
LEARNING TO PINPOINT SINGING VOICE
FROM WEAKLY LABELED EXAMPLES

Jan Schlüter
Austrian Research Institute for Artificial Intelligence, Vienna

jan.schlueter@ofai.at

ABSTRACT

Building an instrument detector usually requires tempo-
rally accurate ground truth that is expensive to create.
However, song-wise information on the presence of in-
struments is often easily available. In this work, we in-
vestigate how well we can train a singing voice detec-
tion system merely from song-wise annotations of vocal
presence. Using convolutional neural networks, multiple-
instance learning and saliency maps, we can not only de-
tect singing voice in a test signal with a temporal accuracy
close to the state-of-the-art, but also localize the spectral
bins with precision and recall close to a recent source sep-
aration method. Our recipe may provide a basis for other
sequence labeling tasks, for improving source separation
or for inspecting neural networks trained on auditory spec-
trograms.

1. INTRODUCTION

A fundamental step in automated music understanding is
to detect which instruments are present in a music audio
recording, and at what time they are active. Traditionally,
developing a system detecting and localizing a particular
instrument requires a set of music pieces annotated at the
same granularity as expected to be output by the system –
no matter if the system is constructed by hand or by ma-
chine learning algorithms.

Annotating music pieces at high temporal accuracy re-
quires skilled annotators and a lot of time. On the other
hand, instrument annotations at a song level are often eas-
ily available online, as part of the tags given by users of
streaming services, or descriptions or credits by the pub-
lisher. Even if not, collecting or cleaning song-wise anno-
tations requires very little effort and low skill compared to
curating annotations with sub-second granularity.

As a step towards tapping into such resources, in this
work, we explore how to obtain high-granularity vocal de-
tection results from low-granularity annotations. Specifi-
cally, we train a Convolutional Neural Network (CNN) on
10,000 30-second song snippets annotated as to whether

c© Jan Schlüter. Licensed under a Creative Commons Attri-
bution 4.0 International License (CC BY 4.0). Attribution: Jan Schlüter.
“Learning to Pinpoint Singing Voice From Weakly Labeled Examples”,
17th International Society for Music Information Retrieval Conference,
2016.

they contain singing voice anywhere within, and subse-
quently use it to detect the presence of singing voice with
sub-second granularity. As the main contribution of our
work, we develop a recipe to improve initial results us-
ing multiple-instance learning and saliency maps. Finally,
we investigate how well the system can even pinpoint
the spectral bins containing singing voice, instead of the
time frames only. While we constrain our experiments to
singing voice detection as a special case of instrument de-
tection (and possibly the easiest), we do not assume any
prior knowledge about the content to be detected, and thus
expect the recipe to carry over to other instruments.

The next section will provide a review of related work
on learning from weakly-annotated data both outside and
within of the music domain, and on singing voice detec-
tion. Section 3 explains the methods we combined in this
paper, Section 4 describes how we combined them, and
Section 5 evaluates the resulting system on four datasets.
Finally, Section 6 discusses what we achieved and what is
still open, highlights avenues for future research and points
out alternative uses for some of our findings.

2. RELATED WORK

The idea of training on weakly-labeled data is far from
new, since coarse labels are almost always easier to ob-
tain than fine ones. The general framework for this setting
is Multiple-Instance Learning, which we will return to in
Section 3.2. As one of the first instances, Keeler et al. [8]
train a CNN to recognize and localize two hand-written
digits in an input image of about 36 × 36 pixels, giving
only the identities of the two digits as training targets. As a
recent work closer to our setting, Hou et al. [6] train a CNN
to detect and classify brain tumors in gigapixel resolution
tissue images. As such images are too large to be processed
as a whole, they propose to train on patches, still using
image-level labels only. To account for the fact that not all
patches in a tumor image show tumorous tissue, Hou et al.
employ an expectation maximization algorithm that itera-
tively prunes non-discriminative patches from the training
set based on the CNN’s predictions. As far as we are aware,
the only work in music information retrieval aiming to pro-
duce fine-grained predictions from coarse training data is
that of Mandel and Ellis [14]: They train special variants
of SVMs on song, album or artist labels to predict tags on
a granularity of 10-second clips. In contrast, we aim for
sub-second granularity, and for identifying spectral bins.

http://www.ofai.at
mailto:jan.schlueter@ofai.at


Recent approaches for singing voice detection [9,10,18]
are all based on machine learning from temporally accurate
labels. The current state of the art is our previous work
[18], a CNN trained on mel spectrogram excerpts. We will
use it both as a starting point and for comparing our results
against, and describe it in more detail in Section 3.1.

