
Abstract  

This work addresses the issue of agents that
learn to carry out multi ple (eventually) con-
fli cting tasks by reinforcement learning, and
learn to select the appropriate action accord-
ing to their internal needs. The goal is to study
interference problems that can arise when us-
ing "monolit hic" neural networks for this pur-
pose. The neural architecture used for the
study is based on ideas drawn from the realm
of needs and motivation in animals, and in
particular from the homeostatic theory of
regulation of physiological body variables.
The task of the simulated organism consists in
searching for two different resources accord-
ing to its internal need state. The model stud-
ied is able to learn the behaviours necessary to
accompli sh the two tasks and to switch from
one behaviour to the other according to the
internal need state. The simulations show the
existence of undesired interference problems
between the two tasks, arising both during
learning and during action selection. This
suggests that innate or emergent neural
modular architectures could be a better solu-
tion when multi ple tasks are faced.

1 Introduction
Usually animals have the capacity to do many different
things in response to different physiological needs: eat-
ing, drinking, mating, and so on. Superior animal species,
like mammals, are endowed with mechanisms to build
flexible behavioural responses to these needs, such as
conditional learning and instrumental learning [Pavlov,
1927; Thorndike, 1911]. Instrumental learning allows the
organisms to learn to produce appropriate behaviours that
lead to primary reinforcers (e.g. to learn the "consum-
matory behaviour" of eating that leads to the ingestion of
food). Also it allows the organisms to learn behaviours
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that lead to states that have acquired the property of sec-
ondary reinforcers through conditional learning (e.g. to
learn the "appetitive behaviour" of approaching a par-
ticular kind of tree, seen from far away, that carries edi-
ble fruit) [Baldassarre and Parisi, 2000]. The presence of
multiple physiological needs, and the opportunity to learn
to achieve secondary reinforcers, implies that the neural
systems underlying the learning processes should be ca-
pable of dealing with multiple and eventually conflicting
tasks. From the point of view of the nervous system of
animals, the construction of adaptive behaviours is based
on both an "internal" input signal coming from the body
and relative to the different physiological needs, and an
"external" input signal coming from the world [McFar-
land, 1993]. The internal input signal contains informa-
tion about which need the behaviour should satisfy. The
external input signal contains information about the
availabilit y of primary and secondary reinforcers.

What should be the neural architecture of organisms
capable of learning, say, to approach a fruit tree or a wa-
ter pond, to eat or to drink? In particular, what are the
consequences of having "monolithic" neural architecture
to learn different behaviours that accomplish different
tasks? Would it be useful to have an innate or emergent
modularity, where different neural modules are dedicated
to accomplish different behaviours? This paper addresses
the issue of the interference problems that affect mono-
lithic neural architectures. On the base of the simulations
presented here, it is inferred that neural modular archi-
tectures could help to avoid interference problems.

The paper studies a simulated organism that has to
search for food or water according to its physiological
needs (the case of carrying out multiple tasks to achieve
secondary reinforcers directed to the same need, is not
considered here). Learning to carry out these two con-
flicting tasks implies the solution of two sub-problems,
each of which could imply interference diff iculties:

1. Learning the appropriate behaviour to satisfy each
single need. The fact that the same computational
resources (the same synaptic weights) are used for
both tasks, can potentially generate interference
problems. For example learning a behaviour alters
the other behaviour.
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2. Learning to select one of the two behaviours ac-
cording to the current need state. The monolithic
architecture could give rise to interference prob-
lems in selecting the two behaviours.

In order to test the existence and nature of these inter-
ference problems, a controller of the simulated organism
has been designed that is supposed to capture some basic
features of animal learning. The core of the model is a
neural network implementation of the reinforcement
learning actor-critic method [Lin, 1992; Barto et al.,
1990]. As shown in [Sutton and Barto, 1990; Shultz et
al., 1997; Baldassarre and Parisi, 2000] this model is ca-
pable of representing the basic features of conditional
learning and instrumental learning. The input to the actor-
critic system is pre-processed by a Kanerva-coding neural
network that maps the input from the need system and the
external sensors into a high number of "feature" units
[Sutton and Whitehead, 1993]. Activities such as feeding,
drinking and mating, involve control principles that can
be represented in models employing the terminology and
concepts of homeostatic theory [Mc Farland, 1993].
Hence a system based on homeostatic mechanisms has
been designed to capture the main aspects of the regula-
tion of energy and water in the organism's body.

