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Abstract

Models of emotion and autonomy impose
stringent requirements on computing sys-
tems. In this paper, we argue that the
present state of emotion models and the
highest levels of autonomy require complex
infrastructure to manage all the internal pro-
cesses that we believe must be present. We
also describe our proposed approach to such
an infrastructure.

Our Wrapping approach to integration pro-
vides a Knowledge-Based reflective infras-
tructure for complex computing systems,
which supports the integration of the many
different kinds of processes that are neces-
sary for highly autonomous systems. We ar-
gue that reflection and explicit context man-
agement are essential for complex adaptive
systems, since explicit treatment of context
allows the system to organize different kinds
of processing differently in otherwise superfi-
cially similar environments, and since reflec-
tion allows the system to consider its own
place in that environment, and reason about
its own capabilities.

1 Introduction

What is the connection between complex software ar-
chitectures and emotions? Most people seem to think
emotions differ from cognition, that our hot emotions
are different kinds of processes from our cool rational
thought. This paper begins with a hypothesis that
emotion, intuition, and cognition are different in style
and degree, but NOT in kind. The fact that we expe-
rience them very differently is a hint about the orga-
nization of our own experience, not about difference
in their inherent structure.

Our hypothesis means that ALL activity managed
by the brain, from movement to language, from emo-
tion to thought, is all defined by layers of symbol sys-
tems [Bellman and Goldberg, 1984], organized into a
what we have called a “sloppy recursive hierarchy”
(that is, some kind of directed graph that is largely
but not entirely partially ordered).
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This hypothesis comes from an observation about
biological organisms: As soon as living things can sep-
arate phenomena in their external world that are sig-
nificant to them from their time and exact detail of
occurrence (and even single cells can do this), they
are using representational systems (many of them are
not explicit, but of course, they must be explicit in
our models, even if they are implicit in our artifacts).

Each symbol system is used as a small sort of ma-
chine (we do NOT mean Turing machines here: rather,
they are automatic physical processes, largely chem-
ical reactions and electrical phenomena at the lower
reaches, and we don’t exactly know what at the higher
reaches). Such a machine has some inputs (physical
events that cause symbols to be produced), some out-
puts (symbols that cause physical effects to be pro-
duced), and some kind of processing (the processes
that map between these two activities).

These machines are piled on top of each other in
great profusion, in a haphazard historical arrangement
driven by natural selection, with overlapping domains,
frequently incompatible processes, and no particular
commonality in their behavior. Our problem is to
make computable models of as much of this hierarchy
as is needed to build systems that have the behaviors
we are intending to produce.

From a different point of view, it is important, as
we try to build synthetic agents that are intended
to be more realistic in situations appropriate for hu-
man participation, that their behavior can be recog-
nized as compatible with our expectations. These
agents need to be more emotionally believable than
the usual robots [Petta et al., 1999; Petta, 1999;
Bellman, 1999b], and frequently will need to have a
virtual appearance and behavior that is also realistic
[Hayes-Roth and van Gent, 1997; Perlin and Goldberg,
1999], especially in large-scale simulations. In groups,
their behavior must be appropriate to the problem at
hand, and individually, their demeanor must also be
appropriate. It is widely expected that proper models
of emotional aspects of thought will make this possi-
ble.

This paper is mostly about how to implement such
a system to examine such hypotheses.

In our work, we've drawn ideas from both biol-
ogy and software engineering. We use hints from the



amazing diversity of successful biological systems, and
continue to develop criteria, partially based on biolog-
ical ideas, by which we can evaluate proposed archi-
tectures for autonomy, and to propose an architec-
tural style that shows great promise [Landauer and
Bellman, 1997¢; Bellman, 1999b)].

We make use of our Wrapping approach to inte-
gration infrastructure for the implementation archi-
tecture [Landauer, 1990a; Bellman, 1991b], since we
have shown that it is extremely flexible and robust.
It is inherently computationally reflective, which we
think is one of the most important aspects of auton-
omy control [Landauer and Bellman, 1997f; 1999a;
1999b]. In particular, we take as a guiding princi-
ple that there are no “privileged” resources anywhere
in such a system: ALL parts of the system can be
potentially monitored and reasoned about (especially
including, of course, the monitoring and reasoning fa-
cilities).

