services.

At this point a question arises: are these JADE agents still FIPA
compliant? In our opinion, they are still FIPA agents since the
interaction with other agents is carried out according to FIPA
specifications whilst when the agent wants to communicate with
the Web service world it conforms itself to the Web services
standard.

Our research work does not just provide a “syntactic” support
suitable for interactions with Web services compliant with the
basic profile, i.e. WS-I Basic Profile 2.0, but we have also tried to
cope with the issues related to a semantic support. Even though
we were aware that Web services supplied by different providers
usually have individual and unique semantics, described by
independently developed ontologies, in our attempt towards a
semantic support, we consider the simplified, but still significant,
case of a shared ontology that gives a common knowledge
background to the entities in the system. In order to facilitate the
resolution of structural and semantic heterogeneities, semantic
Web services have their interfaces semantically described by
ontological concepts belonging from this shared ontology.

In the case of semantic Web services, it is appropriate to give the
agent support in:

Looking for a service on the basis of the requirements to be met
by the service itself;

Service invocation requiring simply the input data, irrespective of
the data format and the way of interacting with the real service.

One of the major issues, we dealt with, concerned the mapping
between the semantic description of the service and its real
invocation. That is, how to deduce, starting from the abstract
service description, which refers to ontological concepts, the
concrete data required to invoke the service. The way in which

this mapping is done heavily depends on the specifications chosen
for the incorporation of machine understandable semantics.

Several proposals have been submitted to W3C in order to make
Web services semantically described. From an analysis of such
submissions two possible alternatives emerge:

The definition of a service ontology (domain-independent), to
which one has to refer for a semantic description of the service.
Such a description is in correlation with the WSDL document of
the real service;

The definition of specifications to semantically annotate the
service WSDL document. These annotations associate elements
belonging to the WSDL document with concepts belonging to
domain ontologies.

Both alternatives are based on the reference to one or more
domain ontologies, in which the concepts, referred in the semantic
part of the service description, are defined.

Among the second group, one became a recommendation last
year, i.e. SAWSDL. From the first group, one is quite interesting,
even if not a recommendation yet. It is a proposal submitted by a
community of researchers and it is about an ontology of service,
called OWL-S, characterized by a more comprehensive approach
to the semantic orientation of the Web service description.

When we started our research work, SAWSDL was not a
recommendation yet and OWL-S was the most visible of the
several proposals. The semantic expressivity of OWL-S is rich
and quite flexible. It defines a new way to describe Web service
profile and so it slightly overlaps the content of the WSDL
document. If one adopts OWL-S as a language to semantically
describe Web services, it is necessary to handle two documents:
WSDL, mainly for binding information; OWL-S, for semantic
references.

Our initial choice fell down on OWL-S. Now we are extending
the framework in order to include a support for the SAWSDL
specification.

In order to allow agents to be able to produce and consume
semantically annotated information and services, it is necessary to
provide them with an ontology management support.

Ontologies were considered by the FIPA community too. In fact,
ontologies enable agents to communicate in a semantic way,
exchanging messages which convey information according to
explicit domain ontologies. FIPA specifications, however, do not
state anything about neither how to utilize ontology in the
message content nor the ontology language to use.

As far as JADE is concerned, the idea which mostly inspired the
design of the JADE content language and ontological support was
to define an ontology independent abstract model of the content
language that could be subsequently bound to any domain
ontology representation expressed using an object-oriented data
model. This ontological support has been conceived when the
Semantic Web was on its very early stage of research and
development and OWL was not already established as a standard.
Consequently its expressive power is clearly limited with respect
to OWL and basically allows expressing taxonomy of concepts,
predicate and actions and therefore it is not able to represent
completely the different application domains where JADE agent

128

AT2AI-6: Mari M. et al.: Enhancing Multi-Agent Systems with Peer-to-Peer and Service-Oriented Technologies

may be used. In order to provide a JADE agent with an adequate
expressive power, it is necessary either to replace or to integrate
the JADE ontological support.

In the attempt to find a suitable solution to this problem in a
previous work we realized a tool called OWLBeans [23].
OWLBeans, conceived with the goal of providing simple artefacts
to access structured information, represents a light support
allowing agents to import OWL ontologies as an object-oriented
hierarchy of classes. It clearly shows a limited expressive power
but still sufficient in the first phase of our development in which
we focused only on a hierarchical representation of concepts for
the description of input and output service parameters. In this
specific context, as a matter of fact, agents do not need to face the
computational complexity of performing inferences on large,
distributed information sources, but an object-oriented view of the
application domain is enough to allow them to complete the tasks
of publishing, discovery and invocation of semantic Web
services.

Well aware that the implemented framework represents a first
step towards the interoperability between agents and semantic
Web services, we have already starting working on the realization
of a full OWL DL support supplying ontology management and
reasoning functionalities, with the main purpose of providing a
more expressive and powerful support and in the meantime of
reducing the amount of computational resources and time required
(compared to the Jena engine).

4. AN INFORMATION AND EXPERT
FINDER MULTI-AGENT SYSTEM

RAP (Remote Assistant for Programmers) is a system to support
communities of students and programmers during shared and
personal projects based on the use of the Java programming
language. RAP associates a Personal Agent with each user which
helps her/him to solve problems, proposing information and
answers extracted from some information repositories and
forwarding answers received by “experts” on the topic selected on
the basis of their profile.

4.1 System Agents
The system is mainly based on three kinds of agents: Personal
Agents, Data Miner Agents and Rate Evaluator Agents.

Personal Agents (PAs) allow the interaction between a user and
the different parts of the system and, in particular, between the
users themselves. Moreover, these agents are responsible for
building the user profile and maintaining it when the user is “on-
line”. User-agent interaction can be performed in two different
ways: when the user is active in the system, through a Web based
interface; when it is “off-line” through emails. Usually, there is a
Personal Agent for each on-line user, but, when needed, Personal
Agents are created to interact with “off-line” users via emails.

Data Miner Agents (DMAs) are responsible for maintaining
system documentation and finding the appropriate “pieces of
information” to answer the queries submitted by the users. The
documentation is composed by three elements: i) code (e.g. Java
classes), ii) a repository of all answers provided during system life
and iii) a repository of relevant documents submitted by the users
(e.g.: tutorials, manuals, presentations).

Rate Evaluator Agents (REASs) perform the calculation of users
expertise score and of documents relevance with regard to the
answers posed by system users. REAs are closely linked to
DMAs, from which they take data for the calculations. The role of
REAs is fundamental for achieving the distributed, peer-to-peer
nature of the system, as discussed in section 4.4.

Each RAP platform obviously hosts a Directory Facilitator agent.
Such agent not only provides the yellow pages service for its
platform agents, but integrates the JXTA-based Agent Discovery
Service presented in section 2.2. In this way, several RAP
communities can be connected as elements of a peer-to-peer
network.

4.2 System Behavior at a Glance

The system architecture is quite complex and a complete
description of RAP features is beyond the scope of this paper.
However, it is possible to outline the RAP behavior showing the
scenario of a user asking information to her/his Personal Agent to
solve a problem in her/his code. The description of this scenario
can be divided in the following steps:

1. Select answer types
2. Submit a query

3. Find answers

4. Rate answer

Select answer types: the user can choose the source for the
information to receive among code repositories, system
documentation, old answers repositories and new answers sent by
other system users.

Submit a query: the user provides the query to her/his Personal
Agent. In particular, the user can query either about a class or an
aggregation of classes for implementing a particular task or about
a problem related to her/his current implementation.

Find answers: the Personal Agent interacts with Rate Evaluator
Agents to collect the required answers. If the user requested
answers from other system users, the activity is more complex
and its description can be divided in three further steps:

3.1) Receive experts rating: a rating to answer the query is
calculated for each user on the basis of her/his profile. The
identity and a sketched profile of each user with a positive rating
is forwarded to the requesting Personal Agent.

3.2) Select experts: the Personal Agent divides on-line and off-
line users, orders them on the basis of their rating and, finally,
presents these two lists to its user. The user can select one or more
recipients for her/his query. On-line users will receive the query
immediately (through their PAs), off-line users via e-mail and as
they will connect to the system.

3.3) Receive answers: selected “expert” users can answer the
query in the system Web interface or through an e-mail. Provided
answers are presented to the querying user as soon as they arrive.

Rate answers: after the reception of all the answers (from every
requested source), or when the deadline for sending them expired,
or, finally, when the user already found an answer satisfying
her/his request, the Personal Agent presents the list of read
answers to its user asking her/him to rate them. Each rating is

129

AT2AI-6: Mari M. et al.: Enhancing Multi-Agent Systems with Peer-to-Peer and Service-Oriented Technologies

forwarded to a Data Miner Agent that updates the involved
profiles.

4.3 User and Document Profile Management
Profiles are represented by vectors of weighted terms whose
values are related to the frequency of the term in the document or
to the term frequency in the code wrote by the user. Document
and user profiles are computed by using term frequency inverse
document frequency (TF-IDF) [20] and profiles weighted terms
correspond to the TF-IDF weight. Some problems have risen
applying this approach in a multi-platform and distributed system:
we present these problems and discuss the solutions in the next
section. Each user profile is built by user’s Personal Agent
through the analysis of the Java code she/he has written. The
profile built by Personal Agents is only the initial user’s profile,
and it will be updated when the user submits new software she/he
has written and when the user helps other users answering their
queries.

4.4 Open and Distributed Communities

An important requirement that guided the design of RAP was the
support for open and distributed users communities. In fact, the
retrieving of experts and information can be improved if the
communities beneath the system have the capability to grow
including new users or new communities.

RAP structure is open, because new users can register and access
the system, but also because a registered user can acquire new
skills or write new code and therefore update her/his profile.
Obviously, it’s also possible to delete a user.

The community beneath RAP is distributed because the whole
system can consist of a dynamic group of local communities.
Each community can exist and operate isolated, but can also
decide to join a group of communities, sharing the experts and
the document repositories. The joining and the leaving of a
community are dynamic operations, the single communities of a
group are fully independent, just like the components of a peer-to-
peer network. A community has the capability to discover and
federate with other communities thanks to the enhanced Directory
Facilitator presented in section 2.2, therefore without a previous
knowledge of other communities platform address.

The open and distributed nature of the system provides the best
conditions for sharing and retrieving information, but also entails
some significant problems in the evaluation of such information.
In fact, the evaluation of both experts and documents is strongly
dependent on the actual composition of the community group. For
example, if a user is rated the maximum expert to answer a query,
he is rated considering only the users registered in the system at
the moment of the rating. If a new local community joins the
group, it is possible that a user with more experience has become
available. In this case, an information like “user A has called n
times a method of the class X" is still valid, but an information
such as “user A is the maximum expert in class X” may change
according to the composition of the community.

The problem rises from the fact that, while the user personal
information is still valid, the rating and all other information
related to the community must be recalculated. As a matter of
fact, TF-IDF algorithm can be easily used in a centralized system
where all the profiles and the data to build them are managed. Our

context is more complex: the system is distributed, only the
Personal Agent can access the software of its user, for privacy and
security reasons, and the profiles are maintained by the interaction
of Personal Agents and Data Miner Agents.

For these reasons, each profile component of the RAP system is
associated with two elements: an absolute element and a TF-IDF
weighted element. The absolute one is dependent only on the user
(or document) profile. The TF-IDF weighted element is
dependent on both the user profile and the whole community
profiles. While the absolute element is stored in a database, the
weighted one is maintained in memory and it is recalculated when
necessary. Obviously, every rating is determined on the basis of
the weighted element.

The situations in which could be necessary to recompute the
weighted element of one or more profile components can be
slightly frequent:

A new community joins or leaves the community group;
A new user registers or is deleted from the system;

Some components of a user profile change: for example the
user submits new software or receives a rating for an answer.

For performance reasons, particularly if the community beneath
the system is large, the process of recalculation could be too
expensive in terms of system resources. In this case, each RAP
platform administrator can force the system to perform the
necessary recalculations only at a scheduled time.

4.5 External Sources of Information

While RAP information repositories represent a complete source
of information when the query is about a class of the code
repository, or about a problem already faced by other system
users, clearly they lack information about a wide range of
programming problems. In this sense, we are planning to open the
system to external, possibly heterogeneous, sources of
information. In a service-oriented scenario, the natural choice for
such sources to provide their content is through a Web Service.
For example, Google provides a complete set of SOAP APIs [10]
to query its search engine, or Systinet [22] provides a W3C
Search Service to search over a repository of tutorials and
references covering most XML languages.

Exploiting the framework presented in section 3, we developed
and integrated in RAP a Web Service Agent. This agent has the
task to receive a query from a Personal Agent, create SOAP
messages, send them to a group of registered Web Services and
forward the results to the requesting Personal Agent. At the
moment, the results are not rated by a Rate Evaluator Agent, but
if the resource provided by a Web Service is rated useful by a
user, the resource link is registered in the answer repository of the
system.

5. CONCLUSION

This paper has dealt with the issue of enhancing the multi-agent
systems role in the realization of scalable and interoperable
systems Dby exploiting peer-to-peer and service-oriented
technologies as key components for their realization. In particular,
the paper has shown how JADE, one of the best known and most
used software framework for the development of multi-agent

130

AT2AI-6: Mari M. et al.: Enhancing Multi-Agent Systems with Peer-to-Peer and Service-Oriented Technologies

systems, has been extended with these two technologies both to
support the realization of multi-agent systems and to facilitate the
interoperability with peer-to-peer and service-oriented systems.

The resulting system shows interesting advantages. On the one
hand, the exploitation of the peer-to-peer technology gives a great
impulse towards the scalability and interoperability of different
agent platforms and agent-based applications. On the other hand
the openness towards the Web service standards gives agents the
possibility to interoperate with a consolidated industrial reality
and one of the most accepted mechanisms used for integration of
distributed systems.

Additional advantages can be gained by coupling multi-agent
systems with Semantic Web techniques [5]. In fact, agents could
play a central role in a service-oriented scenario, by efficiently
supporting distributed computing and allowing an automatic and
intelligent composition of Web services. Furthermore they may
also be the means for harmonising and making straightforward the
interoperability between the services provided by peer-to-peer,
service-oriented and multi-agent systems. Our future work will be
oriented towards the enhancement of the JADE software
framework by extending the current ontology support with
Semantic Web techniques (i.e., use of OWL and related reasoning
techniques) and definition and experimentation of a shared format
for the publication of peer-to-peer, service-oriented and multi-
agent systems services.

6. REFERENCES
[1] @lis TechNet Web Site (2008). Available from:
http://www.alis-technet.org/.

[2] Bellifemine, F., Poggi, A., Rimassa, G. Developing multi
agent systems with a FIPA-compliant agent framework. in
Software - Practice & Experience, 31:103-128 (2001).

[3] Bergenti, F., Rimassa, G., Somacher, M., Botelho, L.M. A
FIPA Compliant Goal Delegation Protocol. Communication
in Multiagent Systems, Vol. 2650, pp. 223-238. 2003.
Springer

[4] Buford, J. and Burg, B. Using FIPA Agents with Service-

Oriented Peer-to-Peer Middleware. In Proc. of the 7th Int.
Conf. on Mobile Data Management, Nara, Japan (2006).

[5] Burstein, M.H., Bussler, C., Zaremba, M., Finin, T.W.,
Huhns, M.N., Paolucci, M., Sheth, A.P., Williams, S.K. A
Semantic Web Services Architecture. IEEE Internet
Computing 9(5):72-81 (2005).

[6] FIPA Specifications Web Site . Available from
http://www.fipa.org.

[7] FIPA Agent Discovery Service Specification. 2003.
Available from
http://www.fipa.org/specs/fipa00095/PC00095.pdf.

[8] FIPA JXTA Discovery Middleware Specification. 2004.
Available from
http://www.fipa.org/specs/fipa00096/PCO0096 A.pdf.

[9] Genesereth, M.R. An agent-based framework for
interoperability. In Software Agents, J. M. Bradshaw, pp.
317-345, Ed. MIT Press, Cambridge, MA (1997).

[10] Google SOAP API home page. Available at:
http://code.google.com/apis/soapsearch/index.html

[11] Greenwood D. and Calisti M. Engineering Web Service-
Agent Integration. In Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics, pages 1918—
1925, The Hague, Netherlands (2004)

[12] Greenwood, D., Nagy, J., Calisti, M. Semantic Enhancement
of a Web Service Integration Gateway, Proc. of the AAMAS
2005 workshop on Service Oriented Computing and Agent
Based Engineering (SOCABE), Utrecht, Netherlands (2005).

[13] Huhns, M.N., Singh, M.P., Mark H. M.H., Decker, K.S.,
Durfee, E.H., Finin, TW., Gasser, |., Goradia, H.J.,
Jennings, N.R., Lakkaraju, K., Nakashima, H., Parunak, K.,
Rosenschein, J.S., Ruvinsky, A., Sukthankar, G., Swarup, S.,
Sycara, K.P., Tambe, M., Wagner, T., Zavala Gutierrez, R.L.
Research Directions for Service-Oriented Multiagent
Systems. IEEE Internet Computing 9(6):65-70 (2005).

[14] JADE Web Site (2008). Available from:
http://jade.tilab.com/.

[15] JXTA Web Site (2008). Available from:
http://www.jxta.org/.

[16] Nguyen X. T. Demonstration of WS2JADE. In Proceedings
of the Fourth International Joint Conference on Autonomous
Agents and Multiagent Systems, pages 135-136, Utrecht,
The Netherlands, (2005).

[17] Overeinder, B.J., Posthumus, E., Brazier, F.M.T. Integrating
Peer-to-Peer Networking and Computing in the AgentScape
Framework. In Proc. Second International Conference on
Peer-to-Peer Computing, P2P02, Linkdping, Sweden (2002).

[18] Poggi, A., Tomaiuolo, M., Turci, P. Using agent platforms
for service composition. In. Proc. 6th International
Conference on Enterprise Information Systems (ICEIS-
2004), pp. 98-105, Porto, Portugal, 2004.

[19] Shafig M. O., Ali A., Ahmad H. F., Suguri H. AgentWeb
Gateway - a Middleware for Dynamic Integration of Multi
Agent System and Web Services Framework. In Proceedings
of the 14th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprise,
pages 267-270, Washington, DC, (2005)

[20] Salton, G.: Automatic Text Processing. (1989), Addison-
Wesley

[21] Soto E. L. Fipa agent messaging grounded on web services.
In Proceedings of the 3rd International Conference on Grid
Service Engineering and Management, (2006)

[22] Systinet Home Page. Available at: http://www.systinet.com

[23] Tomaiuolo, M., Turci, P., Bergenti, F., Poggi, A., An
Ontology Support for Semantic Aware Agents. In Proc.
Seventh International Bi-Conference Workshop on Agent-
Oriented Information Systems (AOIS-2005 @ AAMAS),
Utrecht, The Netherlands, (2005)

[24] Willmott, S., Pujol, J.P., Cortés, U. On Exploiting Agent
Technology in the Design of Peer-to-Peer Applications.
Proc. of the 3rd International Workshop on Agents and Peer-
to-Peer Computing, pp. 98-107, New York, NY (2004)

131

AT2AI-6 Working Notes

132

AT2AI-6: Meneguzzi F. and Luck M.: Interaction among agents that plan

Interaction among agents that plan

Felipe Rech Meneguzzi
King’s College London
Department of Computer Science
London, United Kingdom

felipe.meneguzzi@kcl.ac.uk

ABSTRACT

The development of practical agent languages has progressed sig-
nificantly over recent years, but this has largely been independent
of distinct developments in aspects of multiagent cooperation and
planning. For example, while the popular AgentSpeak(L) has had
various extensions and improvements proposed, it still essentially
a single-agent language. In response, in this paper, we describe
a simple, yet effective, technique for multiagent planning that en-
ables an agent to take advantage of cooperating agents in a soci-
ety. In particular, we build on a technique that enables new plans
to be added to a plan library through the invocation of an exter-
nal planning component, and extend it to include the construction
of plans involving the chaining of subplans of others. Our mecha-
nism makes use of plan patterns that insulate the planning process
from the resulting distributed aspects of plan execution through lo-
cal proxy plans that encode information about the preconditions
and effects of the external plans provided by agents willing to co-
operate. In this way, we allow an agent to discover new ways of
achieving its goals through local planning and the delegation of
tasks for execution by others, allowing it to overcome individual
limitations.

Categories and Subject Descriptors

D.2.5 [Artificial Intelligence]: Programming Languages and Soft-
ware; 1.2.11 [Artificial Intelligence]: Distributed Artificial Intelli-
gence—multi-agent systems

General Terms

Planning, Interaction

Keywords
Agent Languages, BDI, Cooperation, Planning

1. INTRODUCTION

Agent-based software has been advocated as an ideal technique
for the development of large, distributed applications, viewing them
as a number of independently controlled parts that interact and co-
operate to achieve their design objectives. The agent model per-
haps most commonly used in the development of agent-oriented
programming languages is based on the mental states of beliefs,

Jung, Michel, Ricci & Petta (eds.): AT2AI-6 Working Notes, From
Agent Theory to Agent Implementation, 6th Int. Workshop,
May 13, 2008, AAMAS 2008, Estoril, Portugal, EU.

Not for citation

Michael Luck
King’s College London
Department of Computer Science
London, United Kingdom

michael.luck@kcl.ac.uk

desires and intentions, or BDI. In real-world scenarios, BDI-type
agents often have a large plan-library to cope with a complex world,
and need to include plans to deal with all contingencies foreseen
by the designer. In consequence, much research dealing with agent
languages has focused on the description of plans used by an in-
dividual agent to interact with the world. Although in multiagent
systems, agents are assumed to be able to use interaction to achieve
goals, agent languages seldom provide mechanisms to do so, and
cooperation is generally developed in an ad hoc fashion. Even
when cooperation is involved, it tends to use a highly specialised
version of any of a number of existing cooperation techniques, as-
suming a distributed but ultimately predefined set of abilities in the
society.

Previous work has shown the applicability of planning algorithms
in the generation of new individual plans through composition of
existing plans in a plan library [12]. When a planning-capable
agent needs to achieve a new goal, it searches its plan library for
applicable plans. If no suitable plan is found in the plan library, the
planner is invoked in an attempt to generate a new plan to satisfy
the desired goal. Plans generated by the planner in this way are
added to the plan library and become available to the agent to solve
future instances of the particular goal. However, if the planner fails
to generate a new plan, this (normally) means that the proposed
goal is impossible to achieve, given the world state and capabilities
known to the agent at the time of planning. Such an approach to
planning has been studied for individual agents, planning over their
own capabilities, under the premise that these capabilities are static
throughout its life cycle.

However, in a multi-agent environment the limitations of an in-
dividual agent may be overcome with the help of others, either by
delegating tasks to other agents, or by learning new ways of achiev-
ing goals. This means that the assumption that capabilities are static
no longer holds. In this case, a failure to generate a plan from an
individual’s capabilities does not necessarily mean the goal is im-
possible, since other agents in the society might have complemen-
tary capabilities. If an agent is capable of generating new plans at
runtime by taking into consideration the capabilities of others, new
multiagent plans can be used to overcome individual limitations,
and can also be added to the plan library for future use. In a sim-
plistic approach, a planning capable agent interpreter can be used
to achieve this effect.

Cooperative action involves communication and coordination, as
well as an increased degree of risk for the success of a plan, given
that the agents relied upon may break their commitments to achieve
their own goals. But from the planner’s perspective, the composi-
tion of new plans based on preconditions and effects upon the en-
vironment can be performed independently of these factors. It is
important to point out that, though there are a number of issues that

133

AT2AI-6: Meneguzzi F. and Luck M.: Interaction among agents that plan

must be addressed in order to perform planning in distributed sys-
tems [4], communication and coordination can be abstracted away
from the planning process and inserted at a later point in time [9]. In
this paper we develop a new technique for agents with plan genera-
tion capabilities to cooperate in a multiagent society. In particular,
our technique relies on plan patterns (described in Section 3.2) that
encapsulate communication and coordination in such a way that
the planning algorithm can ignore them when chaining operators
in a plan. Though many existing approaches to cooperative action
handle communication and coordination together with plan compo-
sition [11], we choose to separate these two tasks in order to allow
the use of off-the-shelf planning algorithms. The rationale behind
this choice of approach is as follows:

o there is a wide range of local planning algorithms;

e active research on planning algorithms yields new potentially
useful algorithms;

e some planning algorithms are better suited for certain spe-
cific domains;

e integrating communication and cooperation in the planning
algorithm is not always easy; and

e our approach delegates actions to the agent architecture, al-
lowing new planners to be used seamlessly.

