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Abstract

Attention as the perception of change, or
event detection, is important for an agent
interacting with its physical and social en-
vironments. Internal modifications of the
controller, in terms of adaptation of a de-
cision threshold used to detect changes, is
used to control the level of detail attended
to, or the attentional effort. By maintain-
ing effort within some capacity bounds, the
agent maintains an attentional drive, which
results in not only a ‘comfortable’ level of
processing, but also in desired performance.
We present results from simulations of ro-
botic learning by imitation, where an agent
learns a task by following a capable teacher
agent around the environment.

1 Introduction

One of the problems that we face when we interact
with the physical and social world is determining the
level of detail to which we should attend, of what we
perceive. Put differently, this is a problem of deciding
to what extent perceived stimuli need to be significant
to justify their going through our mental processing
system, and perhaps resulting in learning. Of course,
this ‘need’ is a subjective measure that varies amongst
individuals, and depends on current factors, both ex-
ternal and internal.

We are interested in attention as a set of mechan-
isms that facilitate the perception of change [Rensink
et al., 1997], or, put it in robotics/agents terminology,
event detection. We use a capacity model of attention
[Kahneman, 1973] as a means to control an internal
state that mediates decision behaviour. Such a state
can be regarded as a drive to pay attention, but not
too much (or too little).

We do not model emotions directly, but we present
several emotion-based autonomy control approaches
that are similar to ours.

2 Background

2.1 Perception of Change

Rensink et al. [1997] have performed psychological
experiments to test when people perceive changes in

images and what influences these perceptions. They
conclude that subjects’ attention is either pulled by
transient motion, due to a stimulus’ potential merit
(saliency), or pushed by volitional control, due to in-
ternal high-level interests independent of saliency.

We will use statistical significance testing to model
saliency. This has been claimed to be an intuitive hu-
man cognitive process in the psychophysical literat-
ure [Gigerenzer and Murray, 1987; Green and Swets,
1966]. Gadanho and Hallam [1998] follow such an ap-
proach, as opposed to most robotic implementations
where a fixed, hand-crafted element is used to de-
tect changes (for example [Hayes and Demiris, 1994;
Billard and Hayes, 1997; Nehmzow and McGonigle,
1994]). Further, they claim that any significant change
in the environment is liable to be captured by a change
in an emotional state.

The contribution by Gadanho and Hallam [1998] is
that a change is calculated in terms of the observed
data, and not some externally designed threshold.
However, the desired significance of the change is pre-
determined and fixed. In other words, the significance
level of the statistical test is fixed.

We have extended this idea by equipping our ro-
bot with a simple strategy for adapting its measure
of significance in order to maintain a desired level of
attentional effort (see below). In this way we have
given the robot the ability to self modify its control-
ler, rather than rely on fine-tuning by the designer.

This leads to the second type of influence men-
tioned with regards to the experiments by Rensink
et al. [1997] — internal control. To model this we use
attentional capacity, which we discuss next.

2.2 Attentional Capacity and Effort

Kahneman [1973] offers a capacity model of attention,
which places a limit on a human’s capacity to per-
form mental work, but allows this capacity to be freely
distributed among concurrent activities according to
some allocation policy. The model requires two pieces
of information: a stimulus, and a measure of ‘effort’.
The momentary attentional capacity is determined by
the allocation policy.

In this paper we do not deal with multiple concur-
rent activities, but rather with a single activity. We
use a simple allocation policy that places an upper and



lower limit on the attentional effort. Effort is main-
tained within these bounds by attending to more, or
fewer, changes in stimuli. The details of the imple-
mentation are given in Section 3.

Compared to previous, related work, the modelling
of attentional effort as an internal ‘monitory’ variable
is similar to maintaining a ‘drive’ [Veldsquez, 1998;
Breazeal, 1998], which is a motivational factor repres-
enting an urge.

