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Abstract

This work addresses the issue of agents that
lean to carry out multiple (eventually) con-
flicting tasks by reinforcement learning, and
lean to seled the gpropriate ation accord-
ing to their internal needs. The goal is to study
interference problems that can arise when us-
ing "monolithic" neural networks for this pur-
pose. The neural architecture used for the
study is based on ideas drawn from the redm
of needs and motivation in animals, and in
particular from the homeostatic theory of
regulation of physiological body variables.
The task of the simulated organism consists in
seaching for two different resources accord-
ing to its internal need state. The model stud-
ied is able to learn the behaviours necessary to
accomplish the two tasks and to switch from
one behaviour to the other according to the
internal need state. The simulations sow the
existence of undesired interference problems
between the two tasks, arising both during
leaning and during adion seledion. This
suggests that innate or emergent neural
modular architecures could be a better solu-
tion when multiple tasks are faced.

1 Introduction

Usually animals have the cgadty to do many different
things in response to dfferent physiologicd needs. ea-
ing, drinking, mating, and so on Superior animal spedes,
like mammals, are endowed with mechanisms to buld
flexible behavioural resporses to these neals, such as
condtional leaning and instrumental leaning [Pavlov,
1927 Thorndike, 1911]. Instrumental leaning all ows the
organismsto learn to produce appropriate behaviours that
lead to primary reinforcers (e.g. to lean the "consum-
matory behaviour" of eding that leads to the ingestion o
food). Also it allows the organisms to lean behaviours
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that leal to states that have aquired the property of sec-
ondary reinforcers through conditional leaning (e.g. to
lean the "appetitive behaviour" of approaching a par-
ticular kind d treg seen from far away, that carries edi-
ble fruit) [Baldassarre and Parisi, 2000]. The presence of
multi ple physiologicd needs, and the opportunity to lean
to achieve secondary reinforcers, implies that the neural
systems uncerlying the leaning processes soud be &
pable of deding with multiple and eventually conflicting
tasks. From the point of view of the nervous g/stem of
animals, the mnstruction of adaptive behaviours is based
on bdh an "interna" input signal coming from the body
and relative to the different physiologicd needs, and an
"external" input signal coming from the world [McFar-
land, 1993]. The internal input signal contains informa-
tion abou which need the behaviour should satisfy. The
external input signal contains information about the
avail ability of primary and seandary reinforcers.

What shoud be the neural architedure of organisms
cgpable of leaning, say, to approach a fruit treeor a wa-
ter pond, to ed or to drink? In particular, what are the
consequences of having "mondithic" neural architecure
to lean dfferent behaviours that acaomplish dfferent
tasks? Would it be useful to have an innate or emergent
moduarity, where diff erent neural modues are dedicaed
to acomplish dfferent behaviours? This paper addresses
the isaue of the interference problems that affed mono-
lithic neural architedures. On the base of the simulations
presented here, it is inferred that neural modular archi-
tedures could help to avoid interference problems.

The paper studies a smulated organism that has to
seach for food or water acording to its physiologicad
nedls (the case of carrying out multiple tasks to achieve
seondary reinforcers direded to the same ned, is not
considered here). Learning to cary out these two con-
flicting tasks implies the solution  two sub-problems,
ead o which could imply interference difficulties:

1. Leaning the appropriate behaviour to satisfy eath
single neal. The fad that the same computational
resources (the same synaptic weights) are used for
both tasks, can potentially generate interference
problems. For example leaning a behaviour aters
the other behaviour.



2. Leaning to seled one of the two behaviours ac-
cording to the current need state. The mondithic
architedure muld gve rise to interference prob-
lemsin seleding the two behaviours.

In order to test the existence and nature of these inter-
ference problems, a controller of the simulated organism
has been designed that is suppcsed to cgpture some basic
fedures of animal learning. The core of the model is a
neural network implementation of the reinforcement
leaning ador-critic method [Lin, 1992, Barto et al.,
1990]. As dhown in [Sutton and Barto, 1990, Shultz et
al., 1997; Badassarre and Parisi, 2000] this model is ca
pable of representing the basic fedaures of conditional
leaning and instrumental learning. The input to the ador-
critic system is pre-processed by a Kanerva-coding neural
network that maps the input from the need system and the
external sensors into a high nunber of "fedure" units
[Sutton and Whitehead, 1993 . Activities such as feeading,
drinking and mating, involve control principles that can
be represented in models employing the terminology and
concepts of homeostatic theory [Mc Farland, 1993].
Hence asystem based on homeostatic mechanisms has
been designed to capture the main aspeds of the regula-
tion d energy and water in the organism's body.