Lastly, we also show how the Problem Posing Inter-
pretation of programming languages [Landauer and
Bellman, 1999b] helps us change our expectations for
autonomy in computing systems, from some kind of
nebulous “intentionality” to a much more reasonable
ability to make some decisions for itself, and to know
to ask for help when it needs to.

2 Autonomous Systems

In our opinion, a computing system that is given the
freedom to solve problems presented to it in unspec-
ified ways is autonomous in many useful ways, but
we want more. We want a highly autonomous sys-
tem to make up the problems also, though we can
expect to constrain its behavior somewhat, with some
kind of overall goals, policies, or principles (designing
appropriate goals correctly is very difficult, as all of
the stories of human interactions with genies or devils
show).

Over the years since we started studying what
we have called Constructed Complex Systems [Lan-
dauer, 1990a), we have found that it is important
to build an infrastructure that allows the system a
great deal of flexibility in the utilization of its own
resources. To provide this flexibility in turn re-
quires a number of reflective monitoring and reason-
ing capabilities. In other words, in order to build
adaptive complex systems, and to build complex sys-
tems that humans can understand and interact with
in sophisticated ways, we have backed into building
increasingly autonomous systems [Bradshaw, 1997a;
Landauer and Bellman, 19990]. We claim, based
on this experience, that an autonomous system must
have ? reflective architecture [Landauer and Bellman,
1996¢]|.

2.1 Biology

We have previously described several hard-won lessons
from biological research about what it means to carry
out intelligent functioning within ANY world (be it
abstract or physical) [Bellman and Landauer, 1997a;
Landauer and Bellman, 1997¢; Dautenhahn, 1999a].
These four lessons include:

1. developing “ecological niches” or portable con-
texts for computational agents;

2. creating artificial “embodiment” for abstract

agents;
3. creating entities with “social” behaviors; and

4. developing capabilities for growth and adaptivity
of behaviors.

We can strengthen the agents’ performances by creat-
ing new and stronger information with which to evalu-
ate our ideas of intelligent functionality by agents. We
believe that with proper attention to niches, embod-
iment, social behaviors, and architectures supporting
adaptive and reflective behaviors, we can build agents
that are more useful partners in an increasingly com-
plex information environment. In order that the sys-
tem can respond to a wide dynamic range of possible
environmental conditions, a very broad range of po-
tential behaviors must be available to the system.

In order to capitalize on the creation of such pro-
cesses, the agent needs (1) architectures that allow
it to pull in new types of processing resources, and
(2) self-reflective capabilities. For computational sys-
tems, these properties require a very flexible architec-
ture [Hayes-Roth et al., 1995; Landauer and Bellman,
1996¢; 1999s].

2.2 Autonomy Criteria

In our opinion, there are really only two classes of
(difficult) requirements for effective autonomy: ro-
bustness and timeliness. Robustness means grace-
ful degradation in increasingly hostile environments.
Timeliness means that situations are recognized “well
enough” and “soon enough”, and that “good enough”
actions are taken “soon enough”. Both of these are
forms of adaptive behavior, and neither one of these
necessarily implies any kind of optimization.

They are both generally difficult properties to
achieve, but they do not magically appear, as is too of-
ten assumed. They must be explicitly designed into a
system from the beginning. Controlling this variabil-
ity is the responsibility of the system infrastructure.

Our approach to constructing autonomous agents
is based on theoretical work on organization of lan-
guage and movement processes [Bellman and Gold-
berg, 1984], and the structure of Constructed Com-
plex Systems mediated or integrated by software [Lan-
dauer and Bellman, 1997c]. Our agents are computer
systems in a world of conceptual structures, with mod-
els of internal and external phenomena, and processes
that operate on those models [Bellman, 1999b].

2.3 Agent Architecture

Building agents is hard, since we don’t know enough
about the interaction between the computing engines
inside and the real world outside (and there is a school
of thought that thinks it is the wrong boundary to con-
sider anyway). It is our opinion that in order to per-
form the experiments required to identify the bound-
ary more explicitly, to determine whether or not it is
useful (we believe that it is essential), and to under-
stand how to construct systems that deal adequately



with the crossover of this “map-territory” conceptual

boundary, we need to have much more flexibility in
the basic agent architectures and environments we use,
and much more focussed attention on what we are try-
ing to do with the agents (not the application problem,
but the essential components of autonomy).