3 Implementation

In this section we briefly describe the architecture
(Figure 1) that is used to model a learner robot, that
follows a capable teacher robot around an environ-
ment, with the aim of learning a task (such as photo-
taxis, obstacle avoidance, or maze following). We con-
sider this simple following behaviour to be a form of
learning by imitation, similarly to earlier work on ro-
botic learning by imitation [Hayes and Demiris, 1994;
Demiris and Hayes, 1996; Billard and Dautenhahn,
1997; Billard and Hayes, 1999]. For more details of
this implementation, see [Marom and Hayes, 2000].
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Figure 1: The architecture we have implemented. The at-
tention module processes information from the IR sensors,
and the proprioception module processes information from
the motor system. The outputs from both modules make
up the units of a learning pattern.

The attention module, on the left of Figure 1, takes
raw sensor values, and turns them into binary units
corresponding to whether a change has been detected
or not. This is done as follows, for each sensor:

1. a short-term memory window, of (30) previous
values, is created;

2. an average over this window is calculated;

3. this average is compared with the average calcu-
lated at the previous time step, using a statistical
test;

4. if the test returns a significant result, a change is
considered to have occurred, and the appropriate
unit, at the top of Figure 1, is turned on; other-
wise it is off.

The proprioception module, on the right of Figure 1,
inspects the motor values to determine whether a left
turn, right turn, or none, has occurred, and sets two
binary units (one for left turn, one for right turn) ap-
propriately.

The binary units from both modules make up an
associative learning pattern that is fed into a Hopfield
associative neural network.

3.1 Learning

In order for learning to take place, the robot must
be ‘attentive’, which occurs when at least one of the
units outputed by the attention module is on; further,
the robot must be ‘socially stimulated’ by the teacher,
which is achieved through a change in speed.

After training is complete, the robot learner is
placed in the environment on its own, and is expected
to recall the patterns stored during learning. Since
no social cues are now available, the learner can only
depend on its internal attention mechanism, which is
exactly the same as before. The first part of the pat-
tern is therefore determined by the attention module
as before and is fixed; the rest of the pattern is recalled
by letting the values of the action units be predicted by
the network weights. These units are then translated
into actual motor commands that drive the robot.

3.2 Maintaining Attentional Capacity

Within the short-term memory window, the agent
keeps track of how frequently it is ‘attentive’. We use
this frequency as a measure of effort. Using prelimin-
ary investigations (Section 4.1), we set the agent’s at-
tentional capacity to be within two bounds (50% and
90%). If the momentary frequency is outside these
bounds, the threshold for significance is modified ac-
cordingly, thus a desired level of effort is maintained.
This simple strategy serves to modify the attention
“filter’ to control the amount of information attended
to (Section 4.2).

Returning to the
comparisons with drives, Veldsquez [1998] defines a
drive ‘releaser’ as a control system that maintains a
controlled variable within a certain range. Using his
terminology, our drive releaser is natural, or innate,
rather than learned.

4 Experiments

Our experiments so far have mainly concentrated
on simulations of the Khepera mobile robot [Michel,
1996]. The simulated environment is shown in Fig-
ure 2.

The task in which we are interested in these exper-
iments is photo-taxis: finding and approaching light
sources. The teacher has this behaviour built-in; it
wonders around randomly in the environment until it
detects light, it then turns towards it, and speeds up
in order to stimulate the learner; once close enough to
the light source, it slows down and starts again.

The learner follows behind by using its built-in fol-
lowing behaviour. It processes (ambient) light intens-
ities through its front IR sensors and proprioception



Figure 2: The simulated environment used in our experi-
ments. It consists of a teacher robot followed by a learner
robot; and 3 light sources

through its motors, as described in the previous sec-
tion (Figure 1). It detects a change in speed by refer-
ring to its own speed, which varies according to how
fast the teacher is moving, since the learner maintains
a constant distance through its following behaviour.

4.1 Effort and Performance

We have conducted preliminary systematic experi-
ments, of varying significance thresholds' [Marom and
Hayes, 2000] (subm.) Each run consisted of 10000
steps of the learning stage, followed by 10000 steps of
the recall stage. In the preliminary experiments, 10
runs were carried out for each threshold being tested.

The main conclusion we have drawn from these ex-
periments is that a ‘comfortable’ region — between
0.2 and 0.4 — in the threshold space exists, where
it seems that not too many nor too few patterns are
attended to (see Figure 3); Furthermore, this region
seems to be a desired one in terms of learning ‘quality’
and performance.