While the model does not offer a definition of "emo-
tion", it offers a definition of "motivation". In the model
"motivation” is the information about the gap, cdled
"need" in the paper, between the optimal and the adual
level of a antrolled physiologicd variable (e.g. the level
of water in the body). This information is snt to the
critic (resporsible for the conditional leaning) and the
ador (responsible for instrumental leaning, i.e. for se-
leding the gopropriate behaviour of searching for food or
water and for executing these behaviours in details). See
[Cecmni and Parisi, 1992] for asimilar definition o mo-
tivation, and [Maes, 199Q] for another example of moti-
vation as adion seledion. The model contains another
asped related to the "affedive sphere’ of animals. The
level of need modulates the reward that is perceved by
the organism when a cnsummatory behaviour is accom-
plished: the smaller the nead, the smaller the perceived
reward (cf. [Humphrys, 1997] for thisidea ad for a sur-
vey of the "adion seledion’ literature).

Sedion two o the article presents the details of the
controller and the scenario of the simulations. Sedion
three describes the experiments acaomplished and the
interpretation of the results obtained. Sedion four dis-
cusses the potentiality of modular architedures when
multi ple tasks have to be acompli shed.

2 Scenario, organism and neural ar-
chitecture

The environment of the simulations is a 1x1 urit toroidal
square aena. In this arena there are 30 elements of "red"
food and 30 elements of "blue" water, ead represented
as a drcle with a radius of 0.005. In a first experimental
condtion the food is randomly spread in the left half of
the aena and the water in the right half. In a second ex-
perimental condition, water and food are randomly
sprea in the arena. Figure 1 shows the second experi-

mental condtion. In both condtions food and water ele-
ments are & least 0.1 distant from the borders of the
arena. The organism is represented as a drcle with ara
dius of 0.01. The simulation takes placein dscrete time
cycles. If in one gycle the organism steps on an element
of food (water), it edas (drinks) the food (water) element
that then disappeas. When a resource element is con-
sumed, a new element isintroduced in arandom location.
The organism is endowed with two ingestion sensors, one
for foodand ore for water. They get an adivation d 1 if
the correspondent resourceisingested, with O otherwise.

Figure 1. Left: the environment, the organism and its visual
field. Right: the current adivation d the organism's ensors.

Each organism has a one-dimension “retina” of 12
doule non-overlapping aligned sensors, sensitive to two
colours, red and blue. These sensors receave information
from a 360C° visua field. Each sensor has a scope of 30°
and a depth limited to 0.2. A sensor takes an adivation of
1if an element of food (water) or part of it is within its
field, O otherwise (figure 1).

The organism has two legs, both moved in each cycle.
The dfed of these steps is equal to the one you would
have with atwo-whed robot. By controlli ng the length of
the left and right step, the organism can go straight (same
length for both left and right step) or turn (different
lengths). The length of left and right steps can be dther O
or 0.02 (so there ae four possble adions: do nd move,
turn left, turn right, go straight). The cmponrents of the
organism's controll er are represented in Figure 2.

TD-error
criti c

Primitive
critic

Need Inges- “Nead sensors

senso&s tions. f
Ned
system

Figure 2. The main comporents of the neural
architedure of the organism's controll er.

Now the general fedures of the system are described.
Refer to [Baldassarre and Parisi, 2000] for details. The
fedure extrador has 48 input units divided into 4 groups.
The first 12 urits encode the level of the need for food
(the higher the level, the higher the number of units that



asume an adivation o 1) and the second 12 units en-
code the level of the neal for water. Within this paper
these 24 urits are cdled "motivational units' and the flow
of information that goes from the need system to the mo-
tivational units is cdled "motivation”. The third and
fourth 12 urit blocks encode the adivation o the red and
blue sensors respedively. The feaure extrador has 200
output units (feaure units). The feaure extrador imple-
ments a "Kanerva re-coding" of the input [Sutton and
Whitehead, 1993]. Its weights are randomly drawn in the
set {-1, +1}. Each fedure unit takes an adivation of 1 if
the Hamming dstance between the input pattern and the
"prototype" encoded by its weights is bigger then 0.6, of
0 atherwise.