Even if the issues arising from interaction can be ignored by the
planner, they must be addressed in order to ensure the long-term
effectiveness of the plan library. In particular, relying on third par-
ties to accomplish one’s goals can be a problem due to unreliability
and broken commitments. Moreover, it is possible that an agent
whose cooperation is necessary for some plan in the plan library
may leave the society. This renders such a plan not only useless,
but also damaging to an agent’s efficiency if the plan is eventually
selected to achieve some goal, since this plan will always require
the agent to drop it after wasting the effort of starting to execute it.
Therefore, we provide a mechanism to clean up cooperative plans
when they become obsolete. By extracting key information from
other agents’ plans, particularly in relation to the declarative con-
sequences of local plans, an agent can be informed of the problem-
solving capabilities of others, allowing it to delegate the achieve-
ment of specific world-states, and using this information in its own
planning process.

Our contribution in this paper is twofold: a generic technique
to reduce multiagent planning into a traditional planning problem,
and the practical integration of such a technique in a BDI-like agent
language. In our approach, external plans are encapsulated into
patterns of local plans in order to abstract the communication and
coordination aspects away from the planner.

The paper is organised as follows: in Section 2 we summarise
the background work upon which our own contribution is based,
reviewing AgentSpeak(L) and AgentSpeak(PL); we then proceed
to explain in detail our multiagent planning technique in Section 3;
followed by a discussion of related work in Section 4; finally, in
Section 5, we summarise and conclude.

2. BACKGROUND

2.1 Cooperation

Cooperation is often cited as one of the main characteristic prop-
erties of multiagent systems [7, 6]. Yet there are several different
modes of cooperation that can be identified: i) multiple agents act-
ing towards a common joint goal; ii) one agent acting to achieve

goals for another agent; and iii) agents synchronising their actions
so as to avoid negative interference.

The first, and most common mode of cooperation in agents con-
sists of a group of agents sharing a possibly implicit joint goal and
acting to achieve this goal in a coordinated way. This goal might be
negotiated at runtime or exist in all agents by design. The second
possible mode of cooperation consists of one or more agents per-
forming actions that are not directly related to their own goals, but
rather support the achievement of the goals of another agent. The
third and final mode of cooperation commonly considered consists
of agents agreeing on some coordination of their individual actions
towards their individual goals in such a way that no agent jeop-
ardises the operation of another. Because our starting point is one
individual agent, seeking to achieve its goals through the assistance
of another, our focus in this paper is on the second mode of coop-
eration.

2.2 AgentSpeak(L)

AgentSpeak(L) [16] is an agent language, as well as an abstract
interpreter for the language, and follows the beliefs, desires and
intentions (BDI) model of practical reasoning. In simple terms, a
BDI agent tries to realise the desires it believes are possible by com-
mitting to carrying out certain courses of action through intentions.
The language of AgentSpeak(L) allows the definition of reactive
procedural plans, so that plans are defined in terms of events to
which an agent should react to by executing a sequence of steps (i.e.
a procedure). Plan execution is further constrained by the context
in which these plans are relevant. Here, a plan is executed under
the assumption that some implicit goal is being accomplished by
the plan at the particular moment.

The control cycle of an AgentSpeak(L) interpreter adopts plans
in reaction to events in the environment and executes their steps.
If the step is an action it is executed, while if the step is a goal, a
new plan for the goal is added into the intention structure. Failures
may take place either in the execution of actions, or during the pro-
cessing of subplans. When such a failure takes place, the plan that
is currently being processed also fails. Thus, if a plan selected for
the achievement of a given goal fails, the default behaviour of an
AgentSpeak(L) agent is to conclude that the goal that caused the
plan to be adopted is not achievable. This control cycle' strongly
couples plan execution to goal achievement.

In order to better understand the relationship between the control
cycle and the plan library, it is necessary to introduce the notation
of AgentSpeak(L) plans. Events on an agent’s data structures that
can trigger the adoption of plans consist of additions and deletions
of goals and beliefs, and are represented by the plus (+) and minus
(—) sign respectively. Goals are distinguished into test goals and
achievement goals, denoted by a preceding question mark (?7), or an
exclamation mark (!), respectively. For example, the addition of a
goal to achieve g is represented by +!g. Belief additions and dele-
tions arise as the agent perceives the environment, and are therefore
outside its control, while goal additions and deletions only arise as
part of the execution of an agent’s plans. Plans in AgentSpeak(L)
are represented by a header comprising a triggering condition and a
context, as well as a body describing the steps the agent takes when
a plan is selected for execution as is illustrated in Figure 1. If e is a
triggering event, b1, ..., by, are belief literals, and h1, ..., h, are
goals or actions, then e : b1&...&by, «— hi;...;hy. is a plan.
As an example, consider a plan associated with the triggering event
Imove(O, A, B) corresponding to the goal of moving an object O
from A to B, where:

"For a full description of AgentSpeak(L), see d’Inverno et al. [5]

134

AT2AI-6: Meneguzzi F. and Luck M.: Interaction among agents that plan

Events

W‘ Triger : ‘ Context

<A

Actions

=
<- stepl; Belief Base
step2;
step3;
step4.

Figure 1: AgentSpeak(L) plan and dynamics.

e ¢is 'move (O,A,B);
e at (0,A) and not at (O, B) are belief literals; and

e —at (0,A) and +at (0,B) are two steps in the plan body,
consisting of information about belief additions and dele-
tions.

The plan is then as follows:

+!move (O,A,B) : at(0,A)
<- -at (0,A);
+at (0, B) .

& not at (O, B)

When this plan is executed, it should result in the agent believing
that O is no longer in position A, and then believing it is in position
B. For an agent to rationally want to move O from A to B, it must
believe O is at position A and not already at position B.

2.3 Planning in AgentSpeak(PL)

AgentSpeak(PL) [12] is an extended AgentSpeak(L) interpreter
that integrates a planning module capable of generating new high-
level plans by chaining lower-level plans in an agent’s plan library.
Planning in AgentSpeak(PL) relies on a process that extracts in-
formation about the declarative consequences of simple AgentS-
peak(L) plans and uses this information, together with these plans’
context conditions, to generate equivalent STRIPS-like planning
operators. Here, we review the relevant aspects of AgentSpeak(PL),
which we later use in the description of our multiagent technique.

The design of a traditional AgentSpeak(L) plan library follows a
similar approach to programming in procedural languages, where
a designer typically defines fine-grained actions to be the build-
ing blocks of more complex operations. These building blocks
are then assembled into higher-level procedures to accomplish the
main goals of a system. Analogously, an AgentSpeak(L) designer
traditionally creates fine-grained plans to be the building blocks of
more complex operations, typically defining more than one plan
to satisfy the same goal (i.e. sharing the same trigger condition),
while specifying the situations in which it is applicable through the
context of each plan. Here, STRIPS actions are likened to low-level
AgentSpeak(L) plans, since the effects of primitive AgentSpeak(L)
actions are not explicitly defined in an agent description.

Once the building-block procedures are defined, higher-level op-
erations must be defined to fulfil the broader goals of a system by
combining these building blocks. In a traditional AgentSpeak(L)
plan library, higher-level plans to achieve broader goals contain a
series of goals to be achieved by the lower-level operations. This
construction of higher-level plans that make use of lower-level ones
is analogous to the planning performed by a propositional plan-
ning system. By doing the planning themselves, designers must
cope with every foreseeable situation the agent might find itself

in, and generate higher-level plans combining lower-level tasks ac-
cordingly. Moreover, the designer must make sure that the sub-
plans being used do not lead to conflicting situations. In AgentS-
peak(PL), by contract, this responsibility is delegated to a STRIPS
planner.

Plans resulting from propositional planning can then be con-
verted into sequences of AgentSpeak achievement goals to com-
prise the body of new plans available within an agent’s plan library.
Here, an agent can still have high-level plans pre-defined by the de-
signer, so that routine tasks can be handled exactly as intended. At
the same time, if an unforseen situation presents itself to the agent,
it has the flexibility of finding novel ways to solve problems, while
augmenting the agent’s plan library in the process.

3. PLANNING AND COOPERATION

As we have seen, when an agent has exhausted its individual
options to achieve a goal, it may be able to accomplish this goal
through others. In order to generate new plans that rely on coop-
eration with others, we define a practical strategy for multi-agent
planning and cooperation that allows an agent to share the knowl-
edge of the consequences of its plans so that others can delegate
parts of their high-level plans and achieve new goals. We introduce
external plans, which are plans owned by one agent, whose declar-
ative consequences are known by others and can, therefore, be re-
quested by others to help achieve their aims. Newly constructed
external plans can be integrated into multi-agent plans generated
through classical planning problems by considering their precondi-
tions and consequences and equating them to STRIPS/PDDL op-
erators, as described in Section 2.3. These newly created plans are
then integrated into an agent’s plan library for future use and ef-
ficiency gains. Furthermore, our strategy takes into consideration
the unreliability of cooperation in the context of self-interested and
unreliable agents by associating failure handling plans to manage
multi-agent plans, and eventually to remove plans that include such
unreliable partners.

In more detail, given an agent with plans it is willing to execute
on behalf of others (i.e. its shared plans), our technique consists
of automatically generating plans in both the sharer’s plan library
and the requester’s plan library using reusable plan patterns. These
new plans encode all the communication necessary for a requesting
agent to delegate the achievement of the external plan, and encap-
sulate information about the declarative effects of such an external
plan, allowing a planning module on the requester’s side to use
these plans in newly created plans. Moreover, we use plan patterns
to generate failure handling plans to cope with the potential unreli-
ability of the sharer.

In this section we define three plan patterns that generate new
plans based on an existing plan an agent is willing to execute on

135

AT2AI-6: Meneguzzi F. and Luck M.: Interaction among agents that plan

Requester Agent

Plan Library

—— —

=1
I
T

e

I PPX

Sharer Agent

Plan Library

-|
|
i

Shared Plan [t

lec

External Plan E(— -

Figure 2: Plan patterns involved in the sharing and use of a plan.

behalf of others, generating the necessary framework for a form of
cooperation based on delegation without the need for the designer
to predefine cooperative plans. More specifically, given a shared
plan, we define an external plan (EC) pattern that includes the steps
necessary for another agent to request the execution of the shared
plan. On the requester’s side, we define a proxy plan (PPX) pattern
that encodes the declarative information of the shared plan’s pre-
conditions and consequences, and contains the steps necessary for
the requester to request the remote execution of the shared plan.
Ultimately, proxy plans can be used by the planning process of
AgentSpeak(PL) as if they were local plans, to provide new coop-
erative plans, but given the uncertain nature of agent cooperation,
there is also a need to provide failure handling plans (FHP) to cope
with unreliable partners. These patterns and their resulting plans
(i.e. the plans that are generated from the plan pattern) are sum-
marised in the diagram of Figure 2, where dashed arrows represent
the creation of new plans through a plan pattern.

3.1 Communication for Cooperation in
AgentSpeak

Our technique assumes a BDI-style language [16] with a con-
struct for declarative goals, and speech-act based communication.
We also assume two other language features: the ability to anno-
tate plans with additional information; and the notion of internal
actions. Examples of agent languages suitable for implementing
this strategy are CANPLAN?2 [17] and Jason [3]. Descriptions of
agent plans throughout this section use Jason, but these plan defini-
tions can be easily converted to any BDI-like agent language. Jason
is a recently developed AgentSpeak(L) interpreter with a number
of extensions necessary for our technique to function in practice.
Here, we summarise the language features we use in the descrip-
tions throughout this section, giving notation details when relevant.

3.1.1 Internal actions

The common understanding of agent actions is that they are en-
vironment transformation operators, so that when an agent invokes
an action, some consequence in the environment is expected. How-
ever, when some custom computation needs to take place within
a single reasoning cycle, Bordini et al. use the concept of an in-
ternal action in AgentSpeak(XL) [2]. This allows an agent to ac-
cess extensible libraries of custom procedures that can be executed
instantaneously by an agent. Unlike traditional actions, internal
actions do not cause changes in the environment, and since they

are executed instantly, they can be included in either the body or
the context of a plan, to refine the process of selecting applicable
plans. Syntactically, internal actions are denoted in the language
by a preceding “.” character, so the invocation of a check internal
action with two parameters is represented as .check(a, b).

3.1.2 Speech-act based communication

Effective cooperation between autonomous agents requires some
form of communication, typically using an agent communication
language, such as FIPA or KQML [19]. From an agent language
perspective, Moreira et al. [13] have introduced an operational se-
mantics of speech-act based communication for AgentSpeak(L),
defining plan rules for handling several of the performatives defined
by Searle [18]. These plan rules are given from both a sender and
a receiver point of view, allowing them to be implemented in prac-
tical AgentSpeak(L) interpreters. In this paper we are concerned
with three performatives:

e ask, used by an agent to request information from others;
e tell, used by an agent to supply information to others; and

e achieve, used by an agent to request another agent to achieve
a procedural goal.

From an operational perspective, we consider an implementation
of agent message passing using the concept of internal actions de-
scribed above, because messages between agents are not expected
otherwise to cause the environment to change. Messages are there-
fore sent using the .send internal action, which takes three param-
eters: the identification of the receiver, the performative, and the
message content 2. In terms of representation of beliefs, annota-
tions [2] have been used to provide additional information regard-
ing the source of events from external communication rather than
the environment. Thus, if the addition of the belief
time(hockey, 1020) by randall is a result of communication from
dante rather than a simple perception, the event posted to randall
is represented as time(hockey, 1020)[source(dante)], denoting
this belief’s origin.

YIn this paper we provide a simplified overview of how these
performatives are operationalised in AgentSpeak(L), overlooking
a number of details regarding cooperation policies, and more
complex handling of communication-related event processing by
AgentSpeak(L). For additional information on these details, con-
sult [13].

136

AT2AI-6: Meneguzzi F. and Luck M.: Interaction among agents that plan

When an agent sends a message with an ask performative, it
wants to ascertain that some expression unifies with another’s be-
lief base. For example, suppose agent randall wants to know the
time of the hockey game, stored in the belief base of agent dante
as the belief time(hockey,T). To discover this information, it
executes an internal action .send(dante, ask, time(hockey, T')),
which causes an event +?time(hockey, T') to be posted to dante.
If dante accepts the message, and has time(hockey, 1020) in its
belief base, the .send action in randall is executed successfully, re-
sulting in 7" being unified with 1020. Notice that since the effect of
this send is an event in the receiving agent, it might be handled by
a plan with a triggering event matching the query being made to it,
rather than a direct query to its belief base.

Similarly, when an agent sends a message with a tell performa-
tive, it wants to make another agent aware of some belief expres-
sion. Now suppose dante wants to make randall aware that the
hockey game is at 1020 by executing the action
.send(randall, tell, time(hockey, 1020)). If randall accepts this
message, it causes the event +time(hockey, 1020) to be posted to
randall.

Finally, when an agent wants another agent to adopt a particu-
lar achievement goal, it sends a message with an achieve perfor-
mative. So if dante wants randall to come to the hockey game
now, and it knows that randall has a plan to come to the game as-
sociated with the triggering event +!comeT oH ockey, it executes
.send(randall, achieve, comeToHockey). Again, if randall ac-
cepts this message, +!comeT oH ockey is posted to randall, and
the plan it executed.

3.2 A multiagent planning mechanism

When an agent has failed to achieve a goal through its individ-
ual capabilities and its previously known cooperative strategies, it
engages in multi-agent planning to try and solve the problem with
a new cooperative plan. Our technique is divided into three main
parts: the discovery of potential cooperation partners, the creation
of cooperative plans while abstracting cooperation, and the execu-
tion of multiagent plans.

3.2.1 Plan patterns

While many researchers have chosen to create new languages to
add notions such as declarative goals [21, 3] and failure handling
mechanisms [20, 17], it is possible to represent these, and many
other notions using simpler, existing agent languages. For exam-
ple, in AgentSpeak(L), all of these notions can be represented by
multiple related plans, as shown by Hiibner ez al. [10], who intro-
duce the notion of plan patterns to facilitate the designer’s task of
creating multiple, related, plans that serve a particular purpose.

Here, we consider a plan pattern to be an agent program rewrit-
ing rule with a numerator describing the original plan (or plans)
description, and a denominator describing the resulting agent pro-
gram. So, for example, if we wish to define a plan pattern that adds
a printed message before and after a certain plan body b is executed,
called PDB (Plan Debug), the rule is defined as:

+e:c+b.
+e: ¢« .print(“Start”); b; .print(“End”).

PDB

3.2.2 Primitives

In order for an agent to find external plans in a society, it must
seek partners willing to carry out plans on behalf of the request-
ing agent. These willing partners then send declarative information
about their plans, that is their preconditions and effects. Here, we
are not concerned with the actual mechanism used in the discovery

of partners, and plan patterns are meant to be an abstraction of any
of a number of existing partner selection mechanisms, such as that
described in [14]. In this description of our method, we assume
that cooperation partners have already been selected somehow, and
our capability discovery method consists of broadcasting a request
for external plans, which is answered by all available agents in the
society. However, if a partner selection mechanism is in place, the
requests for external plans will only be sent by selected cooperation
partners.

Partners wishing to inform others of their external plans need to
gather the plan invocation parameters, preconditions and declara-
tive effects and send this information to their peers. This informa-
tion can be retrieved using the same process as in AgentSpeak(PL),
but instead of using this information to generate a STRIPS-like op-
erator description, an agent sends this as a reply to another agent
requesting external plans, along with the identification of the agent
supplying the external plan. This is represented in the tuple
(g, a, P, E), where:

e g is the achievement goal (including parameters) in the shar-
ing agent’s plan library that will be adopted on behalf of the
requesting agent;

e ¢ is the identifier of the sharing agent that owns the external
plan;

e Pisaset{po,...,pn} of preconditions of g; and

e Eis aset {ro,..., m} of declarative effects expected to
hold after the external plan is executed.

This information is used in the creation of plan patterns that serve as
local placeholders for the invocation of externally executed plans,
which we call proxy plans. The creation of proxy plans is detailed
next.

3.2.3 Creating proxy plans

Once an agent is aware of the external plans of others in the same
environment, it can try to use these capabilities in its own problem-
solving. In this approach, we make the external aspect of shared
plans transparent to an agent’s local planner through proxy plans.
These proxy plans describe the expected outcome of a successful
invocation of a third party capability and encapsulate the commu-
nication and coordination necessary for effective cooperation. A
proxy plan pattern PPX for an external plan (g, a, P, E'), where
P={po,...,pn},and E = {bo,...,bm } (and b; are belief addi-
tions or deletions) is:

+!g :po&e ... &pn — bo;...;bm

PPX, ..p,E

+lremoteG : po& ... &pn&ready(a, g)
— .send(a, achieve, requestG);
.wait(done(g));
bo;...;bm
+lcheck(a, g) : true

— +ready(a,g).

This plan pattern creates two plans, one of which replicates all
the logical constraints required for a to be successful in executing
this plan locally. The plan body includes a communication action
(.send) that uses the achieve performative to request the sharing
agent to carry out the specified plan, followed by an action to wait
for confirmation that the plan was executed. Finally, the plan pat-
tern replicates the belief additions expressed in the sharing agent’s
external plan, so that the planning process of AgentSpeak(PL) [12]

137

AT2AI-6: Meneguzzi F. and Luck M.: Interaction among agents that plan

can process this plan in the same way as it would process local
plans.

In addition to the action-related part of the proxy plan to invoke
the external plan, one may also want to check that the owner of
the external plan is ready and willing to adopt the external plan.
This is represented in the PPX plan pattern by the precondition
ready(a, g), which is added to those preconditions already present
in the original external plan, and is the result of an extra plan to en-
sure that the sharing agent will actually carry out that action when
the requesting agent needs it to do so. In the PPX plan pattern, this
plan is simply a placeholder for any mechanism used to ascertain
the reliability of a cooperation partner, which can be replaced by
any mechanism preferred by the designer. Such a mechanism can
be introduced using a new CA (check agent) plan pattern, which
rewrites the check plan so that it calls a plan in the plan library
associated with this mechanism. For example, if there is a trust
verification mechanism associated with a verifyTrust achievement
goal (which we will not specity, but assume to be specified by the
designer), a plan pattern CA for the readiness of an agent to execute
external plan (g, a, P, E) through an achievement goal verifyTrust
is:

+lcheck(a, g) : true — +ready(a, g).
+!check(a, g) :

«—

CA, .
true -

WerifyTrust(a, g);
+ready(a, g).

3.2.4 Creating external plans

An important property of our proxy plans is that they succeed
when the sharer agent succeeds, and fail if either the sharer agent
fails in its execution or it refuses to carry out its commitment.
Hence, from the requester agent’s point of view, the execution of
a local plan and an external plan is the same.

Naturally, an agent sharing an external plan needs to have in its
plan library the achievement goal that corresponds to the achieve
performative sent by the requesting agent. We refer to this achieve-
ment goal as a plan endpoint to the PPX plan pattern, which is
associated with an actual plan in the sharing agent’s plan library.
The external plan, therefore, is generated from a local plan in the
sharer’s plan library using the EP (external plan) pattern, which is
as follows:

| .
+!g:e«—b. EP,
+lg:e «b.
+lrequestG[source(S)] : true
= lg

.send(S, tell, done(g)).

3.2.5 Creating cooperative plans

Given the properties of the proxy plans described above, it is
easy to use the planning approach of AgentSpeak(PL) to generate
new multi-agent plans, since the AgentSpeak(PL) planning mod-
ule is insulated from the communication and cooperation aspects
of planning. However, although the generation of a sequence of ac-
tions (from a cause and effect perspective) does not depend directly
on whether it includes external and internal capabilities, high-level
plans that depend on the compliance of third parties must contain
guards to prevent initiating the plan when it has become infeasible.
These guards are derived by propagating the preconditions of exter-
nal proxy plans to the precondition of the high-level plan generated
by the planning module. Propagating these preconditions ensures
that a plan will not be initiated until all parties are ready to comply

+!goal_conj([closed(store)]) store)
& ready(randall)

<- !remoteClose (store).

: at (randall,

Listing 1: A cooperative plan.

with requests for cooperation, while making sure that the cooper-
ating agent is queried for availability just before its cooperation is
needed.

As an example, suppose that dante is aware that randall can
achieve a goal to close the store on its behalf. If dante needs
randall to close the store on its behalf, it requires randall to be at
the store, and results in the store being closed; a cooperative plan
to achieve these goals generated in our system is shown in Table 1.

When a cooperative plan is adopted by an agent, it eventually
reaches the step corresponding to the adoption of the proxy plan
(remote@). The proxy plan causes this agent to send a message
to the sharer requesting it to execute its external plan (requestG),
which corresponds to delegating the adoption of a plan to achieve
goal g in the sharer’s plan library. If the plan to achieve g is exe-
cuted successfully, the sharer sends confirmation of having achieved
g. This sequence of events is illustrated in Figure 3.

3.2.6 Failure handling for new plans

Although the ability to create new plans taking advantage of
the external plans of other agents allows the creation of plans that
achieve goals otherwise impossible to an agent, the dependence on
other self-interested agents poses another challenge, coping with
possibly unreliable partners. Plans created at design time tend to be
very efficient by making assumptions about aspects of the environ-
ment that do not change at runtime, whereas the generation of plans
at runtime involves a great deal of computational effort. However,
plans created in a dynamic society in which autonomous agents
may join and leave at any point in time cannot make many assump-
tions regarding the availability of capabilities shared by third par-
ties. The likelihood of failure for plans that depend on others can,
therefore, be considered greater than for plans that rely on an in-
dividual’s own capabilities. Thus, it is necessary for dynamically
generated plans, especially those that depend on unreliable capabil-
ities, to have associated failure handling plans. Here, handling plan
failures is important to ensure that an agent can cope with faults
due to failed cooperation. It also allows an agent to manage its plan
library in the long term, removing plans that are no longer relevant
due to the absence of, or consistent lack of reliability of, necessary
parties. For example, if an agent creates a plan that involves coop-
eration with an agent a, we introduce a failure handling plan FHP
pattern that removes the failed plan when q fails to cooperate for
some reason, as follows:

+!g?al_conj([gl, .eeygn]) e 0. FHP,
+lgoal_conj([g1,..-,gn]) :e<b.
—lgoal_conj([g1,-.-,9x]) :mnotready(a)

— .remove_plan(goal_conj([g1, - . .