While the model does not offer a definition of "emo-
tion", it offers a definition of "motivation". In the model
"motivation" is the information about the gap, called
"need" in the paper, between the optimal and the actual
level of a controlled physiological variable (e.g. the level
of water in the body). This information is sent to the
critic (responsible for the conditional learning) and the
actor (responsible for instrumental learning, i.e. for se-
lecting the appropriate behaviour of searching for food or
water and for executing these behaviours in details). See
[Cecconi and Parisi, 1992] for a similar definition of mo-
tivation, and [Maes, 1990] for another example of moti-
vation as action selection. The model contains another
aspect related to the "affective sphere" of animals. The
level of need modulates the reward that is perceived by
the organism when a consummatory behaviour is accom-
plished: the smaller the need, the smaller the perceived
reward (cf. [Humphrys, 1997] for this idea and for a sur-
vey of the "action selection" literature).

Section two of the article presents the details of the
controller and the scenario of the simulations. Section
three describes the experiments accomplished and the
interpretation of the results obtained. Section four dis-
cusses the potentiality of modular architectures when
multiple tasks have to be accomplished.

2 Scenario, organism and neural ar-
chitecture

The environment of the simulations is a 1x1 unit toroidal
square arena. In this arena there are 30 elements of "red"
food and 30 elements of "blue" water, each represented
as a circle with a radius of 0.005. In a first experimental
condition the food is randomly spread in the left half of
the arena and the water in the right half. In a second ex-
perimental condition, water and food are randomly
spread in the arena. Figure 1 shows the second experi-

mental condition. In both conditions food and water ele-
ments are at least 0.1 distant from the borders of the
arena. The organism is represented as a circle with a ra-
dius of 0.01. The simulation takes place in discrete time
cycles. If in one cycle the organism steps on an element
of food (water), it eats (drinks) the food (water) element
that then disappears. When a resource element is con-
sumed, a new element is introduced in a random location.
The organism is endowed with two ingestion sensors, one
for food and one for water. They get an activation of 1 if
the correspondent resource is ingested, with 0 otherwise.

Figure 1. Left: the environment, the organism and its visual
field. Right: the current activation of the organism's sensors.

Each organism has a one-dimension “ retina” of 12
double non-overlapping aligned sensors, sensitive to two
colours, red and blue. These sensors receive information
from a 360° visual field. Each sensor has a scope of 30°
and a depth limited to 0.2. A sensor takes an activation of
1 if an element of food (water) or part of it is within its
field, 0 otherwise (figure 1).

The organism has two legs, both moved in each cycle.
The effect of these steps is equal to the one you would
have with a two-wheel robot. By controlli ng the length of
the left and right step, the organism can go straight (same
length for both left and right step) or turn (different
lengths). The length of left and right steps can be either 0
or 0.02 (so there are four possible actions: do not move,
turn left, turn right, go straight). The components of the
organism's controller are represented in Figure 2.

Figure 2. The main components of the neural
architecture of the organism's controller.

Now the general features of the system are described.
Refer to [Baldassarre and Parisi, 2000] for details. The
feature extractor has 48 input units divided into 4 groups.
The first 12 units encode the level of the need for food
(the higher the level, the higher the number of units that
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assume an activation of 1) and the second 12 units en-
code the level of the need for water. Within this paper
these 24 units are called "motivational units" and the flow
of information that goes from the need system to the mo-
tivational units is called "motivation". The third and
fourth 12 unit blocks encode the activation of the red and
blue sensors respectively. The feature extractor has 200
output units (feature units). The feature extractor imple-
ments a "Kanerva re-coding" of the input [Sutton and
Whitehead, 1993]. Its weights are randomly drawn in the
set { -1, +1} . Each feature unit takes an activation of 1 if
the Hamming distance between the input pattern and the
"prototype" encoded by its weights is bigger then 0.6, of
0 otherwise.