Singing voice detection does not entail identifying the
spectral bins. The closest task to this is singing voice ex-
traction, which aims to extract a purely vocal signal from
a single-channel audio recording and thus has to estimate
its spectral extends. It differs from general blind source
separation in that it can leverage prior knowledge about
the two signals to be separated – vocals and background
music. As an improvement over Nonnegative Matrix Fac-
torization (NMF) [20], which can only encode such prior
knowledge in the form of spectral templates, REPET [16]
uses the fact that background music is repetitive while vo-
cals are not. Kernel-Additive Modeling [11] generalizes
this method and uses a set of assumptions on local regular-
ities of vocals and background music to perform singing
voice extraction. We will use it as a mark to compare our
results to.

3. INGREDIENTS

Our recipe combines a few methods that we shall intro-
duce up front: a singing voice detector based on CNNs,
multiple-instance learning, and saliency maps.

3.1 CNN-based Singing Voice Detection

The base of our system is a CNN trained to predict whether
a short spectrogram excerpt contains singing voice at its
center. We mostly follow Schlüter et al. [18], and will limit
the description here to what is needed for understanding
the paper, as well as how we deviated from that approach.

Input signals are converted to 22.05 kHz mono and pro-
cessed by a Short-Time Fourier Transform with 70 1024-
sample frames per second. Phases are discarded, magni-
tudes are scaled by log(1+ x), the spectrogram is cropped
above 8 kHz (keeping 372 bins) and each frequency band
is normalized to zero mean and unit variance over the train-
ing set. We skip the mel-scaling step of Schlüter et al. to
enable more accurate spectral localization of singing voice.

As in [18], the network architecture starts with 64 and
32 3×3 convolutions, 3×3 max-pooling, 128 and 64 3×3
convolutions. At this point, the 372 frequency bands have
been reduced to 118. We add 128 3×115 convolutions
and 1×4 max-pooling. This way, the network learns spec-
trotemporal patterns spanning almost the full frequency
range, applies them at four different frequency offsets and
keeps the maximum activation of those four, effectively
introducing some pitch invariance. We finish with three
dense layers of 256, 64 and 1 unit, respectively. Except
for the final layer, each convolution and dense layer is fol-
lowed by batch normalization [7] and the leaky rectifier
max(x/100, x) [13]. The final layer uses the sigmoid ac-
tivation function.

Training is done on excerpts of 115 frames (about

1.6 sec) paired with a binary label for the excerpt’s central
frame. We follow the training protocol described in [18,
Sec. 3.3], augmenting inputs with random pitch-shifting
and time-stretching of ±30% and frequency filtering of
±10 dB using the code accompanying [18].

We arrived at this system by selectively modifying our
previous work [18] to work well with linear-frequency
spectrograms, on an internal dataset with fine-grained an-
notations. It slightly outperforms [18] on this dataset.

3.2 Multiple-Instance Learning

While we train our network on short spectrogram excerpts,
we actually only have a single label per 30-second clip.
In the Multiple-Instance Learning (MIL) framework, each
explicitly labeled 30-second clip is called a bag, and the
excerpts we train on are called instances. In our setting,
a bag is labeled positively if and only if at least one of
the instances contained within are positive (referred to as
the standard MI assumption [4]). This gives an interesting
asymmetry: If a 30-second clip is labeled as “no vocals”,
we can infer that neither of its excerpts contains vocals. If
a clip contains vocals, we only know that some excerpts
will contain vocals, but neither which ones nor how many.