’ g”ﬂ]))
4. RELATED WORK

Previous work by Ancona et al. [1] provides a cooperation tech-
nique that allows agents to expand their problem solving capabili-
ties by exchanging plans at runtime. Although this technique relies
on a very similar basic agent framework (aside from the planning
component), it has a distinct approach to addressing the shortcom-
ings of an agent, as it relies on an agent receiving entire plans from

138

AT2AI-6: Meneguzzi F. and Luck M.: Interaction among agents that plan

Requester Agent

Plan Library

+IremoteG

Coop. Plan

Failure Handling

.send(requester,tell,
done(g))

Sharer Agent

Plan Library

Shared Plan

+lg

Proxy Plan

External Plan

.send(sharer,achieve,
requestG)

Figure 3: Proxy plan communication.

others. In particular, it assumes that all agents in an environment
are able to execute the same set of basic actions, which may not be
the case in many real world scenarios. For example, agents might
require different levels of authorisation to perform specific actions
in the environment: an agent running in a user-level account, doing
maintenance in a Unix filesystem may need to change a file that
is owned by the root user, and clearly the plans that the root can
execute cannot simply be sent to this agent. Ancona’s approach is
complementary to ours in the sense that it can, for example, replace
the planning module we use to generate new plans from scratch and
allow an agent to get new plans from others.

It may be argued that creating cooperative plans using precondi-
tions and effects information in AgentSpeak(L) is akin to Service
Oriented Architectures (SOA), through web services being shared
by a directory service accessed through some protocol like the Uni-
versal Description, Discovery and Integration (UDDI) protocol
[15]. Indeed, web services are a possible technology for the instan-
tiation of an agent system using an SOA to provide web-protocols
for the communication layer of such a system. Unlike web services
on their own, however, agents have intentionality, and do not nec-
essarily carry out the requests of a client. Directory services could
also be used in a web service-based implementation, but they add
a centralising characteristic that is not entirely necessary for our
technique, since the directory service does not take into account
the dynamic nature of an agent’s willingness to cooperate; that is,
an agent A may agree to execute an action on behalf of agent B at
one point in time, but not at another, whereas a service is expected
always to respond in the same way.

S. CONCLUSIONS

By taking advantage of recent developments in practical agent
languages, we have described a practical, yet flexible, technique
for multiagent planning. This technique extends previous work on
agent planning [12] to take advantage of the availability of coop-
erating agents in a society, allowing agents to overcome individual
limitations by delegating parts of locally generated plans for execu-
tion by others. In this paper we have shown how this technique can
be implemented using recent extensions to the AgentSpeak(L) lan-
guage, without affecting the generality of our approach, since any
other BDI-like language with declarative goals and communication
capabilities can be extended with the planning we propose.

The focus of the paper is on the structural and functional aspects
of the plan library, and as a consequence we have sidestepped any

detailed account of how to address two major issues with coopera-
tion in agents: the distribution of the planning effort, and the evalu-
ation of reliability of cooperation partners. However, by modularis-
ing our technique, a designer can choose from the existing body of
work in both these areas. Moreover, we acknowledge that issues of
trust and reliability of cooperation partners are of paramount impor-
tance in any deployment of a system composed of agents that use
our technique, but this is a separate issue, and is isolated from the
rest of our planning process. Regarding the issue of distribution,
although the classical planning module leveraged from AgentS-
peak(PL) [12] is simple and centralised, we see no hurdles in using
our technique with distributed plan formation algorithms, such as
that proposed by Zhang et al. [22]. In this respect, our method is
flexible in that it allows any planning algorithm with a PDDL [8]
compatible planner to be used in the planning module.

Acknowledgments

The first author is supported by Coordenacdo de Aperfeicoamento
de Pessoal de Nivel Superior (CAPES) of the Brazilian Ministry of
Education.

6.
(1]

REFERENCES

D. Ancona, V. Mascardi, J. F. Hiibner, and R. H. Bordini.
Coo-agentspeak: Cooperation in agentspeak through plan
exchange. In Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems,
pages 696705, 2004.

R. H. Bordini, A. L. C. Bazzan, R. de O. Jannone, D. M.
Basso, R. M. Vicari, and V. R. Lesser. AgentSpeak(XL):
efficient intention selection in BDI agents via
decision-theoretic task scheduling. In Proceedings of the
First International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 1294-1302, 2002.

R. H. Bordini, M. Dastani, J. Dix, and A. E.
Fallah-Seghrouchni. Multi-Agent Programming: Languages,
Platforms and Applications. Springer, 2005.

M. E. desJardins, E. H. Durfee, C. L. O. Jr., and M. J.
Wolverton. A survey of research in distributed, continual
planning. A Magazine, 20(4):13-22, 1999.

M. d’Inverno and M. Luck. Engineering AgentSpeak(L): A
formal computational model. Journal of Logic and
Computation, 8(3):233-260, 1998.

(2]

(3]

[4

—_

(3]

139

AT2AI-6: Meneguzzi F. and Luck M.: Interaction among agents that plan

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

M. d’Inverno, M. Luck, and M. Wooldridge. Cooperation
structures. In Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, pages 600-605, 1997.
J. E. Doran, S. Franklin, N. R. Jennings, and T. J. Norman.
On cooperation in multi-agent systems. Knowledge
Engineering Review, 12(3):309-314, 1997.

M. Fox and D. Long. PDDL2.1: An Extension to PDDL for
Expressing Temporal Planning Domains. Journal of
Artificial Intelligence Research, 20:61-124, 2003.

M. Ghallab, D. Nau, and P. Traverso. Automated Planning:
Theory and Practice. Elsevier, 2004.

J. F. Hiibner, R. H. Bordini, and M. Wooldridge.
Programming declarative goals using plan patterns. In

M. Baldoni and U. Endriss, editors, Proceedings of the
Fourth Workshop on Declarative Agent Languages and
Technologies, volume 4327 of LNCS, pages 123-140.
Springer, 2006.

D. Kalofonos and T. J. Norman. An investigation into
team-based planning. In 2004 IEEE International
Conference on Systems, Man and Cybernetics, pages
5590-5595, 2004.

F. Meneguzzi and M. Luck. Composing high-level plans for
declarative agent programming. In Proceedings of the Fifth
Workshop on Declarative Agent Languages, pages 115-130,
2007.

A.F Moreira, R. Vieira, and R. H. Bordini. Extending the
operational semantics of a BDI agent-oriented programming
language for introducing speech-act based communication.
InJ. A. Leite, A. Omicini, L. Sterling, and P. Torroni,
editors, Proceedings of the First Workshop on Declarative
Agent Languages and Technologies, volume 2990 of LNCS,
pages 135-154. Springer, 2003.

S. Munroe, M. Luck, and M. d’Inverno. Motivation-based
selection of negotiation partners. In Proceedings of the Third
International Joint Conference on Autonomous Agents and
Multiagent Systems, pages 1520-1521, 2004.

Organization for the Advancement of Structured Information
Standards. Introduction to UDDI:Important Features and
Functional Concepts. Online, 2004.
http://uddi.xml.org/files/uddi-tech-wp.pdf.

A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical
computable language. In W. V. de Velde and J. W. Perram,
editors, Proceedings of the Seventh European Workshop on
Modelling Autonomous Agents in a Multi-Agent World,
volume 1038 of LNCS, pages 42-55. Springer, 1996.

S. Sardina and L. Padgham. Goals in the context of BDI plan
failure and planning. In Proceedings of the Sixth
International Joint Conference on Autonomous Agents and
Multiagent Systems, pages 16-23, 2007.

J. R. Searle. Speech Acts : An Essay in the Philosophy of
Language. Cambridge University Press, 1969.

M. P. Singh. Agent communication languages: Rethinking
the principles. IEEE Computer, 31(12):40-47, 1998.

J. Thangarajah, J. Harland, D. Morley, and N. Yorke-Smith.
Aborting tasks in BDI agents. In Proceedings of the Sixth
International Joint Conference on Autonomous Agents and
Multiagent Systems, pages 8—15, 2007.

M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah.
Declarative & Procedural Goals in Intelligent Agent
Systems. In D. Fensel, F. Giunchiglia, D. L. McGuinness,
and M.-A. Williams, editors, Proceedings of the Eighth
International Conference on Principles and Knowledge

Representation and Reasoning, pages 470-481. Morgan
Kaufmann, 2002.

[22] J. F. Zhang, X. T. Nguyen, and R. Kowalczyk. Graph-based

multi-agent replanning algorithm. In Proceedings of the Sixth
International Joint Conference on Autonomous Agents and
Multiagent Systems, pages 793-800, 2007.

140

AT2AI-6: Muller T. et al.: Implementing a Cognitive Model in Soar and ACT-R: A Comparison

Implementing a Cognitive Model in Soar and ACT-R:
A Comparison

Tijmen Joppe Muller

tijmen.muller@tno.nl
Department of Training and

Annerieke Heuvelink
annerieke.heuvelink@tno.nl
Department of Training and

Fiemke Both
f.both@few.vu.nl
Department of Artificial

Instruction Instruction Intelligence
TNO Defence, Security and TNO Defence, Security and Vrije Universiteit Amsterdam
Safety Safety De Boelelaan 1081a, 1081 HV

P.O. Box 23, 3769 ZG
Soesterberg, The Netherlands

ABSTRACT

This paper presents an implementation of a cognitive model
of a complex real-world task in the cognitive architecture
Soar. During the implementation process there were lessons
learned on various aspects, such as the retrieval of work-
ing memory elements with relative values, alternative ap-
proaches to reasoning, and reasoning control. Additionally,
the implementation is compared to an earlier implementa-
tion of the model in the ACT-R architecture and both im-
plementations are discussed in terms of cognitive theories.

1. INTRODUCTION

People performing tasks in uncertain and dynamic envi-
ronments require much training in order to gain the neces-
sary expertise. However, the nature of these tasks makes it
hard to set up real world training. An appropriate alterna-
tive for training decision making in complex environments
is scenario-based simulation training [17]. To create a useful
training, a simulation needs to represent the aspects of the
real world that are vital for achieving the learning objectives.
One of these aspects is human interaction; therefore, simu-
lated entities that respond naturally and validly are needed.
These entities, known as agents, can be used to simulate
team members, opponents or bystanders. There is growing
conviction and evidence that cognitive agents can be devel-
oped by capturing human cognitive processes in a cognitive
model and implementing it in a cognitive architecture [19,
20, §].

An architecture poses constraints on the implementation
of a model and therefore influences design choices. This
paper reports the experiences of implementing the same for-
mal cognitive model in two different cognitive architectures.
First, the implementation of the model in the cognitive ar-
chitecture Soar [13] is presented. This agent performs a
real-world task in a complex environment. Implementing
the cognitive model provides insights into the use of Soar
for agent applications and it may be used to validate the

Jung, Michel, Ricci & Petta (eds.): AT2A1-6 Working Notes, From
Agent Theory to Agent Implementation, 6th Int. Workshop,
May 13, 2008, AAMAS 2008, Estoril, Portugal, EU.

Not for citation

P.O. Box 23, 3769 ZG
Soesterberg, The Netherlands

Amsterdam, The Netherlands

model’s behavior in future research. Next, the Soar imple-
mentation is compared to an earlier implementation of the
same model in the cognitive architecture ACT-R [2]. This
allows for the second goal of this paper: the comparison of
Soar and ACT-R.

The next section presents the cognitive task and the for-
mal model. Section 3 presents the ACT-R architecture and
the implementation, BOA. Section 4 elaborates on the im-
plementation in Soar, which resulted in the agent named
Boar. The paper concludes with a comparison of both im-
plementations on various aspects and their connection to the
cognitive theories.

2. COGNITIVE TASK AND MODEL

The real-world task that has been modeled is the tacti-
cal picture compilation task (TPCT) from the naval warfare
domain. In this task, a navy operator sees a large number
of radar contacts on his display. Each contact indicates a
detected vessel in the vicinity of the own ship. The iden-
tities and classifications of these vessels are unknown. The
operator can obtain information on these tracks by monitor-
ing the radar screen, such as speed, course, distance to own
ship and adherence to shipping lanes. The task of the oper-
ator is to use this information to determine both the iden-
tity (e.g. hostile, friendly) and the classification (e.g. frigate,
fishing boat) of each contact.

A complete cognitive model of the TPCT is constructed
using the principles described in this section. The model
is based on an extended Belief, Desire and Intention (BDI)
framework [7]. BDI facilitates the translation of domain
knowledge into a model since domain experts tend to talk
about their knowledge in terms similar to beliefs, desires
and intentions. The domain knowledge needed to model the
TPCT has been elicited from naval experts [6].

In order to develop cognitive agents for training purposes,
cognitive behavior that can vary in level of rationality needs
to be modeled: agents that can perform a task on differ-
ent levels of expertise are needed. To make this possible,
a belief framework was developed [9]. Three arguments are
added to beliefs: a timestamp, the source of the belief and
a certainty level. BDI models usually throw away beliefs as
soon as a new belief is created that causes an inconsistency.
However, to enable reasoning over time, every belief is kept
and labeled with the time of creation. The source and cer-

141

AT2AI-6: Muller T. et al.: Implementing a Cognitive Model in Soar and ACT-R: A Comparison

tainty labels make it possible to reason about information
from multiple sources and with uncertainty, and reasoning
can be done in both a rational and a biased way. A be-
lief belief(P(A,V),T,S,C) has a predicate P with attribute A
and value V, a timestamp T, source S and certainty C. Be-
low is an example belief — there was an Identification of
contactl as friendly with certainty 0.7, done by reasoning
rule determine-id on timestamp 12:

belief (Identification(contactl, friendly),
12, determine-id, 0.7)

A cognitive model typically consists of declarative knowl-
edge, denoting facts, as well as procedural knowledge, denot-
ing reasoning rules. Besides modeling how to reason, it is
also necessary to model the control on when to reason about
what. The next subsection presents the format of the declar-
ative and procedural knowledge and subsection 2.2 explains
the control structure of the model.

2.1 Reasoning over Beliefs

The goal in the tactical picture compilation task is to cor-
rectly classify and identify all contacts. In order to fulfill
this goal, the agent needs information about the contacts’
behavior. There are two ways to gather such information.
The first is from the external world, e.g. the agent can watch
the screen that displays information from sensors such as the
radar system. Additionally, the agent can decide to perform
actions that lead to more knowledge about the situation,
such as activating its radar or sending a helicopter to inves-
tigate a contact. The second method to gain information
is through the internal process of reasoning about beliefs to
deduce new beliefs. In the reasoning process, often multiple
beliefs form the evidence for the formation of a new belief.
Any uncertainty in the source beliefs will be transferred to
the new belief.

An example of this type of deduction is reasoning about
formations. If a number of vessels have the same course and
are close to one another (source beliefs), they might move in
formation (new belief). Moving in formation is an indication
that these vessels are frigates. Figure 1 contains an example
rule that is part of reasoning about formations. The position
of the contact that the agent is currently reasoning about
is compared to the position of every other contact that is
detected by the radar system. A new belief is created for
every pair that indicates how certain the agent is that they
are within a distance that can indicate a formation.

The function Position-Difference calculates the distance
between two positions, Certainty-Handling-Positions-
Difference calculates the certainty of the distance given the
position certainties, Possible-Distances returns all possi-
ble distances given the calculated distance and certainty, and
Reason-Belief-Parameter adds the timestamp and stores
the belief in long-term memory. In this example, the latest
beliefs about the positions are used. In other rules, beliefs
are used that ever had a specific value, or those beliefs the
agent is most certain about.

2.2 Control of Reasoning

Control is an important aspect of a cognitive agent; it
determines when the agent does what. In the TPCT there
is one main goal, which is considered the navy operator’s
desire in the BDI model: to identify all contacts correctly.

Determine-Within-Formation-Distance-
Contact(X)
FOR ALL Y
IF (
belief(PositionContact (X, P1), 71,5, C1)
belief(PositionContact (Y, P»), R1,.5, C2)
Position-Difference(P1, P2, D)
Certainty-Handling-Positions-Difference
(017 027 D7 CS)
Possible-Distances(D, Cs, [R])
M = mazimum-distance-relevant-for-formation
C4 = (number-of-[R < M])/(number-of-[R])
) THEN (
Reason-Belief-Parameter
(WithinFormationDistanceContact (X,Y),
DetermineWithinFormationDistanceContact, C’4)

Figure 1: Rule for determining if two contacts are
within formation distance

The three subtasks that the agent can perform in order to
fulfill this desire are:

1. processing information about contacts on the screen;
2. changing the activity of the radar system; and

3. sending the helicopter on observation missions to gain
more information about a specific contact.

The subtasks above are the intentions of the BDI model
that the agent can commit to. A valid manner in cognition
to determine when which intention becomes a commitment
is to have events in the world trigger an intention. For ex-
ample, when a contact suddenly changes its behavior, the
attention of the agent should be drawn to this contact, re-
gardless of the current intention. However, this type of con-
trol requires a parallel processing of all events in the world
and a parallel checking of relevancy for all subtasks, which
is hard to implement. This is why currently a simpler, linear
control system is modeled. The agent alternately commits
to one of the three intentions to simulate parallel processing.
Within the subtasks, the control is also kept simple, e.g. in
the first subtask all contacts on the screen are monitored
consecutively.

The rule in Fig. 2 illustrates a part of the simple con-
trol structure. It determines when the agent starts commit-
ting to a new intention. The input parameter I is the cur-
rent intention, the rule Start-New-Intention-Selection
determines which intention is selected next depending on
beliefs about contacts, and the rule Select-Next-Contact-
To-Monitor selects the next contact from the list.

3. BOA

In order to execute the model that was presented in the
previous section, a cognitive agent needs to be implemented;
cognitive architectures are a suitable platform for this pur-
pose. Such an architecture specifies a fixed set of processes,
memories and control structures [15] that define the under-
lying theory about human cognition. The architecture limits
implemented cognitive models by this set and consequently

142

AT2AI-6: Muller T. et al.: Implementing a Cognitive Model in Soar and ACT-R: A Comparison

Determine-New-Intention(])
IF (
I = Monitor-Contacts
belief(Number0fContactsMonitored(X), 11,5, C)
X = maximum-number-of-contacts-to-monitor
) THEN (
Start-New-Intention-Selection(/)
) ELSE IF (
I = Monitor-Contacts
Number-of-Contacts(X)
X < mazximum-number-of-contacts-to-monitor
) THEN (
Select-Next-Contact-To-Monitor()
Reason-Belief-Parameter
(NumberOfContactsMonitored(X + 1),
DetermineNewIntention, 1)

Figure 2: Rule for determining a new intention

imposes its cognitive theory on these models: it should make
correct models easier and incorrect models harder to build.
Moreover, the actual behavior of the agent is influenced by
the architecture [12].

The presented model has already been implemented in
the cognitive architecture ACT-R [4] — this implementation
was named BOA. Since this research has been done earlier,
several new developments in ACT-R are not taken into ac-
count [1]. However, the insights reported here are neverthe-
less of interest from an agent-application perspective: sev-
eral of the issues mentioned in this paper have been changed
in the latest version of ACT-R. These developments in ACT-
R seem to support our experiences that the architecture was
too restrictive on some aspects.

31 ACT-R

The theory of ACT-R incorporates two types of mem-
ory modules: declarative memory and procedural memory.
Declarative memory is the part of human memory that can
store items; procedural memory is the long-term memory of
skills and procedures. ACT-R consists of a central process-
ing system, where production rules, representing procedu-
ral memory, are stored and executed. The central process-
ing system can communicate with several modules through
buffers. One of those modules is the declarative memory
module where memory items are stored. These memory
items, called chunks, are of a specific chunk-type, which can
be defined by the modeler. In a chunk-type definition, the
modeler defines a number of slots that chunks of this type
can assign values to. Chunks from the declarative memory
module can be placed in the retrieval buffer if they match a
retrieval request made by a production rule. A retrieval re-
quest must contain the requested chunk-type, and may con-
tain one or more slot-value pairs that the chunk must match.
The matching chunk is then placed in the retrieval buffer, so
it can be read by a production rule. All buffers in ACT-R,
including the retrieval buffer, can only store one chunk at a
time, even when more chunks match the conditions of the
request. If more chunks are available, an activation function
defining the accessibility of chunks is used to select a single
candidate.

3.2 Implementation | ssues

The implementation of the cognitive model in ACT-R re-
sulted in three main observations. The first focuses on the
limit of one chunk in the retrieval buffer. The model pre-
scribes access to multiple beliefs in the working memory at
the same time in order to reason over them. For example,
different positions in time are compared in order to deter-
mine a contact’s speed. The ACT-R implementation sup-
ported this by using the goal buffer for temporary storage
and LISP functions to retrieve beliefs.

The second observation was the fact that retrieving a be-
lief with specific features (for example, the belief created
last, i.e. with the highest value for the time slot) is not guar-
enteed by using ACT-R’s activation function. For example,
the agent often uses the latest position of a contact, so he
needs the latest belief with predicate position-contact for
a specific contact. It may however be that an older chunk
has been retrieved more often than the latest chunk, result-
ing in a higher activation score and subsequently the older
chunk being retrieved. As a solution, LISP functions were
created as substitute to the activation function.

The third issue is about the many calculations the cogni-
tive model requires: these can only be modeled in a low-level
manner, making it inefficient to implement them in the ar-
chitecture. For example, calculating the speed of a contact
from its positions over time would require many production
rules, while it would not represent the actual cognitive pro-
cesses of a warfare officer. Here too LISP functions were used
for these type of calculations. As a result of this problem
and the previous problem, about half of the programming
code consists of ACT-R production rules and the other half
of supporting LISP functions.

3.3 Control

Control in the context of BDI agents aims at specifying
the commitment of the agent at a certain time. The inten-
tions to which the agent can commit and the type of control
in the cognitive model were described in section 2.2. The
BOA agent implements a simple, linear control system. The
agent commits alternately to each intention and within the
intention of processing screen information, the contacts are
monitored sequentially. This is illustrated by the rule in
Fig. 3.

(p select-next-contact-goall

=goal>

ISA commitmentl

goal monitor-contacts

state next-contact

contact =contactl

==>

'bind! =contact2 (determine-next-contact)
leval! (determine-rate-other-desires)
'bind! =eop (= (mod *counter* *rate-other*) 0)
=goal>

plan read-basal-info

state start-step

contact =contact2

eop-marker =eop

Figure 3: ACT-R code for intention selection

143

AT2AI-6: Muller T. et al.: Implementing a Cognitive Model in Soar and ACT-R: A Comparison

The rule requires the agent to be committed (commitment1)
to monitoring contacts and be ready to select a new contact
to monitor. This new contact is determined by the user-
defined LISP function determine-next-contact, which loops
through the list of contacts. The *rate-other* variable de-
fines the number of contacts after which the agent switches
to another intention: if this number is reached, the end-of-
process marker (eop) is set to true. The agent will then con-
sider committing to sending the helicopter, followed by con-
sidering to commit to changing the radar. After these con-
siderations and, possibly, reasoning and actions, the agent
continues monitoring contacts. Reacting to events in the
environment is limited to altering the order of the list of
contacts in the ‘monitor contacts’ intention: if a contact has
been identified by the helicopter, that contact is moved to
the top of the list to force the agent to monitor it next.

4. BOAR

This section presents the Boar agent, which is the imple-
mentation of the model from section 2 in Soar. The next
subsection will explain this architecture in more detail and
subsection 4.2 describes several implementation issues.

4.1 Soar

Soar, like ACT-R, is a well-known cognitive architecture.
Soar defines the world as a large problem space with states
and goals. It considers behavior as movement in the problem
state by performing actions, either internal (mental activity)
or external (observable in the environment). In Soar, this
is done by operators; in a single cycle, more operators can
be proposed, one of these is selected and eventually applied,
changing the state of the environment. Goal-directed be-
havior states that the agent will choose those operators that
lead to a goal state. [14]

The memory structure of Soar is somewhat similar to that
of ACT-R. It specifies two types of memory: the long-term
memory, consisting of procedural, semantic and episodic
knowledge, and the working memory, corresponding to ACT-
R’s declarative memory module. The working memory con-
sists entirely of working memory elements (WMEs), which
are attribute-value pairs. The attributes of a WME need
not be defined beforehand, as is the case with the slots of
a chunk. Additionally, the number of WMEs that can be
accessed at one moment is not limited — there is no such
thing as a retrieval buffer in Soar.