The actor is a perceptron [Widrow and Hoff , 1960],
that takes the activation of the feature units of the feature
extractor as input pattern. It has 4 sigmoidal output units
that locally encode four actions (do not move; go left; go
right; go straight). In order to select one action, the acti-
vation pk of the four output units is used for a stochastic
winner-takes-all competition. The probabilit y P[.] that a
given action ag among the ak actions becomes the winner
action aw is computed as follows (using the more compli-
cated soft-max formula commonly used in the literature
made no difference in the speed of learning):
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The critic is a perceptron that takes the activation of
the feature units as input and has one linear output unit.
The critic has to learn to give as output an estimation V'
of the evaluation V of the current state st, defined as the
expected discounted sum of all future rewards r, given
the current action-selection policy π:
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where γ ∈ [0, 1] is the discount factor (set to 0.95 in the
simulations).

The TD-error network is an implementation in neural
terms (its weights are hardwired) of the computation of
the Temporal-Difference error E defined as:
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The critic is trained with a Widrow-Hoff algorithm
[Widrow and Hoff , 1960] that uses as error the error sig-
nal coming from the TD-critic. The weights wj are up-
dated so that the estimation V'π[st] of Vπ[st], expressed at
time t by the critic, tends to become closer to the target
value (rt+1+ γ V'π[st+1]). This target value is a more precise
evaluation of st being it expressed at time t+1 on the base
of the observed rt+1 and the new estimation V'π[st+1]:

jtj y   Ew η=∆
where η is a learning rate set to 0.01 in the simulations,
and yj. is the activation of the feature units.

The actor is trained according to the error signal com-
ing from the critic. Given that the critic learns to produce
an evaluation V'π[st] of st according to the average action
that the actor selects with st, if Et > 0 it means that the
winning action aw has positively "surprised" the critic, so
its probabilit y of being selected is increased. If Et < 0 the

probabilit y is decreased. This is done by updating the
weights of the unit correspondent to aw as follows (ζ is a
learning rate set to 0.02 in the simulations):

  y E w jtwj ζ=∆
The "need" system depends on the physiological level

of energy and water in the organism's body. In a first
experimental condition both needs for food and water are
constantly kept at the maximum value, 1. In a second
experimental condition the two needs dynamically
change according to the level of energy and water in the
body. The need for water works on the basis of the same
principles as the need for food, so only the later is de-
scribed. These principles are summarised in figure 3.

Figure 3. Main aspects of the need for food.

The level of energy has the following dynamics:
I   L  L 1tt β+α= −

where L is the level of energy, α is a decay coeff icient set
to 0.999 in the simulations, β is the content of energy of
one element of food, set to 0.03 in the simulations, and I
is the activation of the food ingestion sensor (the activa-
tion is 1 when food is ingested, 0 otherwise). The organ-
ism has a "perception" of the current level of energy that
is a function of the actual level of energy (only the case
of a step function has been explored). "Need" is defined
as the difference between the optimal level of energy and
the perception of its current level. The level of the need is
used to activate the correspondent unit of the primitive
critic (it has a continuous activation between 0 and 1) and
a proportional number of need-for-food units of the fea-
ture extractor (they have an activation of 0 or 1).

If the current higher need always gets the control, and
if the food and water are concentrated in different zones
of the space, soon the organism runs out of energy and
water. In fact it would search for food, eat a littl e bit,
become thirsty, search for water, drink a littl e bit, start to
be hungry again, etc. Minsky [1986] called this problem
"dithering". To avoid dithering, a simple solution has
been adopted, inspired by Minsky's idea that each need
gets control for some minimum amount of time. The per-
ceived water and food needs have a reciprocal inhibition,
so that in each moment if one perceived need has the
maximum value, 1, the other has the minimum of 0. Once
one need gets control, it loses it only when the corre-
spondent level of energy (water) reaches a threshold
thanks to the activity of eating (drinking). When this
event occurs, the other need gets control.

The primitive critic is a network that maps the signals
coming from the world, correspondent to the activation of
the ingestion sensors of food and water, into an internal
reward signal. The internal reward signal is the activation
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of an "internal reward unit" that computes the sum of the
signals coming from the two ingestion sensors. In the
simulations the weights of the connections between the
ingestion sensors and the internal reward unit are set to
+1. Each of the signals coming from an ingestion sensor
is multiplied by the signal coming from the correspon-
dent need sensor that encodes the level of the need. The
effect of this multiplication is that the higher the need the
higher the reward perceived.

3 Experiments and results
The simulations have been done under four experimental
conditions:

1) The food and water are respectively concentrated
in the left and right halves of the environment.
Both needs are constantly set to 1.

2) The food and water are respectively concentrated
in the left and right halves of the arena. The needs
have the dynamics described in section two.