The ador is a perceptron [Widrow and Hoff, 1960],
that takes the adivation o the fedure units of the feaure
extrador as input pattern. It has 4 sigmoidal output units
that locdly encode four adions (do not move; go left; go
right; go straight). In order to seled one adion, the adi-
vation p, of the four output units is used for a stochastic
winner-takes-all competition. The probability P[.] that a
given adion g, among the g _adions becmes the winner
adion g, is computed as foll ows (using the more compli-
cated soft-max formula cmmonly used in the literature
made no dfferencein the sped of leaning):

P[ag=aw]=pg/2pk

The aitic is a perceptron that takes the adivation of
the fedure units as input and has one linea output unit.
The citic has to lean to give & output an estimation V'
of the evaluation V of the aurrent state s, defined as the
expeded discounted sum of all future rewards r, given
the aurrent adion-seledion policy Tt

Vvs]= En[Vortﬂ Yo +Ys ]
wherey O [0, 1] is the discount fador (set to 0.95 in the
simulations).
The TD-error network is an implementation in neural
terms (its weights are hardwired) of the computation of
the Temporal-Diff erence error E defined as:

Et = (rt+1 +y V'n[st+l]) -V [St]

The aitic is trained with a Widrow-Hoff algorithm
[Widrow and Hoff, 1960] that uses as error the eror sig-
nal coming from the TD-critic. The weights w; are up-
dated so that the estimation V™[s] of V'[s], expressd at
time t by the aitic, tends to become doser to the target
value (r,,+ yV"{s,,]). Thistarget value is a more predse
evaluation of § being it expressed at time t+1 onthe base
of the observed r,, and the new estimation V''{s,]:

Aw;=n By,

t+1

where n is aleaning rate set to 0.01 in the simulations,
andy,. isthe adivation d the feaure units.

The ador istrained according to the eror signal com-
ing from the aitic. Given that the aitic leansto produce
an evaluation V''[s] of § acording to the average adion
that the ador seleds with s, if E > 0 it means that the
winning adion g, has pasitively "surprised” the aitic, so
its probability of being seleded isincreased. If E, < O the

probability is deaeased. This is done by updting the
weights of the unit correspondent to a, as follows ({ is a
leaning rate set to 0.02 in the simulations):

Aw,; = CEy;

The "need" system depends on the physiologicd level
of energy and water in the organism's body. In a first
experimental condition bah needs for food and water are
constantly kept at the maximum value, 1. In a second
experimental condition the two needs dynamicdly
change acording to the level of energy and water in the
body. The need for water works on the basis of the same
principles as the neal for food, so only the later is de-
scribed. These principles are summarised in figure 3.

Perception o the ar-
rent level of ener
@ _ Optimal level of
energy
Current level
of energy
Threshold

Figure 3. Main aspeds of the need for food.

The level of energy has the following dynamics:
Ly=aly,+Bl

where L isthe level of energy, a isadecay coefficient set
to 0.999 in the simulations, 3 is the content of energy of
one dement of food, set to 0.03 in the ssimulations, and |
is the adivation o the food ingestion sensor (the adiva-
tionis 1 when food is ingested, 0 atherwise). The organ-
ism has a "perception” of the arrent level of energy that
is afunction of the adual level of energy (only the cae
of a step function hes been explored). "Neal" is defined
as the diff erence between the optimal level of energy and
the perception of its current level. The level of the need is
used to adivate the aorrespordent unit of the primitive
critic (it has a continuous adivation between 0 and 1) and
a proportional number of neal-for-food units of the fea-
ture extrador (they have an adivation d 0 or 1).

If the aurrent higher need aways gets the wntrol, and
if the food and water are concentrated in dfferent zones
of the space soon the organism runs out of energy and
water. In fad it would seach for food, ea a littl e bit,
bewme thirsty, search for water, drink a littl e bit, start to
be hungry again, etc. Minsky [1986] cdled this problem
"dithering". To avoid dthering, a simple solution has
been adopted, inspired by Minsky's ideathat each need
gets control for some minimum amourt of time. The per-
caved water and food needs have aredprocd inhibition,
s0 that in eady moment if one perceived need has the
maximum value, 1, the other has the minimum of 0. Once
one nedal gets control, it loses it only when the crre-
sponcent level of energy (water) reaches a threshold
thanks to the adivity of eaing (drinking). When this
event occurs, the other need gets control.

The primitive aitic is a network that maps the signals
coming from the world, correspondent to the adivation of
the ingestion sensors of food and water, into an interna
reward signal. Theinternal reward signal isthe adivation



of an "internal reward unit" that computes the sum of the
signals coming from the two ingestion sensors. In the
simulations the weights of the mnnedions between the
ingestion sensors and the internal reward unit are set to
+1. Each o the signals coming from an ingestion sensor
is multiplied by the signal coming from the crrespon-
dent need sensor that encodes the level of the need. The
effea of this multiplicationis that the higher the need the
higher the reward perceived.

3 Experiments and results

The simulations have been done under four experimental
condtions:

1) The food and water are respedively concentrated
in the left and right halves of the environment.
Both needs are mnstantly set to 1.