In long-term memory, the procedural knowledge is primar-
ily responsible for the behavior of an implemented model and
is defined in terms of productions. When conditions apply,
a production either proposes the execution of an operator
or it executes some reasoning independent from an opera-
tor — both may result in changes to the working memory.
The difference lies within the persistence of the changes: a
WME that was created by an operator will stay in work-
ing memory until an explicit change is made. A production
without operator reference, also called elaboration, creates
WDMEsS that only exist as long as the conditional part of the
elaboration matches. The first is said to have operator sup-
port or o-support, while the latter has instantiation support
or i-support.

Soar’s productions fire in parallel: all productions that
have one or more matches for their conditional part in the
current state will execute. Consequently, many operators
may be proposed at a single moment. Which operator is

selected is resolved by means of preferences, which can be
added to an operator.

The fact that Soar allows more production rules to fire
simultaneously is in contrast to ACT-R’s procedure: here,
only one production rule can fire at a single moment. If
more chunks are available for retrieval by this production,
the activation function determines beforehand which chunk
is picked.

If a task is too complex to solve by simply adding some
beliefs to the working memory, it can be decomposed in
subtasks. An example is reasoning about the usage of the
helicopter. In order to decide which contact the helicopter
is sent to, all contacts are scored. The rule for proposing the
operator that scores a single contact is shown in Fig. 4. If
this operator is chosen, there is no immediate score available
to be added as belief: it needs to be calculated. As a result,
there is an impasse and a new substate is created which
has the goal to calculate this score. Various operators are
available to calculate a part of the score; after each operator
calculated its part, the score is available and the attribute
heli-score will have a value. Consequently, the operator
shown in Fig. 4 will be retracted, having achieved its goal.

Propose to score a contact
sp {consider-heli*propose*score-contact
(state <s> “name consider-heli
“contacts.contact <contact>
“top-state.constants <const>)
(<constants “max-distance <max>)
No score, no visual id
and in range of self
(<contact> -"heli-score
-"visual-id-belief
“distance-to-self <= <max>)
-=>
(<s> “operator <op> + =)
(<op> “name score-contact
“current-contact <contact>)

Figure 4: Soar code for proposing to score a contact

4.2 Implementation

4.2.1 Retrieving Beliefs

In section 2 we argued that the model needs to be able to
reason over time. For example, in Fig. 5 the latest position
of the own ship (self) is retrieved, i.e. the belief with the
maximum value for the time attribute. This is an example
where a belief with a relative value is needed for a certain
attribute and the absolute value is of no importance. How-
ever, it is not easy to match such a belief if no absolute value
is available. We tackled this problem by ordering the beliefs
with greater-than and smaller-than relations. In order to
retrieve the last-but-one belief a new production needs to
be added, another for the last-but-two, and so on.

4.2.2 Reasoning Efficiency

Two alternatives arise when generating new knowledge
by means of reasoning (i.e. internal action). As explained in
subsection 4.1, there are two ways of adding new elements
to the working memory: either with o-support or with i-
support. The advantages of using i-supported WMEs are:

144

AT2AI-6: Muller T. et al.: Implementing a Cognitive Model in Soar and ACT-R: A Comparison

Calculate distance of contact to self.
sp {boar*elaborate*contacts*distance-to-self
(state <s> “name boar
“beliefs <beliefs>
“contacts.contact <contact>)
Retrieve latest position of self
(<beliefs> “belief (“predicate position-contact
“attribute self
“time <time>
“value <self-pos>))
“belief (“predicate position-contact
“attribute self
“time > <time>))
position of contact
“position-belief.value <pos>)

-(<beliefs>

Retrieve
(<contact>
-—>

(<contact> ~“distance-to-self (float (exec

calcPositionDifference
<self-pos> |;| <pos>)))

Figure 5: Soar code for retrieving the distance be-
tween contact and own ship

1. they are created automatically if the conditions or the
creating production apply in the current state;

2. they are removed if this not the case anymore and thus
are not valid in the current state; and

3. they are updated automatically if new information is
available.

The advantage of o-supported WMEs is that they are only
created when the operators are proposed explicitly, so only
at these times some reasoning is done.

If the beliefs that are used for reasoning stay the same for
some time, it is more efficient to use elaborations and thus
create i-supported WMESs, because if operators are used for
this reasoning, they may perform the same reasoning steps
multiple times. If beliefs change continuously, the use of
elaborations may become computationally expensive, be-
cause they perform the reasoning at every change, even if
the results are not used. In this case using operators and
o-supported WMEs is more efficient. There is no clear pro-
cedure for choosing i-support or o-support: one should think
about the trade-offs for every situation in order to pick the
most efficient option.

To draw the differences between creating i-supported and
o-supported WMESs more clearly, an implemented example
of both types is given. First consider the production in
Fig. 5. It continuously creates an i-supported WME with
the distance of contact <contact> to the own ship. Ev-
ery time a new position is observed, either from the own
ship (<self-pos>) or the contact (<pos>), the conditional
part of the production for the old WME does not match the
current state anymore and the WME is discarded. At the
same time, the newly observed information is used to cre-
ate a new WME for the contact with the distance-to-self
attribute, and thus the knowledge has been automatically
updated. For this reasoning step the i-supported option has
been chosen, since the distance is needed continuously for
other reasoning. Using an operator would mean that this
operator needs to calculate this distance every time the in-
formation is needed.

Now consider the production in Fig. 4. This production
sets in the creation of knowledge with o-support: it proposes
an operator that, when applied, will assign a certain score
to a contact. This score is used for considering to send a
helicopter to the contact for identification. This scoring is
only done incidentally, which makes the use of an operator
a better choice. An elaboration would update this score
continuously, even while it is not needed most of the time.

identify all contacts

T

monitor contacts send heli

T~

contactl

change radar

contact2

Figure 6: Overview of intentions

4.2.3 Control

The Soar architecture does not provide the means to easily
keep a list of contacts, which makes it hard to implement
a sequential control for committing to the three intentions
described in subsection 2.2. Alternatively, it easily allows
the creation of subgoals, as explained in subsection 4.1. By
defining the monitoring of every contact as a subgoal of the
‘monitoring contacts’ intention, the structure of goals and
subgoals becomes as shown in Fig. 6.

The commitment to one of the three intentions is de-
cided as follows: if an event triggers the intention to send
a helicopter or change radar activity, the agent commits
to this intention. Otherwise it will first monitor all con-
tacts, then consider sending the helicopter and finally con-
sider changing radar activity. The linearity of this cycle
is forced by explicitly remembering the control status in
WMEs. Figure 7 shows the commitment to monitoring con-
tacts: when a new cycle starts, the time is saved in the
start-process-passive attribute. Then every contact not
checked after this time (-~checked > <starttime>) is mon-
itored and gets tagged with a new time, until all contacts
have been checked this way. After completing the helicopter
and radar intentions, a new cycle is started. The order of
checking contacts is random and may be different each cycle.

sp {boar*propose*process-passive-information
(state <s> “name boar
“start-process-passive <starttime>
“contacts.contact <contact>)
(<contact> -"checked > <starttime>
~id <contact-id>)
-=>
(<s> ~operator <op> + =)
(<op> “name process-passive-information
“current-contact <contact>)

}

Figure 7: Soar code for proposing to monitor a con-
tact

An example of an event triggering the ‘send heli’ intention

145

AT2AI-6: Muller T. et al.: Implementing a Cognitive Model in Soar and ACT-R: A Comparison

is shown in Fig. 8. It simply states that if the helicopter
is airborne and does not have a mission, for example just
after identifying a specific contact, the agent should commit
to reasoning about what it should do. This commitment
can break into the aforementioned cycle at any time the
conditions apply.

A heli is considered when it has
no mission and is airborne.
sp {boar*propose*consider-heli*airborne
(state <s> “name boar
“helis.heli <heli>)
(<heli> ~id <heli-id>
Heli has no mission and is airborne
“mission free
“status airborne)
-—>
(<s> “operator <op> + =)
(<op> “name consider-heli
“heli <heli>)
¥

Figure 8: Soar code for the event-driven selection of
the ‘send heli’ intention

4.2.4 External Functions

The simulation environment for performing the tactical
picture compilation task is created in Game Maker [18]. It
simulates a radar screen with information about the contacts
in the surroundings. The simulation environment reacts on
certain actions, e.g. clicking on a contact will provide de-
tailed information about it.

For letting Soar communicate with this Game Maker en-
vironment an interface is needed, which is implemented in
Java. The actions of the agent are written to a text file by
the Java interface, read by Game Maker and consequently
performed in the environment. An example of an agent ac-
tion is the request for detailed information, which simulates
a mouse click by a human. Any input from the environ-
ment, such as a new contact or the position of the own ship,
is written to a text file by Game Maker, read by the Java
interface and presented as input for the agent. This form of
communication slows the execution of the agent down, since
it continuously waits for reactions from the environment.

To perform complex calculations, user-defined functions
in Java are needed, similar to one of the issues when imple-
menting the formal model in ACT-R (see subsection 3.2).
These functions are called from inside the agent, but can
only be used in the actions of a production. Consequently, if
a calculation needs to be performed as part of the condition
of a production, it has to be executed by another produc-
tion and the result needs to be made available through the
working memory.

5. CONCLUSION AND DISCUSSION

This paper presents an agent built in the cognitive ar-
chitecture Soar, capable of performing a complex real-world
task. The implementation is based on a formal model of the
task and has previously been implemented in ACT-R. The
remainder of this paper will present the lessons learnt on
several aspects of agent practice and links them to cognitive
theories.

Two implementations of a single cognitive model give only

one point of view: a different model may have different de-
mands, especially when a different framework is used. Ad-
ditionally, the implementations have not been validated —
further work in this direction may consist of experiments
with subject-matter experts comparing the performance of
BOA, Boar and humans performing the tactical picture com-
pilation task.

Nevertheless, this paper shows that one should consider
the functionalities requested by the model and the possibil-
ities an architecture offers to implement those demands.

Working Memory Access.

Most of the cognitive theories about human working mem-
ory agree on a storage capacity of multiple but limited amount
of items [16, 3, 11, 5]. This assumption was used in design-
ing the cognitive model: several rules in the cognitive model
need multiple beliefs at the same time for reasoning (an ex-
ample of such a rule is in Fig. 1).

The ACT-R theory used for implementing BOA proved
to be too restrictive: access to only one chunk at a time is
allowed. In order to access more beliefs, a work-around was
used in the ACT-R implementation. On the other hand,
Soar does not limit the number of accessible working mem-
ory elements, so this did not pose any problems implement-
ing Boar. Different approaches to the working memory the-
ory result in different types of behavior: if only a limited
number of elements is accessible, reasoning will be restricted
to these elements, which can cause a different way of acting
than when all elements are available.

Retrieving Beliefs.

In order to reason over time the retrieval of specific beliefs
with a relative value is needed, such as the ‘last’ or ‘one-
but-last’ belief of some kind — a capability humans apply
unconsciously. Unfortunately, this type of retrieval operator
is not yet available in either architecture.

In ACT-R the working memory items are retrieved by
means of an activation function. However, this function does
not guarantee the retrieval of a memory item based on such
a relative value. The solution was to create LISP functions
for retrieving beliefs. Soar allows ordering the beliefs in
the conditional statement of a production rule, making it
possible to retrieve beliefs with a relative value. However,
operators need to be created for each relative value, making
the translation from model to Boar somewhat inefficient.

Control.

A linear control was modeled in favour of event-driven
parallel control. This choice was made in order to simplify
the process of committing to an intention, even though hu-
man decision-making will be more reactive to cues from the
environment. ACT-R’s sequential execution of production
rules fits this simplified model, but as a result the BOA agent
reacts slowly on important changes in the environment, be-
cause the agent’s behavior cannot be interrupted by these
external events [10]. In Soar the sequential execution of
plans is forced by letting production rules fire in an explicit
order (as shown earlier in Fig. 4), but this architecture more
easily allows event-driven control.

Calculations.
The tactical picture compilation task contains many sit-

146

AT2AI-6: Muller T. et al.: Implementing a Cognitive Model in Soar and ACT-R: A Comparison

uations in which the human expert makes estimations, for
example on how close a ship is to the the own ship or whether
ships are moving in formation. Currently there is no method
available to model the process of these estimations. Instead,
the estimations are replaced by exact calculations and made
into an ‘estimation’ by adding the notion of uncertainty to
the resulting belief. Modeling these calculations as cognitive
tasks in an architecture would require an infeasible amount
of productions, without actually copying human behavior.
Therefore, the execution of complex calculations is done ex-
ternally by LISP functions or Java methods.

Speed.

Humans are able to use multiple beliefs that were gathered
over time for reasoning. This is represented in the belief
framework by adding a time tag to every belief and storing
all beliefs in memory. As a result, the agent can access
multiple beliefs over time for reasoning. For example, it
can access several beliefs about the position of a contact to
reason about the contact’s speed and movement behavior.

Unfortunately, this creates a practical problem: there is
an exponentially growing amount of beliefs, which means
no system will eventually be able to cope with the result-
ing CPU-expensive searches for the necessary beliefs during
real-time simulation. It is necessary to deal with this more
efficiently. Even though certain facts in the past need to be
remembered by the agent, it is not necessary to remember
every specific detail, which is the case in this implementa-
tion. Humans do not remember every detail exactly, but
compress their memories by conceptualizing or clustering
them. Future agents that incorporate the belief framework
used in this research will need some form of compression or
smart discarding of beliefs to copy this behavior. We are
currently developing a method to cluster and abstract be-
liefs over time, sources and certainties, in order to form a
more realistic model of episodic memory.

Clearly, this problem has its effect on the implementa-
tions. The ACT-R agent becomes slow over time, even
though some functionality to remove unimportant beliefs
had been implemented. This slowness makes the observed
behavior of the agent not very human-like, especially in re-
acting to changes in the environment [10]. On the other
hand, Boar has been used in a demonstration of about twenty
minutes, in which the agent showed no reduction in speed.
To draw general conclusions about the performance of both
architectures, further research is needed.

6. ACKNOWLEDGEMENTS

This research has been supported by the research program
“Cognitive Modelling” (V524), funded by the Netherlands
Defence Organisation.

7. REFERENCES

[1] J. R. Anderson. How Can the Human Mind Occur in
the Physical Universe? Oxford University Press, 2007.

[2] J. R. Anderson and C. Lebiere. The Atomic
Components of Thought. Lawrence Erlbaum
Associates, 1998.

[3] A. D. Baddeley and G. J. Hitch. Working memory.
Recent Advances in Learning and Motivation,
8:647-667, 1974.

[4] F. Both and A. Heuvelink. From a formal cognitive
task model to an implemented ACT-R model. In
Proceedings of the 8th International Conference on
Cognitive Modeling, 2007.

N. Cowan. Working memory capacity. Psychology
Press, New York, NY, 2005.

B. J. v. Dam and H. F. R. Arciszewski. Studie
commandovoering do-2: Beeldvorming. Technical
Report FEL-02-A242, TNO-FEL, 2002.

M. P. Georgeff and A. L. Lansky. Reactive reasoning
and planning. In Proceedings of the 6th National
Conference on Artificial Intelligence, pages 677—682,
Menlo Park, California, 1987.

K. A. Gluck and R. W. Pew, editors. Modeling Human
Behavior With Integrated Cognitive Architectures:
Comparison, Fvaluation, and Validation. Lawrence
Erlbaum Associates Inc, 2005.

A. Heuvelink. Modeling cognition as querying a
database of labeled beliefs. In Proceedings of the 7th
International Conference on Cognitive Modeling, 2006.
A. Heuvelink and F. Both. BOA: A cognitive tactical
picture compilation agent. In Proceedings of the 2007
IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, IAT 2007, Silicon Valley,
California, Nov. 2007. IEEE Computer Society Press.
C. Hulme, S. Roodenrys, G. Brown, and R. Mercer.
The role of long-term memory mechanisms in memory
span. British Journal of Psychology, 86:527-536, 1995.
R. M. Jones, C. Lebiere, and J. A. Crossman.
Comparing modeling idioms in ACT-R and Soar. In
Proceedings of the 8th International Conference on
Cognitive Modeling, 2007.

J. E. Laird, A. Newell, and P. S. Rosenbloom. SOAR:
an architecture for general intelligence. Artificial
Intelligence, 33(1):1-64, 1987.

J. F. Lehman, J. Laird, and P. Rosenbloom. A gentle
introduction to Soar, an architecture for human
cognition: 2006 update, 2006.

R. L. Lewis. Cognitive theory, Soar, Oct. 1999.

G. A. Miller. The magical number seven, plus or
minus two: Some limtis on our capacity for processing
information. Psycological Review, 63:81-97, 1956.

R. L. Oser. A structured approach for scenario-based
training. In Proceedings of the 43rd Annual Meeting of
HFES, volume 43, pages 1138-1142, Oct. 1999.

M. Overmars. Game maker:
http://www.yoyogames.com/gamemaker/.

R. W. Pew and A. S. Mavor, editors. Modeling Human
and Organizational Behavior. National Acadamy
Press, 1998.

F. E. Ritter, N. R. Shadbolt, D. Elliman, R. M.
Young, F. Gobet, and G. D. Baxter. Techniques for
modeling human and organizational behaviour in
synthetic environments: A supplementary review.
Technical report, Human Systems Information
Analysis Center, June 2003.

(10]

(11]

(12]

147

AT2AI-6 Working Notes

148

AT2AI-6: Sabatucci L. et al.: A Semantic Description For Agent Design Patterns

A Semantic Description For Agent Design Patterns

Luca Sabatucci

Massimo Cossentino

Salvatore Gaglio

Dipartimento di Ingegneria ICAR-CNR, Dipartimento di Ingegneria
Informatica, Consiglio Nazionale delle Informatica,
University of Palermo, Ricerche, University of Palermo,
Italy Palermo, Italy Italy

sabatucci@csai.unipa.it

ABSTRACT

In last years, multi-agent systems (MAS) have achieved a re-
markable success and diffusion in employment for distributed
and complex applications. A fundamental contribution has
come by the adoption of reuse techniques and tools provid-
ing a strong support during the design phase. Even though
design patterns have been widely accepted by industrial and
academic organizations as a proper technique for reuse, their
definition still imposes deep concerns on contemporary soft-
ware engineers. Design patterns are largely sensitive to dif-
ferent contexts where they are employed, especially on how
they are blended with each other. This work introduces a de-
sign language for describing fine-grained pattern formaliza-
tions and compositions based on structural semantics. This
formalization as been used in order to describe a couple of
design patterns for agents and their composition.

Keywords

Design Patterns, Multi-Agent Systems, Agent Oriented Soft-
ware Engineering

1. INTRODUCTION

In last decade design patterns have been widely accepted
by industrial and academic organizations, even if their defi-
nition and reuse still impose deep concerns on contemporary
software engineers.

The pivotal difficulty stems from the fact that reuse of de-
sign patterns in realistic software systems is often a result of
blending multiple patterns together rather than instantiat-
ing them in an isolated manner. The composition of design
patterns can results in an intricate twine of pattern partici-
pants and the target application [14]. Pattern blending may
entail significant morphs of the original pattern solutions
through the merge of structural and behavioral elements.
Also, the lack of explicit documentation for recurring com-
pound patterns leads to design rationale being irrecoverable
[4]. Patterns should be systematically documented so that
they can be unambiguously instantiated, traced and reused
within and across software projects [11, 5].

In our research we deal with design process of agent so-
cieties; this activity involves a set of implications such as

Jung, Michel, Ricci & Petta (eds.): AT2A1-6 Working Notes, From
Agent Theory to Agent Implementation, 6th Int. Workshop,
May 13, 2008, AAMAS 2008, Estoril, Portugal, EU.

Not for citation

cossentino@pa.icar.cnr.it

gaglioQunipa.it

capturing the ontology of the domain, representing agent
interactions (social aspects), and modelling intelligent be-
haviours. In the following, we are going to pursuit a spe-
cific goal: lowering the time and costs of developing a MAS
application without forgetting the necessary attention for
quality of the resulting software and documentation. We
have always considered design patterns for agents as a fun-
damental contribution to the agent-oriented software engi-
neering. In past works we have defined some reuse tech-
niques and tools based on design patterns [9, 18]; this ap-
proach has been integrated with the PASSI design process
[7], a step-by-step requirements-to-code methodology for de-
veloping multi-agent software. Design patterns have been
conceived as a crosscutting design activity occurring during
almost all the phases of PASSI.

Now we concentrate on another aspect of pattern reuse.
This paper deals with formalization of design patterns for
agents, by using a semantic approach. Patterns are rep-
resented with semantic networks that can be modeled and
transformed by using a set of operators. This formalization
is perfectly suitable to be integrated in a tool that support
the designer during the development process of a multi-agent
system.

Section 2 presents motivations for pattern formalization
and composition. A design approach based on the seman-
tic description of patterns is proposed in Section 3 and a
graphic notation, the Pattern Semantic Description is dis-
cussed. Section 4 introduces an expressive yet simple set of
operators for unifying, conjoining, concealing and external-
izing pattern elements, illustrating a composition example.
Section 5 reports an analysis on the reusability and expres-
siveness of our language. Finally, some concluding remarks
are reported in Section 6.

2. MOTIVATION

This section presents an analysis of heterogeneous forms of
pattern blending, which are commonly found in real multi-
agent system development. This analysis provides some mo-
tivations for the introduction of our language.

The Digital Business Ecosystem [10] consists of a research
project supported by the European Commission’s 6th Frame-
work Programme IST Thematic Priority. In particular, the
Sicilian DBE project supports Sicilian micro and middle size
companies in order they can access to advanced information
and communication technologies to grow their business. We
have realized a multi-agent system, the Sicilian Digital Busi-
ness Ecosystem Simulator (SDBE Sim), that simulates the
business evolution of companies, in which several design pat-

149

AT2AI-6: Sabatucci L. et al.: A Semantic Description For Agent Design Patterns

Interacting Agents Company Agent

& BusinessDatalListener
ISESearcher.
GetC
‘ Listener

[refuse]

G
=

[success] @
Send [failure]
Inform
Send
Failure

i

accept]

Get
GUI Data

Update
Business
Data

GenericAgent (1)

1
1 — + onStart()
| + searchDF() (1)
| < i

| - + registerDF() (1.2)
: + unregisterDF()

l

+ takeDecision!
)

GetGUIData

BusinessDataListener
- receiver : AID
+ action()

+ handleAgree()
+ handleRefuse()
+ handlelnform()
+ handleFailure

Update
BusinessData

+[[___Failurelflessage T |
.
[ResultMessage T |
I

|
|
|
|
+ action |
|
|
|
|
|

Request (2)

Figure 1: Two PASSI design slices of the SDBE case study. (a) Task Specification for the Company agent. A
number of agent’s tasks and interacting agents were omitted for simplification reasons. (b) A Single Agent
Structure Description diagram that illustrates the implementing class structure of the same agent. This
diagram has been decorated with references to patterns that have been employed.

terns for agents have been used and combined to achieve
system requirements of scalability and adaptation. Figure 1
shows two design slices in which two patterns have been used
and combined. In Figure 1.a the internal architecture of the
Company agent is shown. This agent simulates the core busi-
ness of a company. The agent provides the user a GUI where
simulation data can be edited. Other agents, for example the
ISESearcher agent, may request company’s business data by
using a FIPA Request communication protocol [12]. Ac-
cording to agent autonomy feature the Company agent may
decide whether to give back its data or to refuse. If the agent
accepts the request, it must read user’s data from the GUI
and eventually update its core business. After this update,
the agent may reply to the request message. Figure 1.b re-
ports the Jade [2] implementing structure for the Company
agent. This class diagram contains a class for the agent, and
another class for each agent’s task. In addition three mes-
sage classes, are shown, that are used during conversations.
This class diagram is useful to illustrate the employment of
design patterns for implementing this agent. The GenericA-
gent pattern as been used to give the Company agent the
abilities to interact with the system Directory Facilitator.
This is fundamental for agents that want provide services to
the community. This pattern has introduced the searchDF,
registerDF, unregisterDF methods in the agent class, and a
new DFlnitiator task class. The Request pattern has been
used, in order to give the agent the ability to participate to
communications by using the FIPA Request protocol [12].
This pattern has introduced the service_description attribute
in the agent class that contains a reference to the action to
execute to provode the service. The registerDF is modified
in order to register the agent’s service and a new method
takeDecision is introduced to encapsulate the decision pro-
cess in order to evaluate whether accept or refuse incoming
requests. Finally, the BusinessDatalistener task class and
three message classes are introduced in the structure in or-
der to handle incoming communications.