3) Food and water are randomly spread in the envi-
ronment. Both needs are constantly set to 1.

4) Food and water are randomly spread in the envi-
ronment. The needs have the dynamics described
in section two.

In the experimental conditions 1) and 3), the dependent
variable measured has been the steps taken to reach indif-
ferently an element of food or water. A moving average
on the last 100 elements reached has been used. An or-
ganism that has not undergone the learning process has a
performance of about 110 average steps taken to reach an
element of food or water. This measure is useful as a
baseline to judge the performance of organisms that un-
dergo the learning process. In the experimental condi-
tions 2) and 4), the same moving average has been used,
but an element of food or water reached has been counted
as "valid" only if the correspondent need was equal to 1.
With this second measure of performance, the perform-
ance of an organism that has not undergone a learning
process is about 212. Each result shown is an average of
9 simulations run with different random seeds.

3.1 Concentrated food and water,
needs set to 1

When the elements of food are concentrated in the left
side of the arena, the elements of water are concentrated
in the right side, and the needs are constantly set to 1, the
organism has the performance shown in figure 4.

Figure 4. Left: the thin line plots the performance against cycles
of an organism whose needs are set to 1. The bold line is the

average performance of an organism following a random walk.
Right: path of an organism specialized in searching for food.

The interesting fact about these experimental condi-
tions is that in the 9 simulations run with different ran-
dom seeds, the organisms specialise in searching for ei-
ther one or the other resource (in the simulations 4 or-
ganisms have specialised in searching for food and 5 in
searching for water). The reason is that the reward is
given for both resources and the motivational units have
always the same activation. Once the organism starts to
specialise to search for one resource and all the computa-
tional means are dedicated to this task (for example food,
see figure 4), it is attracted on the area where this re-
source can be found and ignores the other resource.

3.2 Concentrated food and water, dy-
namic needs

When the resources are concentrated in different regions
of the arena and the needs are dynamic, the organism
performs as showed in figure 5.

Figure 5. Left: performance of an organism with dynamic
needs. Right: path followed by the organism.

The performance reaches a level of 25 steps per ele-
ment of food/water collected when the correspondent
need is 1, indicating that the organism is capable of
learning to carry out the two tasks. The interesting fact is
that once the organism has learned the two tasks, a
change in the state of needs provokes a sudden change of
the behaviour, thanks to the motivational signal that goes
from the need system to the feature extractor. The moti-
vational signal succeeds in selecting the correct behav-
iour. This fact is shown on the right side of f igure 5. Fig-
ure 6 shows the percentage of elements of food or water
that are collected when the correspondent or the other
need has the control.

Figure 6. Food and water collected (as percentage of total ele-
ments collected) when the two different needs are active ("food
food" means need for food, food collected; "food water" means

need for food, water collected; etc.)

Figure 5 shows that the performance of the organism
becomes temporary bad at about 40000 cycles. An expla-
nation for this can be given by observing the behaviour of
the organism. At the beginning the organism has a par-
ticular need, say for food, so it learns to search for food.
When the need for food is satisfied, the need for water
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takes control. At this point even if the motivation signal
has changed, the organism appears to continue to be
guided by the sight of food. Probably this happens be-
cause some feature units that encode the position of food
continue to have an activation of 1 even if the input is
partially different because of the different motivational
signal (the behaviour "connected" with these units is pre-
cisely the behaviour of searching for food). After some
time, given that the ingestion of food does not produce a
positive reward anymore, the critic starts to produce a
signal that progressively erase the searching-for-food
behaviour connected to the features units that generalise
in a wrong way. This problem is a quite general problem
of interference between multiple tasks. Neural networks
have the capacity of generalising the behaviour to similar
input patterns, and this turns out to be an advantage when
similar answers have to be given to similar input patterns.
When different answers have to be given to otherwise
identical input patterns, dissimilar only in the part that
select for different tasks, the capacity of generalisation
can cause interference. For example this happens when
different motivational input signals require completely
different answers to identical visual input patterns.

3.3 Distributed food and water, needs
set to 1

When food and water elements are distributed in the
whole arena, and both needs are constantly set to 1, the
organism's performance is shown in figure 7.

Figure 7. Performance of an organism with needs set to 1
in an environment with distributed resources.