One approach for training a neural network in this set-
ting is based on the observation that the label of a bag is
simply the maximum over its instance labels. If we define
the network’s prediction for a bag to be the maximum over
the predictions for its instances, and the objective function
to measure the discrepancy between this bag-wise predic-
tion and the true label, minimizing it by gradient descent
directly results in the following algorithm (BP-MIP, [24]):
Propagate all instances of a bag through the network, pick
the instance that gives the highest output, and update the
network weights to minimize its discrepancy with the bag
label. Unfortunately, this scheme is very costly: It com-
putes predictions for all instances of a bag, then performs
an update for a single instance only. Furthermore, it is
easy to overfit: It is enough for the network to produce
a strongly positive output for a single chosen instance per
bag and negative outputs for all others. For 10,000 30-
second clips, it would require merely learning 10,000 short
excerpts by heart.

A different approach is to present all instances from
negative bags as negative examples (we know they are neg-
ative) and all instances from positive bags as positive ex-
amples (they could be positive), and use a classifier that
can underfit the training data, i.e., that may deviate from
the training labels for some examples. This naive idea
alone can produce good results, but it is also the basis
for algorithms iteratively refining this starting point: The
mi-SVM algorithm [1] uses the predictions of the initial
classifier to re-label some instances from positive bags to
become negative, and alternates between re-training and
re-labeling until convergence. A variant proposed by Hou
et al. [6] is to prune instances from positive bags that are
not clearly positive, and also iterate until convergence. We
will find that for our task, the idea of improving initial re-
sults by relabeling instances is important as well.



(a) (b) (c) (d)

Figure 1: Demonstration of saliency mapping: Network
input (a), gradient (b), guided backpropagation (c) and its
positive values (d). Best viewed on screen.

3.3 Saliency Mapping

Saliency maps for neural networks have been popularized
by Zeiler et al. [23] as a means of inspecting how a trained
neural network forms its decisions. One of the most ele-
gant forms computes the saliency map as the gradient of
the network’s output 1 with respect to its input [19]. For a
single data point, this tells how and in which direction each
input feature influences the prediction for that data point.
In our case, the input is a spectrogram excerpt and the gra-
dient shows for each spectrogram bin how an infinitesimal
increase would affect the probability of predicting singing
voice (demonstrated in Figure 1a and 1b, respectively).
Unfortunately, for a deep neural network, an input feature
can influence the output in convoluted ways: Some input
may increase the output by decreasing activities in hidden
layers that are negatively connected to the output unit.

To get a clearer picture, Springenberg et al. [21] propose
guided backpropagation: At each layer, only propagate the
positive gradient values to the previous layer. This limits
the saliency map to showing how input features affect the
output by a chain of changes in the same direction. Fig-
ure 1c demonstrates this for our example. A positive value
(displayed in red) for a bin means increasing this bin will
increase the output by increasing activities in all layers in
between. Likewise, a negative value (displayed in blue) for
a bin means that increasing it will decrease the output.

Note that the negative saliencies are not very useful:
They form “halos” around the positive saliencies, indicat-
ing that the network hinges on the local contrast, and they
are much less sharply localized. Assuming the hidden lay-
ers show a similar picture, this explains why ignoring neg-
ative gradients in guided backpropagation gives a sharper
saliency map. To obtain a map of spectrogram bins corre-
sponding to what the network used to detect singing voice,
we keep the positive saliencies only (Figure 1d).

1 Precisely, the pre-activation of the output unit, before applying the
nonlinearity, as the sigmoid would dampen gradients at high activations.

4. RECIPE

Having the basic ingredients in place, we will now describe
our recipe. We begin by showing how to use a naively
trained network for temporal detection and spectral local-
ization, and then highlight an observation about saliency
maps that enables higher precision. Finally, we give a
three-step training procedure that further improves results.

4.1 Naive Training

The easiest solution to dealing with the problem of incom-
plete labels – and the starting point of our recipe – is to
pretend the labels were complete. We train an initial net-
work by presenting all excerpts from instrumental songs
as negative, and all excerpts from vocal songs as positive.
This already works quite well: even on the training data, it
produces lower output for excerpts of vocal songs that do
not contain voice than for those that do.