As we devise and perform these experiments, we
should remember that any fixed part of the architec-
ture and any “privileged” component that is so built-
in that it cannot be replaced, cannot be studied, so
its effect cannot be evaluated. This is why we only
consider architectures with no fixed or privileged re-
sources, and why we have developed our particular ap-
proach to infrastructure. The next section describes
this approach. It is necessarily technical and fairly
cryptic, since it describes a long series of developments
in a very small space. Readers are encouraged to con-
sult the references for more information.

3 Integration Infrastructure

We have developed a knowledge-based approach to
integration infrastructure called “wrappings” [Lan-
dauer, 1990a; Landauer and Bellman, 1996¢; 19971],
which is based on two key complementary parts: (1)
explicit, machine-interpretable information (“meta-
knowledge”) about all of the uses all of the com-
putational resources in a Constructed Complex Sys-
tem (including the user interfaces and other presen-
tation mechanisms); and (2) a set of active integra-
tion processes that use that information to Select,
Adapt, Assemble, Integrate, and Explain the appli-
cation of these resources to posed problems [Bell-
man, 1991b]. We have shown how the approach
can be used to combine models, software compo-
nents, and other computational resources into Con-
structed Complex Systems, and that it is a suitable
implementation approach for complex software agents
[Landauer and Bellman, 1997c]. The process begins
with our new interpretation of all programming and
modeling languages that we have called the Problem
Posing Interpretation [Landauer and Bellman, 1996c¢;
1999b].

3.1 Problem Posing Interpretation

All programiming languages have a notion of informa-
tion service, with information service requests and in-
formation service providers. Even such a primitiva
machine as a Turing machine has this property, with
symbols on tape as service requests and the defined re-
actions as information providers. Side-effects are also
information services that can be requested, including
object deletion, file manipulation, and real-time mea-
surements or control pulses. In most programming
languages since compilers were invented, we connect
the requests to the services by using the same names
[Landauer and Bellman, 1999b].

“Problem Posing” is a new declarative program-
ming interpretation that unifies all major classes of
programming, including functional, imperative, rela-
tional, and object-oriented. Programs interpreted in
this style “pose problems”; they do not “call func-
tions”, “issue commands”, “assert constraints”, or

“send messages” (these are information service re-
quests). Program fragments are “resources” that can
be “applied” to problems; they are not “functions”,
“modules”, “clauses”, or “objects” that do things
(these are information service providers).

The Problem Posing Interpretation separates the re-
quests from the providers. This is easy: compilers and
interpreters always know the difference anyway, and so
do we when we write the programs. We call the ser-
vice requests “posed problems”. We call the service
providers “resources”.

We can connect them through Knowledge Bases or
by other means, but we have mainly considered the
former, the “Knowledge-Based” Polymorphism that
maps problems to resources, from the problem speci-
fication in its context to the computational resources
that will organize the solution.

Any programming or modeling language can be in-
terpreted in this new way.

The Problem Posing Interpretation changes the se-
mantics of programming languages, not the syntax. It
turns a program into an organized collection of posed
problems, instead of an organized collection of solu-
tions without problems. That should make programs
easier to understand, because the problems at all levels
of detail remain in it (we believe that part of the dif-
ficulty of debugging programs is that they are written
as solutions without explicit statements of the corre-
sponding problems).

Problem Posing also allows us to reuse legacy soft-
ware with no changes at all, at the cost of writing a
new compiler that interprets each function call, for ex-
ample, not as a direct reference to a function name or
address, but as a call to a new “Pose Problem” func-
tion, with the original function call as the specified
problem and problem data. With this change from
function calls to posed problems, the entire Wrapping
infrastructure can be used. In particular, as the usage
conditions for the legacy software change (which they
always do), that information can be placed into the
problem context, and used to divert the posed prob-
lems to new resources written with the new conditions
in mind (only the timing characteristics will change,
but those changes are frequently completely subsumed
by using faster hardware). The gradual transition
away from the legacy code is extremely important.
Writing such a compiler is a well-understood process,
and it is often worthwhile to do so.