2) The food and water are respedively concentrated
in the left and right halves of the arena. The needs
have the dynamics described in sedion two.

3) Food and water are randomly spread in the ewi-
ronment. Both needs are constantly set to 1.

4) Food and water are randomly spreal in the envi-
ronment. The needs have the dynamics described
in sedion two.

In the experimental conditions 1) and 3), the dependent
variable measured has been the steps taken to reach indif-
ferently an element of food or water. A moving average
on the last 100 elements readed has been used. An or-
ganism that has not undergone the learning processhas a
performance of about 110 average steps taken to read an
element of food o water. This measure is useful as a
baseline to judge the performance of organisms that un-
dergo the leaning process In the experimental cond-
tions 2) and 4), the same moving average has been used,
but an element of food or water reated has been counted
as "valid" only if the cmrrespondent need was equal to 1
With this ond measure of performance, the perform-
ance of an arganism that has not undergone aleaning
processis abou 212. Each result shown is an average of
9 simulations run with dfferent random seels.

3.1 Concentrated food and water,
needs set to 1

When the dements of food are wncentrated in the left

side of the aena, the dements of water are concentrated

in the right side, and the needs are constantly set to 1, the
organism has the performance shown in figure 4.
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Figure 4. Left: the thin line plots the performance against cycles
of an arganism whose neeads are set to 1. The bold lineisthe
average performance of an organism following arandom walk.
Right: path of an organism spedalized in searching for food.

The interesting fad about these experimental condi-
tions is that in the 9 simulations run with dfferent ran-
dom sedls, the organisms gedalise in seaching for ei-
ther one or the other resource (in the simulations 4 or-
ganisms have spedalised in seaching for food and 5 in
seaching for water). The reason is that the reward is
given for both resources and the motivational units have
always the same adivation. Once the organism starts to
spedalise to seach for one resource and all the computa-
tional means are dedicaed to this task (for example food,
see figure 4), it is attraded on the area where this re-
source can be foundand ignores the other resource

3.2 Concentrated food and water, dy-
namic needs
When the resources are concentrated in different regions

of the aena and the needs are dynamic, the organism
performs as showed in figure 5.
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Figure 5. Left: performance of an organism with dynamic
neals. Right: path foll owed by the organism.

The performance reades a level of 25 steps per ele-
ment of foodwater colleded when the crrespondent
need is 1, indicaing that the organism is cgpable of
leaning to carry out the two tasks. The interesting fad is
that once the organism has leaned the two tasks, a
change in the state of needs provokes a sudden change of
the behaviour, thanks to the motivational signal that goes
from the need system to the feaure extrador. The moti-
vational signal succeals in seleding the corred behav-
iour. Thisfad is s.own ontheright side of figure 5. Fig-
ure 6 shows the percentage of elements of food a water
that are mlleded when the @rrespondent or the other
need has the control.
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Figure 6. Food and water colleded (as percentage of total ele-
ments coll eaed) when the two diff erent needs are adive ("food
food' means nedl for food, food colleded; "foodwater" means

need for food water colleaed; etc.)

Figure 5 shows that the performance of the organism
bewmmes temporary bad at about 40000 cycles. An expla-
nation for this can be given by observing the behaviour of
the organism. At the beginning the organism has a par-
ticular need, say for food, so it leans to search for food.
When the nedl for food is stisfied, the need for water



takes control. At this point even if the motivation signal
has changed, the organism appeas to continue to be
guided by the sight of food. Probably this happens be-
cause some fedure units that encode the position o food
cortinue to have an adivation of 1 even if the input is
partidly different becaise of the different motivational
signal (the behaviour "conneded" with these unitsis pre-
cisely the behaviour of searching for food). After some
time, given that the ingestion of food das not produce a
positive reward anymore, the aitic starts to produce a
signal that progressvely erase the seaching-for-food
behaviour conneded to the fedures units that generalise
in awrong way. This problem is a quite general problem
of interference between multiple tasks. Neura networks
have the cgadty of generalising the behaviour to similar
inpu patterns, and thisturns out to be an advantage when
similar answers have to be given to similar input patterns.
When dfferent answers have to be given to aherwise
identicd inpu patterns, dissmilar only in the part that
seled for different tasks, the cgadty of generalisation
can cause interference. For example this happens when
different motivational input signals require completely
different answersto identicd visual inpu patterns.

3.3 Distributed food and water, needs
setto 1
When food and water elements are distributed in the

whole aena, and bdh neals are wnstantly set to 1, the
organism's performanceis siown in figure 7.
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Figure 7. Performance of an arganism with needs st to 1
in an environment with distributed resources.