The attachment of a number in the CompanyAgent class

implies that the respective method or attribute is part of the
implementation of the corresponding pattern. Each number
represents a specific pattern and the aim of this represen-
tation is to illustrate how various pattern realizations affect
internal members of a single class. The result of the applica-
tion of these two patterns, is a typical pattern composition
that occurs when implementing an agent that offers services
to a community. In the composition each pattern introduces
specific agent abilities and features, and some of these are
influenced by more than one pattern at the same time. This
creates a synergy of pattern functionalities and responsibil-
ities that are merged together in a new pattern structure.
The remaining part of this pattern illustrates how pattern
compositions may be formalized and employs in the agent
paradigm.

3. SEMANTIC DESCRIPTION FOR
PATTERN STRUCTURES

Last years revealed the importance of semantic descrip-

tion of data, especially in certain context, such as the web.
The semantic descriptions are generally based on the use of
ontologies in order to structure informal description in hier-
archical relationships of concepts on which it is possible to
operate logical reasoning [21].
The remaining sections describe the POLaR language [17,
19], a fine-grained design approach to support the pattern
solution definition that is based on a set of constituents that
can be combined in order to define the structure and the
behavior of the solution. In order to discuss the language
we give some definitions:

Pattern Description Element (PDE). An atomic con-
stituent of a pattern that describes the structure or the
behavior of the solution. They are: (i) participants,
(ii) collaborators, (iii) events and (iv) actions.

Language Element (LE) Element of the target program-
ming language used for implementing the pattern. Lan-

150

AT2AI-6: Sabatucci L. et al.: A Semantic Description For Agent Design Patterns

guage Elements are expressed by using elements of the
meta-model. In our repository for agents, examples of
LEs are: agent, organization, communication, role and
task.

Affected System Element (ASE) Element of the system
that is influenced by the pattern application. A typical
example of ASE is a business class that is assigned to
a participant of the pattern. Its structure is modified
because it must be compliant with PDE constraints.

PSEs are the constituents of a pattern solution. The
definition of pattern solutions encompasses alternant lev-
els of stability: some PDEs (Pattern Description Elements)
are precisely described and do not require further details
through the pattern instantiation, whereas some others are
only sketched and their concrete definition is delayed to the
pattern instantiation phase. The structure and behaviour
of those PDEs depends on the application context and on
the other patterns to which they are going to be composed.
This kind of PDE supports the generalization and reuse of
patterns in very distinct contexts where the nature of the
problem may be different.

Participant. Participant are placeholders for assigning re-
sponsibilities to ASEs. This pattern constituent is sim-
ilar to the classic “role” element, introduced in [13] and
detailed in several pattern formalization approaches
[16][15]. Participant is a more general concept because
roles can be played by classes only, whereas every ele-
ment of the MAS meta-model (for instance an Agent
or a Task, or even a Communication) may be a par-
ticipant of the pattern. Responsibilities assigned to a
participant will be taken by LEs that are assigned to
this participant.

Collaborator. A collaborator is a concrete element of the
pattern, totally defined in every its feature. It is used
in order to introduce in the system an element that
generally mediates other pattern’s elements with a stan-
dard behavior. Its behavior is pre-defined, and except
for special situations, it does not require a further spe-
cialization. A collaborator owns a type, which refers
to a LE (Language Element). Therefore, a collabo-
rator may be an instance of any element of the MAS
Meta-Model.

Event. An event encapsulates an abstract circumstance that
is the cause of triggering a specific behavior, involving
one or more pattern elements. Typically the context
that generates an event is external to the pattern. It is
an non deterministic condition (from the point of view
of the pattern), that is generated by the specific needs
of a participant. The event execution may be consid-
ered as a service request operated by the participant
in order to produce the desired behavior.

Action. Together with events, actions have a fundamental
role in the definition of the behavior of a pattern. An
action encapsulates what happens when an event oc-
curs. Actions must not be considered as merely meth-
ods. In the agent paradigm, actions may correspond
to agent’s abilities or tasks depending by implementing
issues.

For problems of space, in this paper we mainly focus on
the static structure of the pattern description. Even if the
complete formalization approach also supports the dynamic
description and composition [19] this is only shortly dis-
cussed in this paper.

3.1 The Pattern Semantic Description

Semantic networks are often used as a form of knowledge
representation. They consist in declarative graphic repre-
sentations that are expressed with models of interconnected
nodes and arcs. Semantic networks generate machine-readable
dictionary that can be used either to represent knowledge or
to support automated systems for reasoning about knowl-
edge [20].

Several graphical notations exist for representing a seman-
tic network. The UML class diagram is often used in order
to represent concepts and their relationships. This diagram
is perfectly suitable for our aims, but we have introduced
the two stereotypes, participant and collaborator, in order
to immediately distinguish participants and collaborators.
Relationships are used to connect participants and collabo-
rators, thereby creating a semantic network.

The class diagram that uses these stereotypes to describe
the semantic structure of a pattern is named Pattern Seman-
tic Description (PSD) diagram. An example of this diagram
is shown in Figure 2, that illustrates the Request pattern.
In this figure we have introduced a graphic notation in order
to reduce the space: participants are shown by using ovals,
whereas collaborators are shown by using boxes. This de-
scription is designed to assert propositions about the struc-
ture of pattern solutions (assertional networks [20]). Partic-
ipants and collaborators are the concepts of this network. In
particular, collaborators are concepts whereas participants
are classes of concepts. Relationships express semantic con-
nections among these concepts. Relationships can not freely
connect every kind of concepts in a PSD; they are precisely
ruled by the MAS meta-model [1, 3, 8].

The information in a PSD is a set of conditions that should
be contingently true in order to apply the pattern in the
system where the problem occurs. The aim of PSD diagrams
is twofold:

e they are human readable, so that designers can easily
understand and apply the rationale of each pattern
solution;

e the use of a limited set of concepts and relationships
allows the realization of a parser for automatic inter-
pretation of patterns, thus resolving syntactic ambigu-
ities.

3.2 An Example of Pattern for Agent

The pattern, we consider here, is the Request pattern,
from our repository, briefly introduced in Section 2. This
pattern has been conceived for giving agents the ability to
initiate and participate to communications that are compli-
ant to the FIPA Request protocol.

This communication is useful in several circumstances.
The delegation of a task is a typical scenario useful to il-
lustrate the aim of this pattern. It occurs when an agent
has to perform an action (for example, an interaction with
a physical resource) but it is not able or has not sufficient
permissions to do. So the agent can ask to another agent
of performing that action (because of agents autonomy, the

151

AT2AI-6: Sabatucci L. et al.: A Semantic Description For Agent Design Patterns

involved agent can refuse or accept the request according to
its personal goals).

The analysis of the description of the protocol, reported
below, has been the core for the identification of the par-
ticipants of this pattern (Figure 2). The elements that are
included in the description of the protocol but are outside
the definition of the pattern are the two agent roles: initia-
tor and participant. Any couple of agents may participate in
this protocol by simply playing these two roles. This is the
reason for which we defined these two roles as participants of
the pattern: (i) Agent Role Init is responsible to begin the
communication and (ii) Agent Role Part is responsible to
maintain a listener for this communication. Designer must
specify the couple of agents to assign to these participants.
Other elements that can not be encapsulated in the pattern
definition are: (i) the Action, that is requested by the initia-
tor by using the communication and (ii) the Decision task
used to encapsulate the decision process to activate when
the agent receives the request.

Figure 2 also shows the collaborators of this patterns.
The Request Communication is the description of the kind
of communication among initiator and participant. This
must be compliant to the FIPA Request protocol [12], whose
description is given in the FIPARequest AIP collaborator.
Several Messages are included for information exchange. In
addition, two tasks are defined as collaborators: (i) the Re-
quest Initiator Task is responsible to send the request mes-
sage and wait for a reply, and (ii) the Request Participant
Task is responsible to wait a request message and to reply
with a result.

4. OPERATORS FOR PATTERN BLENDS

This section presents the operators for pattern composi-
tion based on the fine-grained pattern elements. These op-
erators can be used in order to modify the structure of the
pattern solution that is represented by a semantic graph in
PSD diagrams. The following list briefly describes all the
static composition operators. Their concrete usage will be
later discusses in a detailed example.

Unification The unification is used to express overlapping
compositions. The rationale behind this operator is
to operate fusions of couples of static elements with a
consequent merging of responsibilities. The result is
to overlap the structure of two patterns using the two
elements as pivots for the operation. This produces
strong changes in the resulting pattern structure.

Conjunction The conjunction operates a conservative pat-

Failure Request
refers to
Message generates generates Message
ommunication Message
Fi PAE?;“‘ES‘ is conpliant to
initiates participates
a " owns
eques Request
o Agent
Initiator [« owns Rfylg:rr:it RolgeParl owns —| Listener
Task Task

’@ participant [: collaborator

Action

refers to
generates

Figure 2: Pattern Semantic Description diagram for
the Request pattern

register
contains Service refers to

DF
Communication

is conpliant to

FIPARequest
AIP initiates

contains refers to

search

ervice

is

owns
DF handler plays
Request | — oS
Listener owns owns owns.
Task ~ \ ~a

[searchDF |

’G participant [: collaborator

l registerDF I l unregisterDF

Figure 3: The pattern semantic description for the
GenericAgent pattern.

tern blending. The rationale behind this operator is
to create a synergy among the responsibilities of two
patterns, by maintaining them separated. The two el-
ements are linked by a new element, introduced in the
structure. Only marginal changes are visible in the re-
sulting structure of the involved patterns, promoting
the traceability of the involved elements.

Concealing This unary operator has been conceived to mod-
ify the nature of a participant into a collaborator. The
responsibilities assigned to a participant are imposed
to the elements of the system that participates to the
pattern. Concealing a participant means that all its
responsibilities are delegated to a collaborator. They
are no more visible outside the pattern. The visible
effects of this operation are i) to allow mixed composi-
tion (unification and conjunction) among participants
and collaborators ii) to internally set some responsibil-
ities in order to assign a standard behavior and iii) to
reduce the complexity of the pattern.

Externalization This unary operator has been conceived
to modify the nature of a collaborator into a partic-
ipant. The rational behind this operator is to delay
the assignment of these responsibilities till the instan-
tiation phase, exactly like for participants. The visible
effects of this operation are i) to allow mixed composi-
tion (unification and conjunction) among participants
and collaborators and ii) to change the standard be-
havior of a pattern, by delegating some aspects of its
structure to elements of the system.

In order to discuss the usage of these operators in the
static context, a composition of the GenericAgent pattern
with the Request pattern is illustrated. The result of the

Server conjoins Generic with AgentRolePart

searchDF registerDF C Requgs{ searchDF registerDF
Nt } o o

owns owns : participates owns_ owns

Agent i A
gent
Conjunction :
-)

owns oWns owns owns owns

Request
Communication

participates

owns

Request : { : Request J
Listener Decision unregisterDF i | Listener Decision unregisterDF
Task C| Task

Figure 4: An example of conjunction among partic-
ipants for the SequentialShareResource pattern.

152

AT2AI-6: Sabatucci L. et al.: A Semantic Description For Agent Design Patterns

ServerRole

AgentRolePart

Request searchDF registerDF
\M‘ % 1

owns owns

Request searchDF registerDF
3 \M‘ LN

-

owns owns

participates participates

| «— Pays

Server

G g
Role Part ~+——— Concealing

Figure 5: An example of concealing of participant
for the SequentialShareResource pattern.

composition is a new pattern, the SequentialShareResource,
that solves the classical problem of providing a service to
the remaining part of the society. A service is an action
performed by an agent when requested by another agent.
Service provisioning is subject to certain conditions (pre-
condition, post-condition, grounding) to be verified. In par-
ticular this pattern provides the other agents with an access
to a physical resource that the agent may manipulate; the
specific characteristic of this access is that resource param-
eters are read/affected each time an access request occurs.
A typical example of service that depends on a resource has
been given in Section 2. The Company agent provides infor-
mation on its business, but this depends on the user’s data
introduced by a GUI. The solution proposed by this pattern
is to sequentially execute three activities: (i) the verification
of the conditions under which the service may be provided,
(ii) the update of the status of the physical resource and (iii)
the execution of the service-action.

The first component of this blend is the GenericAgent pat-
tern (shown in Figure 3), that has been conceived as a root
for giving an agent the ability of interacting with the yellow
pages service of the platform. The agent resulting from this
pattern is able to register/unregister services to/from the
yellow pages and to search them in.

The second component of the blend is the Request pat-
tern, already discussed in Section 3.2. This pattern is used to
implement a FIPA Request communication. By using this
pattern an agent can request to another agent to perform
some actions.

The composition process details (for the static part) are
described in the following list:

e The first operation in this composition is a conjunc-
tion among the Client participant of the GenericA-
gent pattern and the AgentPartRole participant from
the Request pattern. The rationale of this operation
is to assign an agent, the Server, to play the Agent-
PartRole. Figure 4 shows the result of this operation:
after the conjunction the Server participant plays the
Agent Role Part.

ServiceAction unifies GenericAgent Action with Request.Action

DF contains register | /st (ﬁ‘mm DF contains register
C Service /‘ Communication Service refers to
is conpliant to P is conpliant to Service
i :) i
Fesaar| (Sever) ows —>{ Sarvco | PP | (o
AIP AlP
[) Unifidation I
is conpliant to - is conpliant to
generatel ’W’_, Acion) Request gonerates Request
C Message Communication Message

Figure 6: An example of unification among partici-
pants for the SequentialShareResource pattern.

e After the conjunction the designer can delegates a con-
crete agent of the system to be the Server of this new
pattern (since it is a participant). This agent will
play the AgentPartRole in the request communication.
Therefore this role can be converted to a concrete ele-
ment of this pattern: designer is not required to spe-
cialize this element. For this reason the AgentPartRole
is concealed by the Server Role, a new collaborator of
the pattern. This operation is shown in Figure 5.

e The third operation is an unification between the Ac-
tion from GenericAgent with the Action from the Re-
quest pattern. The meaning of this operation is to
specify that the action registered to the yellow pages
by the Server agent is the same action that the agent
provide to the community. This unification is shown
in Figure 6.

e Finally, we also introduced a new participant in the
structure, the UpdateResource pattern, that is a task
responsible for accessing the resource and update its
state. Since the access to the resource is variable, de-
pending by the nature of the resource, this element is
defined as participant. Figure 7 shows the resulting
structure of the new pattern after all these operations.

FIPARequest Request |_efersto Service
Request AP Message | refers to Action
|n_:_"a‘k°' I Failure /
as Message
is conpliant to Message is
owns generates
enerates
Client Request g
initiates o
Role Communication

owns.

Server Role

Update
Resource

Request
Listener
Task

owns

participates

owns

[&— owns plays

’@ participant [: collaborator

Figure 7: The pattern semantic description for the
SequentialShareResource pattern.

S. DISCUSSION

This section discusses the pattern reuse process, and some
results obtained by the application of the pattern composi-
tion technique to three different case studies are reported.
The reuse process encompasses four phases for introducing
patterns in a system:

1. Meta-model definition or importing. This phase de-
fines the domain where patterns can be employed. The
Meta-Model defines a set of rules to be considered dur-
ing next phases. Concepts and relationships in a PSD
must be compliant to the Meta-Model. The defini-
tion of a meta-model is a complex activity but several
reusable meta-models already exist.

Pattern structure and behaviour definition. In this
phase the pattern is modelled by using a fine-grained
description based on PDEs. Pattern modellers define
the core semantics of patterns, in order to formalize
their descriptions. This phase of the reuse process is
supported by the Pattern Semantic Description dia-
gram for representing the structure of the proposed
solution.

153

AT2AI-6: Sabatucci L. et al.: A Semantic Description For Agent Design Patterns

Holonic Society

ThreeLevels ContractNet
Knowledge

GenericAgent

Publish
Subscribe

Parallel
ShareResource

Supply
Chain

—_—

Figure 8: Composition relationships among patterns
in our repository.

3. Pattern composition. Patterns can be also defined by
using pattern blending that allows for creating pattern
synergies to solve more specific problems. This phase is
supported by four operators: unification, conjunction,
externalization and concealing.

4. Pattern instantiation. This is the final phase of the
pattern lifecycle, where designers are involved in ap-
plying patterns to under development systems.

Discussion in this section is focussed on the pattern instan-
tiation phase. The semantic approach for describing pat-
terns, as introduced in Section 3, can be manually employed
to introduce solutions in systems, or can be automatically
interpreted by a tool that may generate the desired solu-
tion. Subsection 5.1 illustrates some statistics obtained by
manual reuse of patterns from our repository. Finally, Sub-
section 5.2 introduces a tool, we are developing, that obtains
benefits from the semantic approach.

5.1 Reusability of Pattern Blends

Our repository is by now composed of 22 patterns for
agents. We have already formalized 14 of these patterns
in order to evaluate our language. Patterns we have repre-
sented and composed with our approach are shown in Figure
8. Only 4 of these are atomic patterns: (i) GenericAgent, (ii)
Request, (iii) Query and (iv) ContractNet. The remaining
10 patterns in Figure 8 are obtained by composition. This
situation is represented by relationships ”is composed by”.

All patterns in this repository have been manually reused
in three different case studies reported in Table 1. We have
chosen these applications because they are from heteroge-
neous application domains: (i) SBE Sim is a software that
simulates business evolution of Sicilian micro and mid-size
companies, (ii) CiceRobot[6] is a robotic application able to
give guided tours of the Agrigento’s Regional Archaeolog-
ical Museum and (iii) Iron Manufacturer is an application
for supporting a B2B scenario involving an iron manufactur-
ing company. The number of different application contexts,
proves the feasibility of our patterns and their compositions.

Table 1 reports that 8 patterns have been reused in at least

two case studies. The most used patterns are the GenericAgent,

the Request, and the Query that are generally easily to com-
bine with other ones.

Table 1: Statistics of pattern usage in our three case
studies

Iron

SDBE Sim CiceRobot Manufacturer TOT
ContractNet 1 1 2
Explorer 1
GenericAgent 4 5 5 14
Holonic Organization 1 1 2
Market 1 1
Monitor 1 2
Parallel ShareResource 1 1
Planner 3 3
Publish-Subscribe 1 1 2
Query 9 4 7 20
Request 9 7 21 37
Sequential ShareResource 3 1 2 6
Supply Chain 1 1
ThreeLevels Knowledge 1 1
TOT 30 23 40

5.2 A Tool for Pattern Reuse

In previous section we proved that

e a framework is provided for representing declarative
knowledge on design pattern, that is based on a se-
mantic network,

e the syntax and semantics of the network are clearly
defined

Under these conditions, pragmatics of the network are de-
fined by several rules which are problem-independent. This
allows us to formulate control algorithms to handle the de-
scribed structures. In particular we are developing a tool
with the following requirements: (i) complete control of the
entire pattern reuse process, from meta-model definition to
pattern definition, composition and instantiation; (ii) verifi-
cation of pattern syntax and semantics; (iii) management of
pattern applicability pre and post conditions; finally (iv) au-
tomatic generation of code and documentation for the multi-
agent system generated by using pattern composition.

The latter requirement of this tool has been already com-
pleted, and discussed in [18]. This component of the tool
uses an aspect oriented approach for weaving together dif-
ferent contribution to the final workproduct. These contri-
butions are generated separately by aspect weavers who are
specialized to realize code for a specific aspect of the sys-
tem. Typical aspect weavers are: (i) the architecture weaver
who is responsible to define the basic structure of an agent,
its capabilities and the its basic life-cycle activities; (ii) the
role weaver is responsible to manage complex agent activ-
ities, both internal processes than social behavior; (iii) the
communication weaver is responsible to give agents the abil-
ity to interact by using communications; (iv) the protocol
weaver generates the structure for managing agent interac-
tion protocols; and finally (v) the ontology weaver is respon-
sible to generate agent knowledge structure. All these as-
pect weavers must collaborate in order to generate a unique
source code.

The other requirements, we are facing for the development
of the tool, are related to the pattern formalization problem.
A semantic definition of patterns is easily representable in a
formal language. We already defined this language, that we
named POLaR (Pattern Ontology Language for Reuse) but
it was not discussed in this paper for limit of space. Any-
way the production of the parser for the POLaR language
is under construction. A portion of the BNF code used to

154

AT2AI-6: Sabatucci L. et al.: A Semantic Description For Agent Design Patterns

represent the syntax of this language is shown in the follow-

ing:

<Pattern_Descr> ::=
<Pattern_Definition> :

:= { < Element_Clause > }

<Pattern_Header> "{" <Pattern_Definition> "}"

<Element_Clause> ::= <Participant>
| <Collaborator>
| <Event>
| <Action>
<Collaborator> ::= collaborator <Identifier> is <Element_Descr> ";"
<Element_Descr> ::= <Element>
| <Operator>
<Operator> ::= <Unification>
| <Conjunction>
| <Promotion>
| <Externalization>
6. CONCLUSIONS

This paper presented an innovative formalization tech-

nique for describing and composing design patterns for agents.

The technique is based on a semantic analysis of the pat-
tern solution and introduces a graphic notation to represent

pattern’s concepts and their relationships.

The proposed

formalization has been conceived for dealing with composi-
tion, presenting a set of operators to manage different pat-
tern blending styles. The peculiarity of the approach is the
fine grained level chosen for fronting with the composition,
which makes it possible to combine pattern elements in the
resulting composite pattern. We have applied our approach
in three agent oriented applications, thus obtaining encour-
aging results in terms of reusability and expressiveness. In
addition we introduce a tool we are developing in order to
automatically compose and instantiate design patterns and
to automatically generate implementing code and documen-
tation.

7.
(1]

REFERENCES

C. Atkinson and T. Kiihne. The essence of multilevel
metamodeling. Uml 2001: The Unified Modeling
Language: Modeling Languages, Concepts, and Tools:
4th International Conference, Toronto, Canada,
October 1-5, 2001: Proceedings, 2001.

F. Bellifemine, A. Poggi, and G. Rimassa. Jade - a
fipa2000 compliant agent development environment. In
Agents Fifth International Conference on Autonomous
Agents (Agents 2001), Montreal, Canada, 2001.

C. Bernon, M. Cossentino, M. Gleizes, and P. Turci. A
study of some multi-agent meta-models.
Agent-Oriented Software Engineering V: 5th
International ..., Jan 2005.

J. Bosch. Specifying frameworks and design patterns
as architectural fragments. In Proceedings of TOOLS
’98, page 268, Washington, DC, USA, 1998. IEEE
Computer Society.

F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and

P. S. Yu. Automatic code generation from design
patterns. IBM Syst. J., 35(2):151-171, 1996.

A. Chella, M. Liotta, and I. Macaluso. CiceRobot: a
cognitive robot for interactive museum tours.
Industrial Robot: An International Journal,
34(6):503-511, 2007.

M. Cossentino. From requirements to code with the
PASSI methodology. In Agent Oriented Methodologies,
chapter IV, pages 79-106. Idea Group Publishing,
Hershey, PA, USA, June 2005.

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

M. Cossentino, S. Gaglio, L. Sabatucci, and

V. Seidita. The passi and agile passi mas meta-models
compared with a unifying proposal. In In proc. of the
CEEMAS’05 Conference, pages 183-192, Budapest,
Hungary, Sept. 2005.

M. Cossentino, L. Sabatucci, and A. Chella. Patterns
reuse in the PASSI methodology. In ESAW, pages
294-310, 2003.

Digital Business Ecosystem.
http://www.digital-ecosystem.org. onsite.

A. H. Eden, A. Yehudai, and J. Gil. Precise
specification and automatic application of design
patterns. In Proceedings of ASE 97, page 143,
Washington, DC, USA, 1997. IEEE Computer Society.
Foundation for Intelligent Physical Agents. FIPA
Interaction Protocol Library Specification, 2000.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements od Reusable
Object-Oriented Software. Addison-Wesley
Professional Computing Series. Addison-Wesley
Publishing Company, New York, NY, 1995.