The Problem Posing Interpretation radically
changes our notion of autonomy, because it eliminates
the notion of users “commanding” a system. It re-
places that notion with the inclusion of users among
the resources that can be used to address a problem.
From this viewpoint, the more autonomous agents are
merely the ones that need less help in deciding what to
do, whether the decision is about choosing high-level
goals or lower-level tasks that are expected to address
previously determined goals.

3.2 Wrapping

The Wrapping approach to integration infrastructure
is particularly well-suited to the Problem Posing In-



terpretation. It not only emphasizes meta-knowledge
about the uses of computational resources, together
with brokering and mediation of all component inter-
actions (all critical concepts, as seen increasingly in
other approaches), but it also regards as equally im-
portant the special resources for organizing and pro-
cessing this information in a flexible and evolvable
fashion. These algorithms are called Problem Man-
agers, and they are used as a heartbeat to drive any
system organized around posed problems.

The Wrapping approach, because it wraps all of its
resources, even the active integration processes, re-
sults in systems that are Computationally Reflective.
That is, a system organized in this way has a machine-
processable model of itself; the Wrapping resources
and their interactions allow, in essence, a simulation
of the entire system to be contained within the sys-
tem. This allows sophisticated instrumentation and
adaptive processing. It is this ability of the system
to analyze and modify its own behavior that provides
the power and flexibility of resource use. These ideas
have proven to be useful, even when implemented and
applied in informal, ad hoc ways.

The Wrapping theory has four fundamental proper-
ties that we regard as essential:

1. Everything in a system is a resource that provides
an information service.

2. Every activity in a system is problem study in a
particular problem context. All activities occur as
a resource is applied to a posed problem in a par-
ticular problem context). Problems to be studied
are separated from the resources that might study
them.

3. Wrapping Knowl-
edge Bases (WK Bs) contain wrappings, which are
explicit machine-processable descriptions of all of
the resources in a system and how they can be ap-
plied to problems. Wrappings contain much more
than “how” to use a resource. They also include
both qualitative and quantitative information to
help decide “when” it is appropriate to use it,
“why” it might be used, and “whether” it can be
used in this current problem and context.

4. Problem Managers (PMs) are the active integra-
tion processes that organize the use of resources.
They are algorithms that use the wrapping de-
scriptions to collect and select resources to ap-
ply to problems, using implicit invocation, both
context- and problem-dependent. These wrap-
ping processes are also resources; they are also
wrapped (Computational Reflection).

The most important conceptual simplifications that
the Wrapping approach brings to integration are the
uniformities of the first two features: the uniformity
of treating everything in the system as resources, and
the uniformity of treating everything that happens in
the system as a problem study. The most important
algorithmic simplification is the reflection provided by
treating the PMs as resources themselves: we explic-
itly make the entire system reflective by considering

these programs that process the Wrappings to be re-
sources also, and wrapping them, so that all of our in-
tegration support processes apply to themselves, too.
It is this ability of the system to analyze its own be-
havior that provides some of the power and flexibility
of resource use, and that we believe is essential for
effective autonomy in computing systems.

The key to all of this flexibility is the computational
reflection that allows the system to make choices of
computational resources at its very core; every re-
source, including the ones that make the choices, can
be chosen, according to the posed problem at hand
and the computational context in which the problem
is being addressed.

In summary, an infrastructure needs to put pieces
together, so it needs the right pieces (resources and
models of their behavior), the right information about
the pieces (Wrapping Knowledge Bases), and the right
mechanisms to use the information (Problem Man-
agers).

3.3 Reflection

We expect any sufficiently complex computing sys-
tem to be “Computationally Reflective” [Maes, 1987b;
Maes and Nardi, 1988], using explicit models of its
own behavior to adjust that behavior. To this end,
there have to be active coordination processes that
use the models to provide the Intelligent User Support
functions. They also provide overview and navigation
tools, context maintenance functions, monitors, and
other explicit infrastructure activities. It is this abil-
ity of the system to analyze its own behavior that pro-
vides some of the power and flexibility of resource use.
The self-model supports explicit software engineering
functions from within the same system [Landauer and
Bellman, 1996¢; 19971], and provides a basis for self-
monitoring, explanation, and failure diagnosis.

Another way to view this property is that the sys-
tem can make recursive calls in the “meta-direction”,
i.e., to switch from studying some application problem
to studying the problems of its own internal workings.