The performance reades a good level, similar to the
condtion with concentrated food. Differently from the
later case, however, the organism leans to seach bah
for foodand water instead of spedalising. This difference
of behaviour can probably be explained as follows. The
organism repededly encourters both food and water, so
that the updating of the weights of the aitic and of the
ador for the first task alternates with the updating for the
send task. As a consequence, none of the two tasks
takes up al the computational resources.

3.4 Distributed food and water, dy-
namic needs

When the food and water are distributed on the whde
arena and the needs are dynamic, the organism has a per-
formance like the one shown in figure 8. The perform-
ance reades a level of about 28. Again the performance
bewmmes temporarily worse aound cycle 50000. Proba-
bly the explanation d thisfad is smilar to the one given
in for the condition of concentrated resources, but con-

trary to the later case, this time the dired observation d
behaviour did nat furnish clea evidence
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Figure 8. Performance of organism with distributed
resources and dynamic needs

The right part of figure 8 shows the percent of ele-
ments of food and water reached when the correspondent
or the different need has control. The organism has a
certain capadty of focussng onthe resource that satisfy
the aurrent prevailing need. However a dired observation
of the behaviour shows that in some circumstances the
organism reaches for one resource, say water, even if it
has a need for food and an element of foodisin sight.

Why the @ndtion with dstributed resources is more
challenging than the one with concentrated resources? A
possble explanation is that the later condtion all ows the
organism to lean a given task for a cetain time in
"clean" perceptual condtions, i.e. withou the adivation
of the sensors of the "wrong' resource In these condi-
tions when the ador's weights are changed, say, to lean
to seach for food, the feaure units that encode the vision
of water are off. The cmnsequence is that the weights of
the mnredions from these feaure units to the units of
the adions are not updated and the seaching-for-water
behaviour is not distorted. In the condition with dstrib-
uted resources, the sensors for food and for water are
often adivated simultaneoudly, so the weights that alow
the acomplishment of one task are dhanged even if it is
the other task that is being leaned. Similar interference
problems happen at the level of the aitic that has to learn
to predict the value of agiven input.

4 Discussion and conclusion

This work has presented a neural model of an or-
ganism that has to accomplish two different tasks. The
model presented has been used to study the interfer-
ence problems that can arise in a "monolithic" neural
network architecture when a need state and a motiva-
tional signal are used to learn and select among differ-
ent behaviours. It has been shown that the neural net-
work capacity to generalize turns out to be useful
when similar input patterns require similar answers.
On the other hand this property can turn out to have
undesired effeds when slightly different input patterns
require completely different answers. This work has
shown the occurrence of this problem when the input
patterns differs in the motivational signal.

In cases where the different tasks to be acom-
plished are known a-priori, it could be useful to use a
modular architecdure where different neural modules
are dedicated to different tasks (see for example [Lin,
1993]). This is the way that natural evolution has fol-
lowed in some caes. For example Alcock [1998] re-



ports a study on the praying mantis where different
innate neural modules (command centers) are dedi-
cated to mating, foraging, etc. In this and similar cases
the content of behaviour isitself innate.

In ather cases the behaviour is learned (like in the
model presented here), but it is gill potentially poss-
ble that motivation selects for different innate modules
that contain learned behaviours. Consider the superior
spedes like mammals. The homeostatic regulatory
mechanisms (the primitive ador and the need system
of the model) that control the needs and motivations
underlying adivities such as feading, drinking and
mating, are innate [McFarland, 1993]. For this reason
there is the posghility of having a system made of dif-
ferent innate modules dedicaed to different
neads/motivations. The motivation signal could go to a
neural network (a selector) capable of choosing which
module should be triggered each time, or could di-
redly seled for the suitable module.

In cases where the tasks cannot be known a-priori,
the modularity has to be emergent. This stuation in-
cludes all the cases that involve secondary reinforcers
or punishers. In these aases "what to do", i.e. the tasks,
are themselves learned. For example, within the same
need of feeding, the organism should learn to trigger
an avoidance behaviour when exposed to the sight of a
poisonous food ("second punisher") whil e should learn
to trigger an approaching behaviour when exposed to
an edible food ("second reinforcer"). In these cases,
since the motivational signal is fixed, the choice
among the different emergent modules/behaviours
should be done on the basis of the external input (see
for example [Nolfi, 1997]).

Notice that the alvantage of having a modular ar-
chitecture to avoid interference would be diminished
by the advantage of using common pieces of behaviour
to satisfy different needs.

Future work will explore these isues.
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