In order to arrive at these conclusions we have used
several evaluation criteria to compare the results. We
will discuss two of these criteria in this paper, one re-
lated to attentional effort, and the other to perform-
ance.

The number of patterns attended to and processed
by the learning system, shown in Figure 3, determines
the attentional effort exerted by the agent. Note that
we are not looking at unique patterns — every time a
pattern is attended to, we increment a counter. Dif-
ferent values of the significance threshold will result
in different levels of selectivity. That is, the agent will
attend to more, or less, patterns.

To test the learned performance, we measured the
energy acquired during recall stage. This energy is a
function of the light intensity the agent is subject to
as it wonders around the environment. Two baselines
are used for comparisons: energy acquired as a result
of a random behaviour (lower baseline), and a hand-
crafted photo-taxis behaviour (upper baseline). The
baselines were computed using 50 runs of 10000 steps

!We have also run the experiments without the condi-
tion that the learner must be socially stimulated by the
teacher, and concluded that using social cues is beneficial.
See paper for details.
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Figure 3: Number of patterns attended to and pro-
cessed by the learning system, for different significance
thresholds. A point on the graphs represent an average
over 10 runs.

each, with the appropriate behaviour. The results
are shown in the top part of Table 1. We see that
the highest energy is achieved in the ‘comfortable’ re-
gion of attentional effort (see bold figure in top part
of Table 1).

4.2 Attention Strategy

Using the region of the threshold space found in the
preliminary results, we have equipped our agent with
a simple strategy to maintain attentional effort —
in terms of the number of patterns attended to and
learned — such that a significance threshold is self-
controlled and modified to lie in this region (see Sec-
tion 3.2).

Now equipped with this strategy, a run was re-
peated 50 times, but instead of manually modifying
the threshold, we let the agent autonomously adapt it
to suit its (built-in) attentional capacity. The evalu-
ations of the performance are shown in middle part of
Table 1. We see that on average (bold figure in middle
part of Table 1), the agent performs almost as good
as the hand-crafted behaviour (bold figure in bottom
part of Table 1).

5 Discussion and Conclusion

We have seen that using a simple attention allocation
strategy, an agent is able to internally control the level
of significance that it requires for paying attention to
changes in stimulation.

It is important to note that the internal control we
have implemented so far is only in terms of ‘effort’,
that is, the load involved in attending to information.
Yet this strategy alone is able to produce perform-
ance which is not only ‘comfortable’; but also desir-
able. We have not even addressed yet the issues of
feedback and reinforcement that are available both in
the agent’s physical and social environments [Mataric,
1994]. Also, one could model emotions in relation to
social interactions, involving the perception by oth-
ers of the self, or valuations of motives of others [Ne-
haniv, 1998]. We believe that providing our agent with
such values would further enhance performance, and
we leave this to future work.

Of course, we have only experimented with a single
task, and it would be interesting to extend our model
to deal with multiple tasks, using multiple sensor mod-
alities. This might require the kind of external feed-



energy (x107) mean | std. dev. | max
th < 0.2 2.400 0.020 2.430
0.2 < th <0.4 2474 | 0078 | 2.594
th > 04 2.337 0.016 2.366

| attention strategy | 2.800 | 0.094 | 3.012 |
random behaviour 2.328 0.056 2.427
hand-crafted behaviour | 2.905 0.080 3.089

Table 1: Energy acquired during recall stage is used as performance evaluation criteria in preliminary experiments
of various significance thresholds (denoted by ‘th’), and consequent experiments implementing an attentional strategy
that maintains attentional effort according to capacity. Energies acquired as a result of a random behaviour, and a

hand-crafted photo-taxis behaviour, can be used as lower and upper baselines, respectively.

back we have just mentioned, but also perhaps some
more internal motivational factors other than effort, or
attentional ‘drive’, and might entail a more detailed
and direct analysis of emotions.

We did not discuss the topic of social learning in
this paper, but we hope that the attention system we
have designed would help us analyse in more detail
issues concerning social learning, and model them on
artificial systems.
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