At least part of the point of reflection is to allow
users to extend the interpreters, by adding function-
ality to them, but there are a couple of significant
difficulties with the usual approach. There is no no-
tion of removing functionality when new functions are
provided, or of using several alternatives in their re-
spective appropriate contexts. Our separation of the
problems posed from the resources applied allows a
system to choose different processes, and even differ-
ent kinds of processes, in different contexts, and keep
them all in the same system.

It has become common in certain kinds of agent
research to make them partially reflective [Kennedy,
1999], so that some of their monitoring and control
components are subject to monitoring, and the rule-
firing or other activity patterns can be used as indi-
cators of activity. This is an interesting first step,
because it shows some of the problems with trying to
build a reflective agent without having a reflective in-
frastructure to begin with. The reflection provided by
the Wrapping infrastructure makes the management



of reflection much easier, by allowing the system de-
signer to think about the reflective properties desired
in the problem domain (the objects of the system pro-
cessing), without also having to consider the reflective
properties desired in the implementation (the subject
of the system processing).

In the reflective systems now being created as
agents, we have an opportunity to go beyond biol-
ogy in two very important ways: (1) biological sys-
tems are not fully reflective — they have many lev-
els which they cannot esxplicitly examine and reason
about; (2) they certainly aren’t able to swap out at will
old processing capabilities, and replace them with new
ones. Imagine, if you will, eventually having agents
that could simply add new terabyte databases or new
effectors and sensors or new processing capabilities,
understanding while they did so some of the limita-
tions of their older capabilites and documenting those
limitations.

Certainly we are aiming for a very powerful type
of reflective capabilities — ones that will help us be-
gin to do the very difficult task of not only creating
capabilities but of learning by experience how to use
these capabilities within certain contexts. It is this
mapping of an agent’s sensors and effectors (its em-
bodiment) and goals and capabilities into specific task
environments that remains the next major challenge
of agent research.

It is important that context be treated explicitly in
a reflective language, because it is context that pro-
vides the interpretation mappings for the symbols and
symbol structures in any language. If we cannot access
that context, we cannot examine its assumptions and
possibly change them to handle different situations.
It is important also that it can be handled implicitly
in a program, since it seems that in all of our real
communication, context is inherited from history and
location, and partially inferred from the content of the
communication, and not very much appears explicitly
in the body of the communication.

In the case of reflective agents, context informa-
tion is a critical part of what the agent reasons about,
e.g., “Do I see what I need to in this environment?”;
“How can I change this environment to fit my needs?”;
“How can I change myself to fit into this environ-
ment?”’. These questions are relevant for a broad
class of agents, ranging from web crawlers to robots.
Eventually, most evaluative and feedback processes in
agents will come down to reflection about contexts.

Of course, in the case of simple sensors with min-
imal rulebases and switch-like behavior, this “reflec-
tion” may be merely embodied implicitly in its com-
ponents. However, for more intelligent agents, we will
want the ability for the agent to understand that it
has a limited viewpoint and range of sensory-motor
capabilities, reason about what it needs for the envi-
ronment in which it finds itself, and perform activities
(like moving) to gain additional information. Reflec-
tion here is the beginning of a concept of self.

4 Conclusion and Future Prospects

Most of the work we have done so far is essentially cre-
ating the infrastructure for powerful future testbeds
for autonomy and emotion models, though we also
believe that the “layers of symbol systems” hypothe-
sis requires much more infrastructure than is usually
used in these studies.

We have identified some of the aspects of dynamical
structure that make biological systems so much more
robust and flexible than computational systems. We
have described in brief an approach to infrastructure
that is computationally reflective, and argued that it
supplies the flexibility needed to study these aspects
of autonomy adequately. It clearly does not solve the
hard individual problems about how autonomous be-
havior is produced and managed, but it does allow us
to combine proposed solutions quickly and easily, and
to keep alternatives available for comparative experi-
ments.

It is clear that understanding agents requires a
wide diversity of expertise to realize even our modest
goals for them. To create powerful new agents that
will helpfully work with us requires that we humans
learn more about working together to create complex
systems. Ironically, maybe working on artificial co-
workers will help us learn more about the technology
needed to support human co-workers. Understanding
more about emotions necessarily plays a part in that
work.
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