The performance reaches a good level, similar to the
condition with concentrated food. Differently from the
later case, however, the organism learns to search both
for food and water instead of specialising. This difference
of behaviour can probably be explained as follows. The
organism repeatedly encounters both food and water, so
that the updating of the weights of the critic and of the
actor for the first task alternates with the updating for the
second task. As a consequence, none of the two tasks
takes up all the computational resources.

3.4 Distributed food and water, dy-
namic needs

When the food and water are distributed on the whole
arena and the needs are dynamic, the organism has a per-
formance like the one shown in figure 8. The perform-
ance reaches a level of about 28. Again the performance
becomes temporarily worse around cycle 50000. Proba-
bly the explanation of this fact is similar to the one given
in for the condition of concentrated resources, but con-

trary to the later case, this time the direct observation of
behaviour did not furnish clear evidence.

Figure 8. Performance of organism with distributed
resources and dynamic needs

The right part of figure 8 shows the percent of ele-
ments of food and water reached when the correspondent
or the different need has control. The organism has a
certain capacity of focussing on the resource that satisfy
the current prevaili ng need. However a direct observation
of the behaviour shows that in some circumstances the
organism reaches for one resource, say water, even if it
has a need for food and an element of food is in sight.

Why the condition with distributed resources is more
challenging than the one with concentrated resources? A
possible explanation is that the later condition allows the
organism to learn a given task for a certain time in
"clean" perceptual conditions, i.e. without the activation
of the sensors of the "wrong" resource. In these condi-
tions when the actor's weights are changed, say, to learn
to search for food, the feature units that encode the vision
of water are off . The consequence is that the weights of
the connections from these feature units to the units of
the actions are not updated and the searching-for-water
behaviour is not distorted. In the condition with distrib-
uted resources, the sensors for food and for water are
often activated simultaneously, so the weights that allow
the accomplishment of one task are changed even if it is
the other task that is being learned. Similar interference
problems happen at the level of the critic that has to learn
to predict the value of a given input.

4 Discussion and conclusion
This work has presented a neural model of an or-

ganism that has to accompli sh two different tasks. The
model presented has been used to study the interfer-
ence problems that can arise in a "monolit hic" neural
network architecture when a need state and a motiva-
tional signal are used to learn and select among differ-
ent behaviours. It has been shown that the neural net-
work capacity to generali ze turns out to be useful
when simil ar input patterns require simil ar answers.
On the other hand this property can turn out to have
undesired effects when sli ghtly different input patterns
require completely different answers. This work has
shown the occurrence of this problem when the input
patterns differs in the motivational signal.

In cases where the different tasks to be accom-
pli shed are known a-priori, it could be useful to use a
modular architecture where different neural modules
are dedicated to different tasks (see for example [Lin,
1993]). This is the way that natural evolution has fol-
lowed in some cases. For example Alcock [1998] re-
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ports a study on the praying mantis where different
innate neural modules (command centers) are dedi-
cated to mating, foraging, etc. In this and simil ar cases
the content of behaviour is itself innate.

In other cases the behaviour is learned (li ke in the
model presented here), but it is sti ll potentially possi-
ble that motivation selects for different innate modules
that contain learned behaviours. Consider the superior
species like mammals. The homeostatic regulatory
mechanisms (the primiti ve actor and the need system
of the model) that control the needs and motivations
underlying activiti es such as feeding, drinking and
mating, are innate [McFarland, 1993]. For this reason
there is the possibil ity of having a system made of dif-
ferent innate modules dedicated to different
needs/motivations. The motivation signal could go to a
neural network (a selector) capable of choosing which
module should be triggered each time, or could di-
rectly select for the suitable module.

In cases where the tasks cannot be known a-priori,
the modularity has to be emergent. This situation in-
cludes all the cases that involve secondary reinforcers
or punishers. In these cases "what to do", i.e. the tasks,
are themselves learned. For example, within the same
need of feeding, the organism should learn to trigger
an avoidance behaviour when exposed to the sight of a
poisonous food ("second punisher") whil e should learn
to trigger an approaching behaviour when exposed to
an edible food ("second reinforcer"). In these cases,
since the motivational signal is fixed, the choice
among the different emergent modules/behaviours
should be done on the basis of the external input (see
for example [Nolfi, 1997]).

Notice that the advantage of having a modular ar-
chitecture to avoid interference would be diminished
by the advantage of using common pieces of behaviour
to satisfy different needs.

Future work will explore these issues.
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