I. Hammouda and K. Koskimies. An approach for
structural pattern composition. In Proceedings of SC
2007, Braga, Portugal, March 2007.

E. Kendall. Role modeling for agent system analysis,
design, and implementation. In IEEFE Parallel and
Distributed Technology, volume 8, pages 34 — 41,
IEEE, Apr-Jun 2000. IEEE Computer Society.

D. Riehle. Describing and composing patterns using
role diagrams. In K.-U. Mé&tzel and H.-P. Frei, editors,
1996 Ubilab Conference, pages 137-152, Ziirich,
Germany, June 1996.

L. Sabatucci. A Framework for Rapid Development of
Multi-Agent System. PhD thesis, Dipartimento di
Ingegneria Informatica, University of Palermo, Italy,
2008.

L. Sabatucci and S. Gaglio. Separation of concerns
and role implementation in the passi design process.
In 5th International Conference on Industrial
Informatics (INDIN 07), 2007.

L. Sabatucci, A. Garcia, N. Cacho, M. Cossentino, and
S. Gaglio. Conquering fine-grained blends of design
patterns. In 10th International Conference on
Software Reuse (ICSR 08), Lecture Notes in
Computer Science. Springer, (in printing) 2008.

S. Shapiro. Encyclopedia of Artificial Intelligence.
John Wiley & Sons, Inc. New York, NY, USA, 1992.
E. Sirin and J. Hendler. Semi-automatic Composition
of Web Services using Semantic Descriptions. WSMAT
2003, 2003.

155

AT2AI-6 Working Notes

156

AT2AI-6: Silva P. et al.: Institutional Environments

Institutional Environments

Porfirio Silva

Rodrigo Ventura

Pedro U. Lima

Institute for Systems and Robotics,
Instituto Superior Técnico
Lisbon, Portugal

porfiriosilva@isr.ist.utl.pt

ABSTRACT

The concept of environment is of paramount relevance for new
strategies to model systems of multiple artificial agents. This
paper introduces a set of definitions designed to guide the
modelling of institutional environments. This is part of ongoing
research on a new strategy to conceptualize multi-robot systems,
which takes a network of institutions as the control system for a
collective of artificial embodied agents with bounded rationality
and bounded autonomy. The definitions, given as structured
tuples, attempt to capture a hypothesis on the main constitutive
elements of the social order dynamics. That hypothesis is part of
the institutional approach, which aims at responding to some
difficulties of current perspectives on environment.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sciences —
Economics, Sociology.

1.2.9 [Computing Methodologies]: Artificial Intelligence —
Robotics.

General Terms
Design, Economics, Theory

Keywords

Institutional Environments, Institutional Robotics

1. INTRODUCTION

This paper is part of an ongoing research on a new strategy to
conceptualize multi-robot systems, which takes a network of
institutions as the control system for a collective of artificial
embodied agents with bounded rationality and bounded autonomy
[15]. We conceive institutional environments as networked
institutions embedded in wider environments. Our aim here is to
suggest a set of definitions designed to guide the modelling of
institutional environments.

The definitions, given as a tuples structure, try to capture a
hypothesis on the main constitutive elements of the social order
dynamics. The suggested definitions for “node of the institutional
network”, “institutional agent”, and “institutional network”,
framed by an explicit presentation of our hypothesis on dynamics
of social order, are given in Section 4.

Motivations for our perspective on institutional environments are

Jung, Michel, Ricci & Petta (eds.): AT241-6 Working Notes, From
Agent Theory to Agent Implementation, 6th Int. Workshop,
May 13, 2008, AAMAS 2008, Estoril, Portugal, EU.

Not for citation

yoda@isr.ist.utl.pt

pal@isr.ist.utl.pt

presented in Sections 2 and 3. In Section 2 we mention some
contributions to the emergence of the concept of environment as a
tool of paramount relevance for new strategies to model systems
of multiple artificial agents. Some difficulties associated with such
concepts are also considered. In Section 3 we refer to the
Institutional Robotics approach as the framework for our current
research on institutional environments.

2. MIND AND ENVIRONMENT: FROM
MENTALISM TO INTERACTION

The concept of environment emerges as a tool of paramount
relevance for new strategies to model systems of multiple artificial
agents. In this Section we mention some contributions to that
process, mainly related to a shift from mentalist to interactionist
underlying metaphors.

According to [1:49-54], a metaphor has been prevailing over
cognitive science research programme on mind. It is the metaphor
of an abstract inner space opposed to the outside world, whether
the outside world includes the body or not. That same metaphor
conceives a boundary between inner and outer spaces being
traversed by perceptive stimuli (headed inward) and behavioural
responses (headed outward). The unsuitability of this metaphor
reveals itself where this dominant approach to mind is driven by
its own difficulties to blur the difference between inside and
outside, as a consequence of the endeavour to reproduce the entire
world inside the head. This diagnosis of what Agre calls
“mentalism” helps to understand the three great neglects at the
heart of Good Old-Fashioned Artificial Intelligence: the neglect of
the body, of the world, and of other agents.

Philip Agre is one of the proponents of interactionism as an
alternative to mentalism, both to analyse living agents and to
design artificial ones. To the interactionist alternative the central
phenomenon is the interaction of agents with their environment
[1:57-58]: “I propose thinking about computation in terms of
machinery and dynamics. A machine (. . .) is an object in the
physical world that obeys the laws of physics. [The dynamics]
concerns the interactions between an individual (robot, ant, cat, or
person) and its surrounding environment.”

Andy Clark [3] also explains why there is a plastic frontier
between mind, body, and world. On the one hand, it comes from
natural evolution. Clark stresses that most of our daily behaviour
is niche dependent. This means that we are not “general
machines” prepared for every possible contingency, but instead
sensitized to those particular aspects of the world that have special
significance because of our way of life. On the other hand, there is
also the impact of our culture on the world. We adapt our
surroundings to our needs and life style. We perform “epistemic
actions” [9], we organise things on space to unload computation

157

AT2AI-6: Silva P. et al.: Institutional Environments

to the environment. One of the many examples given by David
Kirsh, and mentioned by Clark, is: ’To repair an alternator, take it
apart but place the pieces in a linear or grouped array, so that the
task of selecting pieces for reassembly is made easier.” Language
and arithmetic are widespread cognitive scaffolding tools for
human beings.

Paul Dourish [5], while sharing interactionist views, strives for
“embodied interaction”. Embodiment, the central element of the
perspective Dourish puts forward, focus the study of cognition on
the agent’s practical action on his world. Embodiment, far from
being restricted to an agent situation in a physical environment,
also counts on the social and organizational environments, and
stresses the participative status the agent enjoys [5:19]: “Physical
environments are arranged so as to make certain kinds of activities
easier (or more difficult), and in turn, those activities are tailored
to the details of the environment in which they take place. The
same thing happens at an organizational level; the nature of the
organization in which the work takes place will affect the work
itself and the ways it is done.”

According to Henry Petroski [12], a deep aspect of our worldly
condition is that we are surrounded by objects that are shaping
and are being shaped by the slightest aspects of our daily life. He
mentions Donald Norman’s suggestion that “there are perhaps
twenty thousand everyday things that we might encounter in our
lives”. However, he argues against rationalist conceptions of
artefacts: form does not follow function. Necessity and utility
does not determine technological diversity. Already in 1867 Karl
Marx was surprised to learn that five hundred different kinds of
hammers were produced in Birmingham. Practical use always
goes beyond rational anticipation, and the variety of entrants in
any design competition shows at what extent the specification of a
design problem in no way dictates its solution. Petroski’s
reflections could help to generalise the notion of artefact, which,
according to [13:130], has been introduced recently in Multiagent
Systems (MAS) as a first-class abstraction representing devices
that agents can either individually or collectively use to support
their activities.

Researchers within the MAS framework are calling for an explicit
recognition of the responsibilities of the environment, irrespective
of the agents. Since there are lots of things in the world that are
not inside the minds of the agents, there is a need to surpass the
subjective view of MAS, where the environment is somehow just
the sum of some data structures within agents, and to embrace an
objective stance towards environment, enabling modellers to deal
with systems from an external point of view of the agents
[18:128].

The point is that the active character of the environment must be
taken seriously: some of its processes change its state
independently of the activity of any agent (a rolling ball that
moves on); multiple agents acting in parallel can have effects any
agent will find difficult to monitor (a river can be poisoned by a
thousand people depositing a small portion of a toxic substance in
the water, even if each individual portion is itself innocuous)
[17:36]. Moreover, dynamic environmental processes independent
of agents’ purposes and almost unpredictable aggregate effects of
multiple simultaneous actions are not phenomena restricted to
physical environments. Similar phenomena can occur in
organizational environments: if nine out of ten of the clients of a
bank decide to draw all their money out at the same date,

bankruptcy of that institution could be the unintended effect.
Furthermore, taking into account environment opens new means
to deal with indirect or mediated interaction, which [17:14]
considers characterized by properties such as name uncoupling
(interacting entities do not have to know one another explicitly),
space uncoupling and time uncoupling (they do not have neither
to be at the same place nor to coexist at the same time).

Trying to understand environment mediated interaction, stigmergy
is another worth mentioning point. The term “stigmergy” captures
the notion that, if multiple agents leave signs in a shared
environment and their subsequent actions are determined by they
sensing those signs, coordination within large populations is
achievable by simple means, namely without any direct
communication. Most common examples coming from insects and
ant societies, stigmergy is usually associated with simple agents
with severely bounded computational resources. Yet, Parunak,
along with researchers talking of self-organisation emerging just
from mere local interaction as a widespread phenomenon, even
for more sophisticated agents, claims that stigmergy is pervasive
also in human societies. ”’It would be more difficult to show a
functioning human institution that is not stigmergic, than it is to
find examples of human stigmergy” [11:163].

Contributing the “cognitive stigmergy” notion, [13] converges on
this view. The point is that, since the agents we work with have
not just reactive, but also cognitive activities and can adapt and
learn, there is a need to generalise from stigmergy to cognitive
stigmergy. Now, cognitive stigmergy asks for more sophisticated
environments, being “in general more articulated than a mere
pheromone container”, where “the effects of agent actions on the
environment are understood as signs”, and “hold a symbolic
value” [13:127,132].

We have just mentioned a few examples of recent interesting
developments on the role of environments for systems of multiple
agents. But some difficulties associated with these developments
are worth mentioning.

A difficulty that must be a concern for all systems with just
software environments is raised, e.g., by [17]. Contrary, for
example, to real robots systems evolving on physical
environments, all aspects of a purely virtual environment (and of a
purely virtual agent) must be modelled explicitly. This raises
conceptual concerns related to the role of the modeller, and asks
for a clarification of the very concept of environment. Because a
computational environment that is part of a software system
should not be confused with the environment with which the
system interacts, the different levels and dynamics at stake must
be made explicit.

That point is mentioned by [19]. Discussing the Human-Computer
Interaction issue, the authors say: “the role of humans in
multiagent systems can be very diverse. In some applications,
humans can play the role of agents and interact (. . .) with the
application environment” [19:21].

Another promising issue is raised by the same researchers, talking
of a “reflective level”. Writing that “Such reflective interface
enables cognitive agents to modify the functional behaviour of the

environment”, and that the reflective level can be seen as “a
means for self-organizing MAS” [19:11], they are opening new

158

AT2AI-6: Silva P. et al.: Institutional Environments

frontiers for artificial collective systems, promising more careful
attention to the real meaning of the “autonomy” of the agents.

Our institutional environment approach could give some ways to
deal with these difficulties. And, additionally, incorporate a factor
with easily recognisable importance to human societies but
usually forgotten in systems of multiple artificial agents. It is all
about history and accumulation. Throughout the centuries,
humans have been accumulating small modifications to myriads
aspects of our physical and social world, not necessarily being
aware of all them. In a wholly different attitude, designers of
artificial systems pretend to be able to play gods and genesis anew
each time they start modelling another version of their systems.
Our institutional approach also intends to respond to that
situation, giving place to history and accumulation within systems
of multiple artificial agents.

In the next Section we present some global aspects of this
institutional approach, so paving the way to their concrete
application in Section 4.

3. INSTITUTIONAL ENVIRONMENTS

We have proposed Institutional Robotics [15] as a new approach
to the design of multi-robot systems, mainly inspired by concepts
from Institutional Economics, an alternative to mainstream
neoclassical economic theory [7]. The Institutional Robotics
approach intends to sophisticate the design of collectives of
artificial agents by adding, to the currently popular emergentist
view, the concepts of physically and socially bounded autonomy
of cognitive agents, and deliberately set up coordination devices.

On the one hand, full autonomy is not attainable. Autonomous
agents are not necessarily self-sufficient. Most of the time agents
depend on resources and on other agents to achieve some of their
goals. Dependences imply interests: world states that objectively
favour the achievement of an agent’s goals are interests of that
agent. Limited autonomy of agents comes from these dependences
and interests relations [4].

On the other hand, collective order does not always emerge from
individual decisions alone. A set of experiences within MAS,
reported in [2], proved that, at least in some situations, merely
emergent processes may lead to inefficient solutions to collective
problems. Due to the absence of any opportunity for individuals
to agree on a joint strategy, this is true even in some situations
where the best for each individual is also the best for the
collective. Thus, coordination devices deliberately set up by
agents could be useful and must be considered. Still, this
approach does not preclude emergence. Bounded rationality
combines with bounded autonomy to give place to emergent
phenomena: there are deliberate planned actions but they may
produce unintended effects beyond reach of the agents’
understanding.

The Institutional Robotics approach endeavours to reflect these
aspects taking institutions as decisive elements of the environment
of multi-agent systems. Within this approach, the control system
for a collective of artificial agents is a network of institutions.
However, in this context, we adopt a broad concept of institution
[15:600]: “Institutions are coordination artefacts and come in
many forms: organizations, teams, hierarchies, conventions,
norms, roles played by some robots, behavioural routines,
stereotyped ways of sensing and interpret certain situations,

material artefacts, some material organization of the world. A
particular institution can be a composite of several institutional
forms.” In the next section we further refine some concepts that
are crucial to future implementation of this approach.

4. ANETWORK OF INSTITUTIONS AS
THE CONTROL SYSTEM FOR A
COLLECTIVE OF ARTIFICIAL AGENTS

4.1 A hypothesis on the main constitutive

elements of the social order dynamics

The classic problem of the social sciences, the problem of social
order or the micro-macro problem, is the question that introduces
[6]: “How does the heterogeneous micro-world of individual
behaviours generate the global macroscopic regularities of the
society?”. Our institutional approach aims to contribute to a better
understanding of that problem within systems of multiple artificial
agents interacting with natural ones. Our strategy consists of
putting together the main constitutive elements of the complex
dynamics of institutional order, let them interact and let us interact
with them, draw some lessons from the experiment, and test these
lessons on new generations of experiments. Our tentative
hypothesis is that the main constitutive elements of the social
order dynamics to experiment with are as follows.

4.1.1 The powerful engine of the interactive
workings of inner life and outer life mechanisms of

the agent
Agents have built-in reactive behaviours, routines, and
deliberative competences. Agents have partial models of

themselves (they know some, but not all, of their internal
mechanisms). Some of the internal mechanisms known by the
robots can be accessed and modified by themselves. These
elements are constitutive of the inner life of the agent.

The continuing functioning of any agent depends on some
material conditions. Basic needs drive the activity of agents and
lead to modifications of both physical and social world. How an
agent interprets its world and the possibilities it affords depends
on the physical and social world models the agent bears upon. An
agent’s links to some, and not others, available institutions on its
environment influence the world models it puts to use, thus
biasing its behaviour. Beyond being influenced by its links to a
subset of the existing institutions, the agent also is, at some extent,
able to exert some influence on institutional mechanisms.
However, autonomous agents do not transcribe institutional
models without (slightly or not) modifying them. So, basic needs,
fundamentally disposed by nature, have strong, even if indirect,
interaction with social mechanisms like institutions. These
elements are at the root of the dynamics we call “outer life of
agents”.

The inner life of the agent has multifaceted effects at behavioural
level, and thus on its participation in social interaction. The
agent’s activities on its social and material environments interact
intensively with its internal mechanisms. The joint workings of
inner and outer life are of paramount importance for the
emergence of complex collective phenomena. The diffuse frontier
between nature and nurture is also captured by our notion of
interaction between inner life and outer life of an agent.

159

AT2AI-6: Silva P. et al.: Institutional Environments

4.1.2 Agents with reactive and deliberative
mechanisms in a world with mental and material

aspects

Let us, following a number of researchers (e.g., [10][16]), call
coordination artefacts to those artefacts shaped for coordinating
the agents’ actions. Now, some interesting coordination artefacts
are associated not only with physical but also with cognitive
opportunities and constraints (deontic mediators, such as
permissions and obligations). Recognizing all of those enables a
single agent to act in a coordinated way: a driver approaching a
roundabout is obliged, only by physical properties of the artefact,
to slow down and go right or left to proceed; traffic regulations
add something more indicating which direction all drivers have to
choose not to crash with others. In another example, some rules
(or other kinds of mental constructs) can be associated to a
material object to implement some aspect of the collective order
(a wall separating two countries is taken as a border; there are
some doors in the wall to let robots cross the border; some
regulations apply to crossing the border).

We can say that material objects are devices for institutions when
they implement some aspect of the collective order.
Notwithstanding, the boundaries between institutional and purely
physical aspects of the world are not sharp. Consider a wall
separating two buildings: it effectively implements a prohibition
of visiting neighbours if the robots are not able to climb.
However, if the wall is seen as just an element of the physical
world, some robots gaining access to opposite building with
newly acquired tools or physical capabilities will not be minded
as a breach of a prohibition. Still, modifications of the material
world creating new possibilities of interaction can become
institutional issues. If the collective prefers to preserve the
previous situation of separated buildings, the new capability of the
robots to climb the wall could give place to new regulations.

This kind of artefacts, along with the coordination purposes they
serve, illustrates how much could it be difficult to separate, either
in conceptual or in practical terms, material from mental aspects
of our world. That difficulty is closely related to our condition as
complex agents combining reactive and deliberative ties, both to
the physical and the social world.

4.1.3 Nobody is born alone in the wild. Not even
artificial agents. And, at times, humans act as

ancestors for artificial agents.

When a natural human agent comes into world, generations of
ancestors have been shaping physical and social environments for
centuries. Yet, the human agent can contribute with some
modifications, some of which will last; some others will vanish
sooner or later. The same happens with institutions for artificial
collectives. When an artificial agent comes into existence,
designers have already settled most contingencies that can
determine its life. But, if it enjoys some kind of autonomy, it will
also contribute to the continuing evolution of its world. The
institutional environment at any point in the history of a collective
is always a mix of inherited and newly adopted forms. So, the
designers of an artificial collective must shape the first version of
an institutional network. Thus, they play the role of predecessors
for the artificial agents and (at least some aspects of) their
environment. And, if we want to develop a better understanding

of the interaction between human and artificial agents, designers
must stay involved; say “as participative gods”.

4.2 Definitions

Now, we will try to capture the tentative hypothesis stated above
with a set of definitions designed to guide the modelling of
institutional environments: node of the institutional network,
institutional agent, and institutional network.

Departing from prevalent approaches (e.g., [14],[8]), we bring
forward the following tentative informal definition: «Institutions
are cumulative sets of persistent artificial modifications made to
the environment or to the internal mechanisms of a subset of
agents, thought to be functional to the collective order.» Building
upon this, the main constituents of institutional environments will
be defined by structured tuples.

Starting with the definition of “node of the institutional network”,
instead of with the definition of “institutional network”, deserves
an explanation. Since we are not usually able to reach an external
viewpoint on complex societies, especially where we enjoy a
participative status, a top down approach could prove unrealistic.
From an epistemological standpoint, starting with some particular
institutions, and then trying to broaden our understanding of the
network, looks like a more modest but reliable strategy.
Additionally, this approach better accommodates the existence of
genuine emergent dynamics.

Moreover, we talk of “node of the institutional network”, and not
of “institution”, because we don’t know a principled way to get
general clear-cut distinctions between an institution and a network
of institutions. For example: the judicial system of a country must
be seen as an institution or as a net of institutions (a net of courts
of justice)?

Definition 1. A Node of the Institutional Network is a tuple
< ID, Rationale, Modifiers, Network, Institutional Building,
History > where:

ID = < Label, Form >
Label: Unique ID for this node of the institutional network.

Form: Generic form of this node (formal organisation, informal
group, role, rule (law, norm, convention, right), behavioural
routine, stereotyped way of sensing and interpret certain
situations, material artefact, some material organisation of the
world, a composite of several basic institutional forms). To each
form corresponds a specific way of communicating to agents the
expectations embedded on a specific node of the Institutional
Network.

Rationale = < Goals, Activities >

Goals: Collective goal this institution is thought to be functional
to.

Activities: Specific activities of the agents this node of the
institutional network is supposed to serve to.

160

AT2AI-6: Silva P. et al.: Institutional Environments

Modifiers = < Cognitive Modifiers, Praxic Modifiers >

Cognitive Modifiers < Ideologies-P, Ideologies-S, Material
Infrastructure for Cognitive Modifiers, Mental Infrastructure for
Cognitive Modifiers >

Ideologies-P: ideologies about the physical world.
Ideologies-S: ideologies about the social world.

(Ideologies are partial world models provided by institutions, and
so in principle shared by the subset of all agents with links to
specific institutions. One and the same institution can provide
several ideologies to agents. There is no consistency requirement
associated to the set of ideologies provided by one and the same
institution. Ideologies include partial ontological assumptions
about some regions of the multi-agent system’s world: entities,
their properties, relations possibly holding among them.)

Material Infrastructure for Cognitive Modifiers: Material aspects
of the institution that impact the cognitive mechanisms of the
agents (for example, tools for augmented computational power -
like calculator or computers, or tools for modified perception, like
microscopes, telescopes, sensors for sound or light waves outside
the range of natural equipment of the agents - where the access to
those tools is not granted to every agent and depends on
institutional appurtenance or institutional position).

Mental Infrastructure for Cognitive Modifiers: Mental aspects of
the institution that impact the cognitive mechanisms of the agents
(for example, concepts that apply some specific distinctions to
organize some region of the perceptive space - where the access to
those concepts is not granted to every agent and depends on
institutional appurtenance or institutional position).

Praxic Modifiers
Modifiers, Mental
Enforcement >

< Material Infrastructure for Praxic
Infrastructure for Praxic Modifiers,

Material Infrastructure for Praxic Modifiers: Material aspects of
the institution that impact the action mechanisms of the agents
(for example, physical objects functioning exclusively by means
of its physical characteristics given the physical characteristics of
the agents: a wall separating two buildings implements the
prohibition of visiting neighbours if the robots are not able to
climb it).

Mental Infrastructure for Praxic Modifiers: Mental aspects of the
institution that impact the action mechanisms of the agents (e.g., a
program to control a sequence of operations). Some
infrastructures combine material and mental aspects (for example,
a traffic sign is a physical object which functioning is due to a
specific link to a mental construct: a traffic rule).

Enforcement: Mechanisms associated with this node of the
institutional network specifically designed to prevent or to redress
negative effects of violation of expected behaviour (examples are
fines and reputation) and to reward observance (examples are
prizes and advancement in rank or status). Enforcement
mechanisms affect future acting possibilities of agents.

Network: Links to other nodes of the institutional network (the
existence of a link, its nature).

Institutional Building = <Institutional Imagination, Co-operative
Decision-making >

Institutional Imagination: Mechanisms designed to facilitate
“thought experiments” about possible modifications to actual
institutions, or even alternative institutions (agents could test
alternatives without actually implement them). Results of
Institutional Imagination (possibly fuelled by access to the
Institutional Memory of the Institutional Network, and to the
Lineage & Accumulation element of History of a Node of the
Institutional Network) would eventually be put forward to Co-
operative Decision-making mechanisms specific to this node of
the institutional network.

Co-operative Decision-making: Mechanisms designed to
implement collective deliberation about possible modifications to
actual institutions, or about alternative institutions.

History = < Material Leftovers, Mental Leftovers, Lineage &
Accumulation >

Material Leftovers: Material objects that once served some aspect
of the institutional dynamics but have gotten disconnected from it.
(Because the continuing existence of a material object can be
uncoupled from the continuing existence of the institutional
device it implements — e.g., the wall could be demolished without
eliminating the border; the border can be eliminated without
demolishing the wall — a material leftover of a discarded
institution can last as an obstacle in the world.)

Mental Leftovers: Mental constructs that once served some aspect
of the institutional dynamics but have gotten disconnected from it
(for example: norms that once served a collective goal and persist
notwithstanding the goal having been relinquished).

Lineage & Accumulation: Old versions of this node of the
institutional network, saved as a list of cumulative modifications
to the oldest known version.

Definition 2. An Institutional Agent is a tuple < ID, Nature,
Individual Links, Institutional Links, Ideas, Praxis > where:

ID = < Name, Natural Group Name >
Name: Specific individual identification.

Natural Group Name: (for example) Family name, for humans.

Nature =<Relatives, Species, Basic Needs, Built-in Mechanisms>
Relatives: Names of the other members of the Natural Group.
Species: Human, Non-Human Animal, Robot, ...

Basic Needs: Material conditions for continuing functioning of
the agent.

161

AT2AI-6: Silva P. et al.: Institutional Environments

Built-in Mechanisms: Built-in perceptive and motor apparatus,
reactive behaviours, routines and deliberative competences.

Individual Links: Names of other agents this agent can identify by
their names.

Institutional Links: Nodes of the institutional network the agent is
currently linked to.

Ideas = < Current Ideologies-P, Current Ildeologies-S, Current
Opinions, Models of the Self, Institutional Knowledge >

Current Ideologies-P: 1deologies-P the agent adheres to at present.
Current Ideologies-S: 1deologies-S the agent adheres to at present.

(Notwithstanding the fact that Institutional Links determine in
principle which ideologies the agent adheres to, actually not all
agents are fully aware or fully adhere to all ideologies proposed
by the institutions they are linked to.)

Current Opinions: Opinions the agent currently holds. An
“opinion” is an individual deviation from world models provided
by institutions. By virtue of bearing an “opinion”, as well as
bearing an “ideology”, the behaviour of an agent can be modified.

Models of the Self: Every agent know some, but not all, of their
internal mechanisms (agents have partial models of themselves).

Institutional Knowledge: Knowledge the agent has about the
Institutional Network.

Praxis = < Physical World Tools, Social World Tools, Self-
Improvement Tools >

Physical World Tools: Tools enabling the agent to modify the
material organisation of the physical world, and thus, the material
infrastructure of the institutions (including, but not restricted to,
physical tools: influencing other agents is a possible delegate way
of modifying the physical world).

Social World Tools: Tools enabling the agent to modify the
organisation of the social world.

Self-Improvement Tools: Some of the internal mechanisms known
by the agents can be accessed and modified by themselves.

Definition 3. An Institutional Network is a tuple < Nodes,
Connections, Institutional Memory, Emergency Observatory,
Participative Gods > where:

Nodes: Currently active institutional nodes.

Connections: Known/explicit links between active nodes.

Institutional Memory: Incomplete repository of old/inactive
institutions which can be used to feed Institutional Building
mechanisms. Each old/inactive institution is saved as a list of
cumulative modifications to the oldest known version.

Emergency Observatory: Available information about emergent
collective phenomena within the multi-agent system which is
under control of this Institutional Network.

Participative Gods =<Customer, Designer, Rationale, Ontology>

Customer: Who ordered this control system for a collective of
artificial agents.

Designer: Who designed this control system for a collective of
artificial agents.

Rationale = < Goals, Activities >

Goals: Goals Customer and Designer want this multi-agent
system to be functional to.

Activities: Activities Customer and Designer want this multi-agent
system to serve to.

Ontology: Ontological assumptions of the Customer and the
Designer about the multi-agent system’s world (entities, their
properties, relations possibly holding among them), given the
goals they (the Customer and the Designer) place on it (the
system).

4.3 How basic dynamics are represented
within the tuples structure

We have tried to capture our tentative hypothesis on the main
constitutive elements of the social order dynamics (see 4.1. above)
with definitions 1 to 3. The tuples structure expresses the complex
interaction of some basic dynamics of the social life of artificial
agents in interaction with human beings. We will now underline
the main components of these dynamics within the tuples
structure.

The agent modifies itself as it modifies its world in ways that are
not always fully intentional and that cannot be completely
anticipated. The dynamics of interaction between inner life and
outer life of an agent (see 4.1.1. above) is mainly represented by
interactions of the following elements:

Agent — Nature — Built-In Mechanisms.

Agent — Ideas — Models of the Self.

Agent — Praxis — Self-Improvement Tools.

Agent — Nature — Basic Needs.

Agent — Praxis — Physical World Tools, Social World Tools.

Node of the I. Network — Modifiers — Cognitive Modifiers —
Ideologies-P, Ideologies-S.

162

AT2AI-6: Silva P. et al.: Institutional Environments

Agent — Ildeas — Current Ideologies-P, Current Ideologies-S,
Current Opinions.

Node of the I. Network — Network, Institutional Building.

Physical and cognitive opportunities and constraints represented
by artefacts in the environment, and sometimes recognized by the
agents, combine with internal mechanisms of the agents to give
rise to complex behavioural patterns. Thus, behaviour can be
modulated by way of environmental or internal mechanisms
which are partly modifiable by the agents themselves. The
dynamics of intertwined reactive and deliberative mechanisms of
agents in a world with mental and material aspects (see 4.1.2.
above) is mainly represented by interactions of the following
elements:

Node of the 1. Network — Modifiers — Cognitive Modifiers —
Material Infrastructure for Cognitive Modifiers, Mental
Infrastructure for Cognitive Modifiers.

Node of the I. Network — Modifiers — Praxic Modifiers —
Material Infrastructure for Praxic Modifiers, Mental
Infrastructure for Praxic Modifiers.

Node of the I. Network — Institutional Building.

Node of the I. Network — History — Material Leftovers, Mental
Leftovers.

Agent — Nature — Built-in Mechanisms.

Agent — Ideas — Models of the Self.

Autonomous agents, coming into existence in a world shaped by
generations of predecessors or designers, can also contribute to
the continuing evolution of their environment. The dynamics of
inherited vs. newly adopted institutions (see 4.1.3. above) is
mainly represented by interactions of the following elements:

Node of the I. Network — Institutional Building.
Node of the I. Network — History — Lineage & Accumulation.
Agent — Ideas — Institutional Knowledge.

Institutional Network — Institutional Memory.

Where human beings are designers and users of collectives of
artificial agents, the understanding of interaction between human
and artificial agents becomes part of the understanding of the
artificial system. Modelling crucial aspects of the interaction
between human and artificial agents within the control system of
the collective can improve that understanding. The dynamics of
human/artificial agents’ relationships (see 4.1.3. above) is mainly
represented by interactions of the following elements:

Node of the I. Network — Rationale.

Institutional Network — Participative Gods — Rationale,
Ontology.

Node of the I. Network — Modifiers — Cognitive Modifiers —
Ideologies-P, Ideologies-S.

Node of the I. Network — ID — Form.

(The latter element will ease comparisons between artificial
institutions and characteristic institutions of the Customer and
Designer environments, thus fuelling understanding of constraints
imposed by goals/activities the multi-agent system is supposed to
serve.)

Our notion of interaction between inherited and newly adopted
institutional forms leaves room both for deliberately set up
institutional mechanisms and for emergent aspects of institutional
evolution, as represented by these elements of the tuples structure:

Node of the I. Network — Institutional Building.

Node of the 1. Network — History — Material Leftovers, Mental
Leftovers, Lineage & Accumulation.

5. CONCLUSIONS AND FUTURE WORK

We introduced a set of definitions designed to guide the
modelling of institutional environments, as part of a strategy to
control collectives of artificial embodied agents (e.g., multi-robot
systems), with bounded rationality and bounded autonomy, by a
network of institutions. Building upon an informal definition, the
main constituents of institutional environments (nodes of the
institutional network, institutional agents, and institutional
networks) were defined by structured tuples. The social order
dynamics results of interactions among the elements of the
defined tuples.

It is clear for us that deeper work must be done to gain further
insight on the relevance of the constituent elements and their
interactions. This will be the subject of the next steps in our
research. We are working on two scenarios of different levels of
complexity in order to experiment with partial aspects of our
concept. The simpler scenario consists of a set of roundabouts
designed to regulate urban traffic, directly associated with traffic
signs and framed in a more general way by a road code. The more
complex scenario consists of a “search and rescue” operation,
where heterogeneous cognitive robots must cooperate, both with
other species of robots and with humans, on an unstructured
landscape, aiming to help victims of some kind of disaster or
emergency situation.

Once the required clarifications are achieved, the tuple definitions
will act as prescriptions for an ontology to be used in the software
programs we plan to design and implement, so as to control a
collective of real robots and their environments, including the
interaction among humans and robots. Such a demonstration will
act as a proof of concept of the Institutional Robotics framework.

6. ACKNOWLEDGMENTS

The research of the first author is supported by Fundacdo para a
Ciéncia e a Tecnologia (grant SFRH/BPD/35862/2007). This
work was partially supported by Fundagdo para a Ciéncia e a
Tecnologia (ISR/IST pluri-annual funding) through the POS
Conhecimento Program that includes FEDER funds. We would
like to thank Fausto Ferreira, Gongalo Neto, and Matthijs Spaan
for the fruitful discussions on various aspects of Institutional

163

AT2AI-6: Silva P. et al.: Institutional Environments

Robotics. Moreover, we thank anonymous reviewers for

constructive comments and suggestions.

REFERENCES

Agre, P. 1997. Computation and Human Experience.
Cambridge University Press, Cambridge.

Castro Caldas, J., Coelho, H. 1999. The Origin of
Institutions: socio-economic processes, choice, norms and
conventions. In Journal of Artificial Societies and Social
Simulation, 2:2 (http://jasss.soc.surrey.ac.uk/2/2/1.html).

Clark, A. 1997. Being There: Putting Brain, Body, and the
World Together Again. The MIT Press, Cambridge, MA.

Conte, R., Castelfranchi, C. 1995. Cognitive and Social
Action. The University College London Press, London.

Dourish, P. 2001. Where the Action Is: The Foundations of
Embodied Interaction. The MIT Press, Cambridge, MA.

Epstein, J.M., Axtell, R. 1996. Growing Artificial Societies:
Social Science from the Bottom Up. The Brookings
Institution and the MIT Press, Washington, DC.

Hodgson, G.M. 1988. Economics and Institutions: A
Manifesto for a Modern Institutional Economics. Polity
Press, Cambridge.

Hodgson, G.M. 2006. What Are Institutions? In Journal of
Economic Issues, 40:1, 1-25.

(8]

[9] Kirsh, D., Maglio, P. 1994. On distinguishing epistemic from

pragmatic action. In Cognitive Science, 18, 513-549.

[10] Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C.,
Tummolini, L. 2004. Coordination Artifacts: Environment-
Based Coordination for Intelligent Agents. In Proceedings of
the Third International Joint Conference on Autonomous
Agents and Multiagent Systems - Volume 1 (New York, NY,
July 19 - 23, 2004). IEEE Computer Society, Washington,
DC, 286-293.

[11] Parunak, H.v.D. 2006. A Survey of Environments and
Mechanisms for Human-Human Stigmergy. In Environments
for Multi-Agent Systems 11, EAMAS 2005, Selected Revised
and Invited Papers, Springer-Verlag, Berlin Heidelberg,
163-186.

[12] Petroski, H. 1992. The Evolution of Useful Things. Vintage,
New York.

[13] Ricci, A., Ominici, A., Viroli, M., Gardelli, L., Oliva, E.
2007. Cognitive Stigmergy: Towards a Framework Based on
Agents and Artifacts. In Environments for Multi-Agent
Systems I1I, E4MAS 2006, Selected Revised and Invited
Papers, Springer-Verlag, Berlin Heidelberg, 124—140.

[14] Searle, J.R. 2005. What is an institution? In Journal of
Institutional Economics, 1:1, 1-22.

[15] Silva, P., Lima, P.U. 2007. Institutional Robotics. In F.
Almeida e Costa et al. (Eds.): ECAL 2007, LNAI 4648,
Springer-Verlag, Berlin Heidelberg, 595-604.

[16] Tummolini, L., Castelfranchi, C. 2006. The cognitive and
behavioral mediation of institutions: Towards an account of
institutional actions. In Cognitive Systems Research, 7:2-3,
307-323.

[17] Weyns, D., Parunak, H.v.D., Michel, F., Holvoet, T., Ferber,
J. 2005. Environments for Multiagent Systems, State-of-the-
art and Research Challenges. In Weyns, D., Parunak, H.v.D.,
Michel, F. (eds.): Proceedings of the 1st International
Workshop on Environments for Multi-Agent Systems.
Springer-Verlag, Berlin Heidelberg, 1-47.

[18] Weyns, D., Schumacher, M., Ricci, A., Viroli, M., Holvoet,
T. 2005. Environments in Multiagent Systems. In The
Knowledge Engineer Review, 20:2, 127-141.

[19] Weyns, D., Omicini, A., Odell, J. 2007. Environment as a
first class abstraction in multiagent systems. In International
Journal on Autonomous Agents and Multi-Agent Systems,
14:1, 5-30.

164

AT2AI-6: Zhang P. et al.: Enhance Collaboration in Diabetic Healthcare for Children using Multi-agent Systems

Enhance Collaboration in Diabetic Healthcare for Children
using Multi-agent Systems

Peng Zhang
Blekinge Institute of Technology
PO Box 520, 37225
Ronneby, Sweden
+46 457 385855

peng.zhang@bth.se

ABSTRACT

We developed a multi-agent platform as a complement to the
existing healthcare system in a children’s diabetic healthcare
setting. It resolves problems related to the difficulty of
collaboration between the stakeholders of the problem domain. In
addition, it gives us an opportunity to support the decision making
of the stakeholders using Multi-agent Systems. The collaboration
situation is believed to be improved by the agent-based services,
such as, diabetes monitoring and alarm, scheduling, and task
delegation.

Categories and Subject Descriptors

1.2.11 [Computing Methodologies]: Atrtificial Intelligence:
Distributed Artificial Intelligence - Multiagent systems, J.3
[Computer Applications]: Life and Medical Sciences - Medical
information systems

General Terms
Design, Reliability, Security, Human Factors.

Keywords

Multi-agent System, children’s diabetic healthcare, collaboration,
MAS coordination, diabetes monitoring and alarm, agent based
scheduling.

1. INTRODUCTION

The need to make work more effective and an ongoing technical
progress illustrate the necessity of coordinating and collaborating
activities within health care systems. Agent technology is
believed to be able to alleviate this necessity, as Nealon and
Moreno stated in [1]: “the basic properties of intelligent agents
(autonomy, proactivity, social ability) and the features of Multi-
agent Systems (MAS) (management of distributed information,
communication and coordination between separate autonomous
entities) suggest that they offer a good option to consider when
trying to solve problems in health care domains.”

MAS techniques have been applied in the various health care
fields of telemonitoring [2], medical monitoring and diagnosis [3-

Jung, Michel, Ricci & Petta (eds.): AT2AI-6 Working Notes, From
Agent Theory to Agent Implementation, 6th Int. Workshop,
May 13, 2008, AAMAS 2008, Estoril, Portugal, EU.

Not for citation

Bengt Carlsson
Blekinge Institute of Technology
PO Box 520, 37225
Ronneby, Sweden
+46 457 385813

bengt.carlsson@bth.se

Stefan J. Johansson
Blekinge Institute of Technology
PO Box 520, 37225
Ronneby, Sweden
+46 457 385831

stefan.johansson@bth.se

5], remote service and scheduling [6], elderly care and home care
[7, 8] and healthcare coordination [9, 10].

Especially there are some applications in diabetic health care:

— Diabetic monitoring and alarm: The SuperAssist project
introduces personal assistants in the care of diabetes patients,
assisting the patients themselves, the medical specialists
looking after the patients healthcare, and the technical
specialists responsible for maintaining the health of the devices
involved [11]. The SuperAssist framework aims to reduce the
costs by improving the local, self-care capacity of people by
efficient employment of remote, distributed expertise. The
M2DM telemedicine service can monitor and receive blood
glucose data, pass it to an intelligent agent that interprets the
data and if needed trigger an alarm [12, 13]. The main
contribution of the M2DM project is combining statistics, rule-
based techniques and model-based techniques in its
Knowledge Management agents in order to process the patient
data and generate alarms automatically.

— Biomedical control and management in diabetes: Amigoni et
al. introduced MAS to diabetic information management with
the anthropic agency architecture [14]. The T-IDDM project
provides telemedicine services to diabetic patients especially
the management of insulin dependent diabetic patients [15].
The DIABTel telemedicine system complements the daily care
and intensive management of diabetic patients through
telemonitoring and telecare services [16]. Li and Istepanian
proposed a model for diabetes management [17] and Tian and
Tianfield developed a telemedicine system for diabetes based
on agent technology [18].

Most of the applications above are focused on decision support
systems, diagnosis and monitoring, coordination and management
etc., in the hospitalized settings. In the case of chronic diseases,
e.g. diabetes, most of the health care is given in homes or in other
un-hospitalized settings. This paper describes how software
agents can be used in children’s diabetic healthcare in un-
hospitalized settings. We argue that the agents we have
implemented are able to help us overcome weaknesses in children
diabetic healthcare of today, such as, communication problems,
poor decision support, etc.

The paper is organized as follows. First, the diabetic healthcare
management is described, with a focus on children diabetes. Then
we describe the design and implementation of our MAS — IMAS.

165

AT2AI-6: Zhang P. et al.: Enhance Collaboration in Diabetic Healthcare for Children using Multi-agent Systems

Short descriptions of the functionalities are given and last we
discuss the system, draw conclusions and line out future work.

2. DIABETIC HEALTHCARE
MANAGEMENT: CHILDREN DIABETES

IN FOCUS

The diabetic healthcare management has been described in
previous work [19]. Two main characteristics are the
distribution of patients and the level of multi-care involved.
Diabetic patients are geographically distributed and the
care-providers (doctors, nurses, parents) are only
occasionally working together. Diabetes regularly leads to
many kinds of complications, e.g. for the eyes, feet, skin,
heart, kidneys, nervous system, celiac diseases, etc. The
diabetic healthcare normally takes place in un-hospitalized
settings, e.g., at homes, at work, or during travels. Diabetes
cannot be cured permanently, so the patients must be able
to take care of themselves in the daily life. Corresponding
care-providers must be involved, e.g., doctors and nurses
from corresponding fields, dietitians, personal assistants,
parents and school nurses in the case of diabetic children.

P e
- N
. - N
- . N
. . . o TR
i - i = i1
2 & Collaboration | & 3 "
.- “

/ y Zone v e \
' ¢ \ '

i 1

] '
| Hospital Mose .« :’." iy .!T‘?;;O,:;M;s;))
wll(Coun{y Cozm’q})’ ". .;!g ' % Pa !
-] '

nto]]ahoraﬁn‘nfaﬁmr Collah oration

{ Zeme . 2 Zome 5

~ . 1

e e

. o 4

\ E‘w
%Y i
AL Farenfs o
Ml (Chhers) o

Fig. 1 The ‘Collaboration Zones’ between hospital nurses,
school nurses and parents in the children diabetic healthcare
setting. The patient is the least common denominator of the
interactions.

It has been required by the nurses that this collaboration situation
must improve. Based on interviews with hospital nurses and
school nurses, the following problems/issues within the children

diabetic healthcare were identified.

— Communication problems. The computer systems of the
County Council and the municipalities are not
compatible. In acute situations in school, the parents and
the patients have to manually contact the hospital
doctors or nurses by phones.

Intelligent Decision Support. There is software attached
with most of medical devices in the market to display
the measured data in charts. This kind of software is
installed on the patients’ private computers where the
measured data is also stored without easy access for
nurses. Even if a graphical data presentation is available
to the nurses, it may still be difficult to explain the

situation to the patients via telephone or mail. A more
intelligent computerized system is preferable.

Privacy. According to the law in a number of countries, medical
journals of the patients cannot be transferred to anybody without
the permissions from the patients or their guardians. Thus, neither
the municipality nor the County Council can freely share a
journal. Any new system is forbidden to break this privacy rule.
This issue is left out of the scope of this paper, although we
should be aware of it.

2.1 Scenario

To better explain the collaboration issues, we provide the
following scenario.

Linus is a student of the fourth grade in a primary school.
Unfortunately he is suffering of diabetes of type one and needs
regular insulin injections every day. One day Linus felt unwell. So
he went to the school nurse for the glucose measurement. The
result from the glucometer did not provide enough information to
the nurse since the nurse did not have the history record of Linus.
Therefore, the nurse made phone calls to the parents and the
hospital nurses for more information about Linus. After several
phone calls, it was found that Linus had some high carbohydrate
food at lunch, and did not take the insulin injection on time.

The above scenario illustrates a typical collaboration situation
where the following problems can be found:

1. The glucose records are stored at separate places, e.g.,

hospital, home, schools etc. So it is difficult to access all of
them from one location, when needed.

2. In acute situation, nurses have to communicate with the

other care providers who are related to the patient, in order
to get a systemic overview of the patient. Some of the
communications can be automated, if the healthcare
provider can remotely access part of the patient record, e.g.,
glucose record.

Insufficient information is provided to the care providers to make
decisions. Some relevant information, e.g., patient activities,
insulin injection records, is necessary for nurses in order to make
decisions. However, that information is not presented.

3. DESIGN OF IMAS

In order to solve the above problems, we developed a MAS based
system, IMAS, to support the daily healthcare activities of
patients and healthcare staff. The IMAS system provides them
with real time glucose monitoring and management, intelligent
decision supports, user task delegation.

Various agent development methodologies and platforms exist.
We adopted the Gaia methodology [20] for the system analysis
and design of IMAS. Gaia was designed to deal with coarse-
grained computational systems, to maximize some global quality
measure, and to handle heterogeneous agents independent of
programming languages and agent architectures [21]. The IMAS
agents were implemented with JADE [22] making IMAS FIPA
compliant [23]. In the IMAS settings, we assume that each agent
is associated with a human user in the real world, e.g., a patient, a
nurse, a parent, etc. Human users are considered necessary in this

166

AT2AI-6: Zhang P. et al.: Enhance Collaboration in Diabetic Healthcare for Children using Multi-agent Systems

case, because we cannot rely on computer agents alone in acute
situations for healthcare treatments. However, in a daily diabetic
healthcare setting, computer agents can work by themselves
without human control.

1. PatientAgent
2. HospitalStaffAgent
3. SchoolNurseAgent
4. ParentAgent

Fig. 2 The required communication paths of the IMAS
architecture

IMAS agents work either on stationary PCs or on mobile devices
like Pocket PC and Smart Phones. Each agent works for a user
and provides some predefined services. The coordination among
agents is realized though predefined IMAS communication
protocols, i.e., the AlarmProtocol, the MeetingProcotol, the
TaskProtocol, etc. Fig. 2 is an overview of the IMAS agent
system. More details of each agent will be given later

3.1 Needs Specifications

There are many miscellaneous tasks in the daily diabetic
healthcare. Some of them are critical and must be completed in a
timely and precise fashion. For instance, the diabetic care
providers (especially the nurses in this case) work on similar tasks
by routine. They need to check the records of the patients before
they visit them, and report the new information as they finish. The
same task is performed several times every day, since they need
to visit many patients. The task of retrieving and reporting the
information of a patient is simple but must be done in an efficient
and correct way, because delayed or wrong information may lead
to serious consequences.

Through interviews, surveys and questionnaires with school
nurses, hospital nurses and parents with diabetic children, we
worked out the specification [24], based on which we defined the
functionalities of the IMAS system. The system:

— receives data from medical devices and sends alarms to the
corresponding agents/users when necessary,

— automatically organizes meetings for users, and

— decomposes predefined tasks and delegate sub-tasks to other
agents/users.

3.2 Agent Services

Since children are not able to take full care of themselves, their
parents are considered as important actors in the daily diabetic
care. Various services are defined for the agents to handle. An
agent may offer more than one services at the same time.

— Patient Manager (PM). The PM receives data from a sensor
physically attached to the patient. It is also responsible for
updating the patient record in the database.

— Patient Alarm (PA). The PA sends alarms to other relevant
agents in an acute situation, e.g., if the glucose value is outside
the allowed interval.

— Alarm Receiver (AR). The AR receives alarms and informs the
human users.

— Meeting Manager (MM). The MM proposes a meeting to other
agents, awaits their replies and informs them about the result.

— Meeting Responder (MR). The MR receives meeting proposals
and reply to the MM. When a meeting is set, the MR also
updates the calendar of its user.

— Task Manager (TM). The TM proposes tasks to other agents,
awaits their reply and informs them with the final results
(success or fail).

— Task Handler (TH). The TH receives task proposals from TM,
accomplishes the tasks and reports to the TM.

3.3 Agent Roles

As illustrated in Fig. 2, we defined four kinds of agent roles,

namely PatientAgent, ParentAgent, HospitalStaffAgent and

SchoolNurseAgent.

— The PatientAgent works as a personal assistant to a patient. It
provides its owner with real time glucose monitoring and
management. When the glucose level is considered too high or
too low, an alarm will be automatically generated and sent to
corresponding agents, which continue to forward the alarms to
their human users. Patients can also use their PatientAgents to
record their daily activities, e.g., food intake, jogging, etc. This
information will be provided to the medical staff for diagnosis.

— The ParentAgent works for the parents who have children with
diabetes. It provides real time glucose monitoring, making it
possible for the parents to access the current glucose status of
their children.

— The HospitalStaffAgents work for the medical staff at
hospitals. They manage the diabetic healthcare activities, e.g.
meeting arrangement, task delegation.

— The SchoolNurseAgent works for the medical staff at school,
e.g. a school nurse. The HospitalStaffAgent and the
SchoolStaffAgent are functionally very similar.

3.4 Individual Agent Architecture

The design of individual IMAS agent is based on Mller’s vertical
layered architecture [25]. IMAS agent architecture consists of
three components, namely Interface Layer, Agent Control Unit
and Knowledge Base. See Fig. 3.

167

AT2AI-6: Zhang P. et al.: Enhance Collaboration in Diabetic Healthcare for Children using Multi-agent Systems

& Social Activity e — | Cooperation knowledge 3
3 (Motivation) . 2
s Social Context =
S - =3
§,| Proactivity (Goal) Planning knowledge ;
= - Local Plans 2
c T 1 e
3 Patterns of behaviors
Reactivity (Condition) .
-~ Environment Model
Interface— — -
Layer Action Communication Perception
Environment Agent Agent Environment

——> Control Flow Information Access

Fig. 3 IMAS Agent Architecture, based on Muller et al [25],
consists of three main components, Interface Layer (IL),
Control Units (CU), and Knowledge Base (KB).

<€ =->

The Interface Layer (IL) consists of Perception, Action, and
Communication. Perception percepts the changes from the
environment or receives orders from users, and updates the
Environment Model. Action performs the agents’ behaviors and
Communication is the interface to other agents.

The Control Unit (CU) is designed on three levels, Reactivity,
Proactivity, and Social Activity, which are connected to the levels
Environment Model (EM), Local Plans (LP), and Social Context
(SC) in the Knowledge Base (KB). The CU and the KB are
interpreted and re-conceptualized with Engstrém’s Activity
Model [26]. Therefore, the new architecture, to some extent,
manifests human activity aspects in the activities of software
agents

The Reactivity component is driven by conditions. That is, when
a specified signal is perceived by the Perception that requires
action, the Reactivity component will be activated at once. The
Proactivity component is responsible for local deliberation
process. When perceiving changes in the environment and the EM
is updated, the agent will deliberate its goals (desires) and
generate plans from the KB to achieve the goals. The Social
Activity component is responsible for the interaction among
agents. To perform social activities, agents need to learn about the
social context from KB.

3.5 Knowledge Base Design

One important aspect of our research is the re-interpretation and
re-conceptualization of Miller’s vertical layered agent
architecture [25]. The vertical layer agent architecture requests
that the knowledge base should be structured in order to satisfy
two criteria: 1) the knowledge base is better to be structured in
similar layers as the control unit, 2) the knowledge base should
possess a structure that may cover not only the holistic aspects of
collective agent activities, but also detailed plans that may
accomplish individual agent tasks. We keep the three level
knowledge base structure from Miiller’s model [25], and interpret
it with the Activity Theory triangle model (see Fig. 4).

According to Engstrom’s Activity Model, a human activity is
composed of six components, subject (activity transformer),

object (activity transferee), tools (activity media), rules (norms),
community (relevant stakeholders), and division of labor (roles)
[26]. We believe that the activities of software agents, who
represent the human owners, can also be analyzed with this
model. The agent activities, e.g., reactivity, proactivity, and social
activity, can also be defined using the activity triangle model [27].

The agent activity consists of six components:
— Subject agent: this is the agent that conducts the activity.

— Object agent: this is the agent that may benefit from the output
of the activity

— Tools: Tools is interpreted as Local Plans of the subject agents.

— Rules: The norms that the agents should follow when
conducing this activity.

— Community: Community consists of the context of the activity.
For example, what are the relevant agents that are involved in
this agent activity?

— Division of Labor (DoL): how the subject agents divide their
work.

Fig. 4 illustrates the six components of an agent activity. The six
components are correspondingly stored in different levels in the
KB according to Miller [25].

The Environment Model/world model is at the lowest level in the
KB. Three factors are considered necessary in designing the
patterns of agent behaviors, namely rules, division of labor, and
community. Rules contains constrains and permissions that the
subject agent has. Division of labor contains the information
about the agent roles and responsibilities of the activity that the
object agent benefits from. Community contains information
about the agents and human users who are related to a specific
activity. The basic analysis unit of such a database is the activity.

Local plans

Environment Model

Fig. 4 Activity model used in Knowledge Base design. In a
community (MAS or holonic agent groups), the subject agent
conducts an agent activity, which the object agent benefits
from. Subject agent and object agent are mediated by Tools
(local plans); subject agent and community are mediated by
Rules (norms); object agent and community are mediated by
Division of Labor (agent roles). The mediation is represented
by the solid lines. Dashed lines indicate the relations are not
direct and need mediations.

The Social Context consists of the contacts and the relationships
between the subject agent and the other directly related agents
(object agents). That is, how to define the relationship and the
coordination between subject agents and object agents.

168

AT2AI-6: Zhang P. et al.: Enhance Collaboration in Diabetic Healthcare for Children using Multi-agent Systems

The Local Plans/Tools consist of planning knowledge that reflects
the mental context of the agent. Local Plans store agent plans that
are basically series of agent actions. Each plan is associated with
pre-condition and post-condition/goal. Agents may choose plans
to satisfy their goals at run time.

The Knowledge Base is designed as a recursive hierarchy of
Local Plans, Social Context and Environment Model. The design
and implementation of the KB require a thorough description of
the diabetic healthcare field, which is not in the scope of this
paper and will be described in future work.

4, IMPLEMENTATION OF IMAS

So far, the first prototype of IMAS has been developed with
functionalities to meet the objectives in the needs specifications.
Issues about usability, user interface design, are omitted since this
paper focuses on the agent development.

4.1 Patient Control Panel

The patient is provided with a Patient Control Panel (PCP), which
is a part of the PatientAgent. It may help the patient to record
diabetes related activities, (food intakes, insulin injections,
exercises etc.). The recorded activities will be provided together
with historical glucose data to the care-providers when an alarm
occeurs.

The Patient Control Panel has several kinds of user interfaces
implemented depending on the platform of the users’ devices. It
can be an application running on Windows Mobile, or a Java
program running on a Java-supported mobile, or an application
running on stationary PC. Fig. 5 is an example of the Patient
Control Panel running in Windows Mobile 5.

0! =
e T
Choee an ity
ety
N Vaue ks
E add | '-'w’\u

Acthity hstory

30070913 15:47-35 Linuss had an [4]
i

Fig. 5 Patient Control Panel on mobile

4.2 Real-time Glucose Monitoring

Software agents make continuous glucose monitoring possible. In
the testing phase, the glucose level is simulated. In practice the
glucose level may be measured automatically by a glucose sensor
which, for example, is a chip built into the body of the patient. In
this case, the glucose level is monitored in real time.
Traditionally, the glucose levels are measured four times every
day: breakfast, lunch, dinner and bedtime. Fig. 6 shows a situation
where the glucose level is too high during a restricted amount of
time. The real-time monitoring function is provided to the patient,
the parents and the medical staff.

o Patient Agent [nw]
meeting | slarm | Ghatose | Average

Glucose

Valug
o

1240 1245
Tima

12:30 12:35 12:50 1255

Glucose — High — Low

Fig. 6 Real-time glucose monitoring where 8.0 mmol/l and 5.0
mmol/l represent high and low level of glucose.

With real-time monitoring, it is possible to provide alarm
functionality to the patients and their care providers. A preferred
interval is pre-defined by the patients or their care providers based
on the specific situation of the patients. When the glucose level is
detected to be dangerous, i.e. outside the preferred interval, an
alarm is sent to the corresponding agents and human actors
automatically. The receivers of the alarm are chosen based on an
analysis of the KB. Since the KB keeps track of the SC and EM,
which in turn is based on real world measures, it is quite
straightforward to choose which corresponding care-providers
that should receive the alarm.

[‘meeting | alarm | Gludose |

Alarm
ParentAgent (anna] publishes services [2007-sep-12 10:11:34]
Parentdgent Glucose (12 1mmrmaolily at [2007-5ep-21 12:34:00] from patient flinus]

Alarm

(i\‘ An alarm has been received: Glucose (12.1Tmmmoli) at [2007-sep-21 12:34:00] from patient [linus]
Please consider insulin injection to linus immedinately

Fig. 7 ParentAgent receives an alarm

4.3 Decision support to diagnosis

When care-providers receive alarms, they are notified that the
patient is in an acute health state. Necessary actions must be taken
as soon as possible. But first, a detailed check on the health state
of the patient is needed. For example, what are the daily average
glucose levels during the last week or month, what kind of food
has been eaten in the last week or is the insulin injection done
properly in time?

In this case, IMAS agents will automatically generate useful
diagrams and information for the care-providers, such as daily
average glucose levels in the last month, patient activities in the
last week etc. Fig. 8 shows the daily average glucose level in the
last 30 days.

169

AT2AI-6: Zhang P. et al.: Enhance Collaboration in Diabetic Healthcare for Children using Multi-agent Systems

A Patbent hgent [linin] _—._E.Iﬁd]
imesting | slarm | Gludese | Aveiage
Daily Mean

Siawp e Tauy Tawy Wam Ve S B Tae Baw 1w s e (Pae 0w
Time |

|= Biutose Daiy wean|

Fig. 8 Daily average glucose level.

4.4 Meeting arrangement

The healthcare actors often need to meet, e.g., routine meeting
every three months, or urgent visit when acute situation occur etc.
Based on the analysis in the KB, the IMAS agents may propose a
meeting to its human actor with details of the meeting
participants, length, location, time and so on. The human actor
may edit the meeting proposal and ask the agent to send it to the
agents that represent the invited meeting participants (see Fig. 9).
The responding agents will check the calendars of their human
actors and reply with reasonable meeting configurations. We
reuse the protocol of Heine et al. [6], to coordinate the meetings.

The meeting proposing functionality is only provided to the
medical staff, e.g., school nurses, hospital doctors and nurses, due
to the reality that the medical staffs are normally quite occupied
during their work. Therefore, it is better for them to start the
meeting proposal with their available meeting alternatives. And
all agents are afterwards able to respond to the meeting proposals.

L Medscal Ao [cluristhan] =]
|| Mecting | Marn | Gludose |
Please enter o time 2007-05 26 1 00000 Ak
Flease enter The length fmim MH!
Floass erter 1ha location Updata

P enfer The e Al

FroposeMecting

Fig. 9 Meeting proposal

5. DISCUSSIONS

This research has impacts and further improvement on both
theoretical MAS development and practical perspectives of
children’s diabetic healthcare.

Theoretically, the Vertical Layered agent architecture is
interpreted and re-conceptualized with the Activity model. This is
important when the agents are working in a social and human-
involved environment such as the medical healthcare environment
is.

The initiative to communicate is not only taken by the human user
but also by the software agent, e.g. reporting exceptional
measurements of the health state of the patients based on an all
day around monitoring. Real-time monitoring combined with user
provided activity recording constitute the core of IMAS. By
combining new and historical data to appropriate agents, the
diabetic health care setting should improve in both efficiency and
quality.

Task delegation is another aspect that the IMAS can deal with.
Some tasks, e.g., arranging activities like meetings, can be
delegated to the agents. It is always a problem when arranging a
multi-person meeting; especially when the participants are
distributed at different places [6]. With agents provided, such
activities can be easily delegated to the agents that will coordinate
the meetings using predefined protocols.

Fig. 10 Information flows in IMAS. (1) Patient Control Panel
records activities. (2) Glucose monitoring. (3) Alarm. (4)
Decision support to human actors. (5) Meeting arrangement.

Fig. 10 illustrates how the IMAS system helps to practically
improve the diabetic healthcare collaboration with its agent based
services. The diabetic healthcare collaboration situation that is
illustrated by the scenario in Section 2 is believed to be improved
by the IMAS system.

1. The glucose records and diabetes relevant information are
now stored in a centralized database, which can be accessed
by the care providers from any location. The patient now
uses a mobile with a Patient Control Panel installed.
Whenever there is a new glucose record, the Patient Control
Panel will store the new record in a central database. The
storing process is done automatically via the connection
between the glucometer and the Patient Control Panel.
Besides the glucose record, each time the patient eats
anything or takes any exercises, he/she will use his/her
mobile to report the activity, , which will also be stored in
the database. See Fig. 5.

2. When an acute situation happens, PatientAgent will check
the glucose record history and the activity record of the
patient. Based on the Division of Labor, which is stored in
the EM in its KB, PatientAgent chooses corresponding care
providers, and sends them alarm messages with appropriate
suggestions. (See Fig. 7). Other irrelevant care providers

AT2AI-6: Zhang P. et al.: Enhance Collaboration in Diabetic Healthcare for Children using Multi-agent Systems

will not receive this alarm message. Nevertheless, a system
log message will be generated and stored, so that all care
providers can see what has happened to Linus, if they want
to.

When the alarm message is received, the agents of the care
providers will search for useful information about the patients and
present it with suggestions to the care providers, who need to
confirm that the suggestions from the agents are convincible.
Nevertheless, the decisions are made by the human users; the
agents only provide relevant information to them.

6. CONCLUSION AND FUTURE WORK

The collaboration situation in diabetic healthcare can be
improved with IMAS. The IMAS provides a formal
communication channel for all human actors. With predefined
protocols, much information, such as glucose values, meeting
details and task reports, can be automatically transferred to
relevant agents. Some unnecessary visits to the medical staff may
be avoided, since the software agents can provide intelligent
decision support to the patients. This obviously decreases the
communication and coordination burden of the diabetic healthcare
management and gives the staff the possibility to provide
healthcare of higher quality to a lower cost.

In the future, we will continue working with the details of the
design of the Control Unit and Knowledge Base. Firstly, the KB,
especially the EM, will be further developed to model the
important aspects of the reality. Secondly, the stored knowledge
should be processed in the Control Unit in a way so that the agent
can make more effective decision. Principles from Activity
Theory is hoped to be applied in this case.

With the introduction of IMAS, the quality and efficiency of
diabetic healthcare can be improved. The IMAS provides diabetic
healthcare actors, especially the patients, with glucose monitoring
and decision supports in diabetic diagnosis. From care providers’
side, part of their jobs can be accomplished by the agents, e.g.,
arranging meetings, generating, storing, and fetching glucose
reports, thus saving time for the staff, at the same time as the
quality is improved.

7. REFERENCES

[1] Nealon, J.L. and A. Moreno, Agent-Based Applications in
Health Care, in Applications of Software Agent Technology
in the Health Care Domain. 2003: Basel, Germany. p. 3-18.

Barro, S., et al., Intelligent telemonitoring of critical-care
patients. IEEE Engineering in Medicine and Biology
Magazine, 1999. 18(4): p. 80-88.

Ciampolini, A., P. Mello, and S. Storari, Distributed
Medical Diagnosis with Abductive Logic Agents. 2002:
Bologna, ltaly.

(2]

(3]

[4] Godo, L., etal., A Multi-agent System Approach for
Monitoring the Prescription of Restricted Use Antibiotics.

Artificial Intelligence in Medicine, 2003. 27: p. 259-282.

Ldpez, B., et al. A Multi-agent System to Support
Ambulance Coordination in Time-Critical Patient
Treatment. in 7th Simposio Argentino de Intelligencia
Artificial - ASAI2005. 2005. Rosario.

(5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Heine, C., et al. ADAPT: Adaptive Multi-agent Process
Planning & Coordination of Clinical Trials. in AMCIS
2003. 2003. Tampa, Florida.

Camarinha-Matos, L.M. and H. Afsarmanesh, Virtual
Communities and Elderly Support. Advances in
Automation, Multimedia and Video Systems, and Modern
Computer Science, 2001: p. 279-284.

Koutkias, V.G, I. Chouvarda, and N. Maglaveras, A
Multiagent System Enhancing Home-Care Health Services
for Chronic Disease Management. IEEE Transactions on
Information Technology in Biomedicine, 2005. 9(4).

Aldea, A, et al. A Multi-agent System for Organ Transplant
Co-ordination. in the 8th Conference on Al in Medicine in
Europe: Artificial Intelligence Medicine, LNCS vol 2101.
2001: Springer-Verlag.

Lanzola, G., et al., A Framework for Building Co-operative
Software Agents in Medical Applications. Artificial
Intelligence in Medicine, 1999. 16(3): p. 223-249.

de Haan, G., O.B. Henkemans, and A. Aluwalia. Personal
Assistants for Healthcare Treatment at Home. in the 2005
annual conference on European association of cognitive
ergonomics. 2005. Ghania, Greece.

Hernando, M.E., et al. Multi-agent Architecture for the
Provision of Intelligent Telemedicine Services in Diabetes
Management. in the workshop on Intelligent and Adaptive
Systems in Medicine. 2003. Prague, Czech.

Hernando, M.E., et al., Intelligent Alarms Integrated in a
Multi-agent Architecture for Diabetes Management.
Transactions of the Institute of Measurement and Control,
2004. 26(3): p. 185-200.

Amigoni, F., et al., Anthropic Agency: a Multiagent System
for Physiological Processes. Artificial Intelligence in
Medicine, 2002. 27: p. 305-334.

Bellazzi, R., et al., A Telemedicine Support for Diabetes
Management: the T-IDDM Project. Computer Methods and
Programs in Biomedicine, 2002. 69: p. 147-161.

Goémez, E.J., et al., Telemedicine as a Tool for Intensive
Management of Diabetes: the DIABTel Experience.
Computer Methods and Programs in Biomedicine, 2002. 69:
p. 162-177.

Li, M. and R.S.H. Istepanian. 3G Network Oriented Mobile
Agents for intelligent Diabetes Management: a conceptual
model. in 4th Annual IEEE Conf on Information
Technology Applications in Biomedicine. 2003. UK.

Tian, J. and H. Tianfield, A Multi-agent Approach to the
Design of an E-medicine Systems. LNAI, 2003. 2831: p.
85-94.

Zhang, P., Multi-agent Systems in Diabetic Health Care, in
School of Engineering. 2005, Blekinge Institute of
Technology: Ronneby, Sweden.

Wooldridge, M., N.R. Jennings, and D. Kinny, The Gaia
Methodology for Agent-Oriented Analysis and Design.
Autonomous Agents and Multi-Agent Systems, 2000. 3: p.
285-312.

171

AT2AI-6: Zhang P. et al.: Enhance Collaboration in Diabetic Healthcare for Children using Multi-agent Systems

[21]
[22]
(23]

[24]

Luck, M., R. Ashri, and d.I. Mark, Agent-Based Software
Development. 2004: Artech House.

Bellifemine, F., G. Caire, and D. Greenwood, Developing
Multi-agent Systems with JADE. 2007: Wiley.

FIPA, The Foundation for Intelligent Physical Agents.
2001, see http://www.fipa.org.

IMIS, IMIS User Needs Specification,
http://www.ipd.bth.se/imis/IM1S/20060613.IMIS.need.speci
fication.doc. 2006.

[25]

[26]

[27]

Muiller, J.P., M. Pischel, and M. Thiel, Modelling Reactive
Behavior in Vertically Layered Agent Architectures, in
Intelligent Agents: Theories, Architectures, and Languages,
Lecture Notes in Artificial Intelligence 890, M. Wooldridge
and N.R. Jennings, Editors. 1995, Springer: New York.

Engestrém, Y., Learning by Expanding. 1987, Helsinki:
Orienta-konsultit.

Kuutti, K., Activity Theory as a Potential Framework for
Human-computer Interaction Research, in Context and
consciousness, Nardi, Editor. 1996, Massachusetts Institute
of Technology.

172

AT2AI-6 Working Notes

Addis, Andrea
Almuhaideb, Abdullah
Argente, Estefania
Armano, Giuliano
Both, Fiemke
Braubach, Lars
Carlsson, Bengt
Cossentino, Massimo
Dasgupta, Aniruddha
Demazeau, Yves
Fortino, Giancarlo
Fricke, Stefan

Fuentes-Fernandez, Rubén

Gaglio, Salvatore
Galland, Stéphane
Garcia, Emilia
Garro, Alfredo
Gaud, Nicolas
Ghedira, Khaled
Ghose, Aditya
Giret, Adriana
Gomez-Sanz, Jorge
Gunasekera, Kutila
Hachicha, Héla
Hallenborg, Kasper
Heuvelink, Annerieke
Hilaire, Vincent
Himmelspach, Jan
Hirsch, Benjamin
Innocenti, Bianca
Jensen, Ask Just
Johansson, Stefan J.

Author Index

Konnerth, Thomas
Nl Koukam, Abderrafiaa
Kroll-Peters, Olaf

Lamersdorf, Winfried

18| Lima, Pedro
Locatelli, Marco
TGHl Loke, Seng

E|
=B

Loregian, Marco
Loukil, Adlen
Luck, Michael

=
=

Lopez Ibanez, Beatriz
03] Mari, Marco
Mascillaro, Samuele
1EY) Meneguzzi, Felipe

Muller, Tijmen
Poggi, Agostino
Pokahr, Alexander
Rimassa, Giovanni
Russo, Wilma
Rohl, Mathias
Sabatucci, Luca
Salvi Mas, Joaquim
Silva, Porfirio
Tomaiuolo, Michele
Turci, Paola
Uhrmacher, Adelinde
Ullan, Eva

Vargiu, Eloisa

sEEEEEEEEEEEE

3
o
1‘

Ventura, Rodrigo
1o Vizzari, Giuseppe
Zaslavsky, Arkady
1G5 Zhang, Peng

=EEEEEEEEEEEE

E:

AE=EEHE

N
&

EeBH=erEEEE

173

	Preface
	Table of Contents
	Keeping Balance up Sisyphus Path: Thoughts on Bringing Innovation in BPM through Agent Technology (Invited Talk)
	From a Generic MultiAgent Architecture to MultiAgent Information Retrieval Systems
	Comparative Efficiency and Implementation Issues of Itinerant Agent Language on Different Agent Platforms
	A Universal Criteria Catalog for Evaluation of Heterogeneous Agent Development Artifacts
	Implementing reactive BDI agents with user-given constraints and objectives
	Modeling Multi-Agent Systems through Event-driven Lightweight DSC-based Agents
	An Executable Activity Theory Based Framework for Early Requirements Analysis
	Issues for Organizational Multiagent Systems Development
	A Verification by Abstraction Framework for organizational Multi-Agent Systems
	MAMT: an environment for modeling and implementing mobile agents
	Component based models and simulation experiments for multi-agent systems in James II
	Agent Programming in Practise - Experiences with the JIAC IV Agent Framework
	Resource Coordination Deployment for Physical Agents
	Reactive agent mechanisms for scheduling manufacturing processes
	An Agent Model for Collaborative Ubiquitous Environments
	Enhancing Multi-Agent Systems with Peer-to-Peer and Service-Oriented Technologies
	Interaction among agents that plan
	Implementing a Cognitive Model in Soar and ACT-R: A Comparison
	A Semantic Description For Agent Design Patterns
	Institutional Environments
	Enhance Collaboration in Diabetic Healthcare for Children using Multi-agent Systems
	Author Index