To obtain a temporal detection curve for a test song,
we pass overlapping spectrogram excerpts of 115 frames
through the network (with a hop size of 1 frame), recording
each prediction. This way, for each spectrogram frame, we
obtain a probability of singing voice being present in the
surrounding ±57 frames. As in [18], we post-process this
curve by a sliding median filter of 56 frames (800 ms).

For spectral localization, we also pass overlapping spec-
trogram excerpts through the network, each time comput-
ing the 115×372-pixels saliency map for the excerpt. To
combine these into a single map for a test song, we con-
catenate the central frames of the saliency maps. This gives
a much sharper picture than an overlap-add of the excerpt
maps. When used for vocal extraction, we apply two post-
processing steps: As the saliency maps are very sparse,
we apply Gaussian blurring with a standard dev. of 1 bin.
And as the saliency values are very low, we scale them to a
range comparable to the spectrogram and take the element-
wise minimum of the scaled map and spectrogram.

4.2 Overshoot Correction

When examining the predictions of the initial, naively
trained network, we observe that it regularly overshoots
at the boundaries of segments of singing voice. Figure 2
illustrates the problem for a training example: Predictions
only decline far away from vocal parts, and short pauses
are glossed over. This is an artifact from training on weak
labels: The network predicts singing voice whenever its
1.6-second input excerpt contains vocals, even if only at
the edge, because such excerpts have never been presented
as negative examples during training.

The saliency map provides additional information,
though. By computing the saliency of the central frame
of each excerpt (Figure 2e), we can check whether it was
important for that excerpt’s prediction. Summing up the
saliency map over frequencies (Figure 2f) gives an alterna-
tive prediction curve that can be used to improve the preci-
sion of temporal detection. In the next section, we will use
this observation to improve the network.



(a) spectrogram of a 30-second training clip containing vocals

0.0
0.5
1.0

(b) weak labels for training (all positive)

0.0
0.5
1.0

(c) actual ground truth

0.0
0.5
1.0

(d) network predictions

(e) network saliency map

0.0
0.1
0.2

(f) network saliency map summarized over frequencies

Figure 2: Network predictions (d) overshoot vocal seg-
ments (c) because input windows only partially contain-
ing vocals were always presented as positive examples (b).
Summarizing the saliency map (e) over frequencies (f) al-
lows to correct such overshoots.

4.3 Self-Improvement

A basic idea we described in Section 3.2 is that the naively
trained network could be used to relabel the positive train-
ing instances, which necessarily contain false positives
(compare Figure 2b to 2c). The intuition is that correct-
ing even just a few of those and re-training should improve
results.

We tried several variants of this idea: Relabeling by
thresholding the initial network’s predictions (using a low
threshold to only relabel very certainly false positives),
weighting positive examples by the initial network’s pre-
dictions (so confidently positive examples would affect
training more than others), or removing positive examples
the initial network is not confident about. However, the
only effect was that the bias of the re-trained network was
lower, and iterating such a scheme lead to a network pre-
dicting “no” all the time. In hindsight, this is not surpris-
ing: The only positive instances we relabel this way are
those the network got correct with naive training already,
so it will not learn anything new when re-training.

We found a single scheme that does not deteriorate re-
sults: Training a second network to output the temporally
smoothed predictions of the initial network for positive in-
stances, and the actual labels for negative instances. It does
not result in better predictions either, but in much clearer
saliency maps with less noise in non-vocal sections. Us-
ing the technique of Section 4.2, we find that for such a

second network, the summarized saliency maps alone ac-
tually provide a better temporal detection curve than the
network output, as it does not suffer from overshoot.

Iterating the latter scheme by re-training on the second
network’s predictions does not help. However, we can train
a third network to output the temporally smoothed sum-
marized saliency maps of the second network for positive
instances, again keeping negative instances at their true la-
bels. To bring them to a suitable range for training (i.e.,
between 0 and 1), we scale them by 10 and apply the tanh
function. Finally, this third network gives predictions that
do not need any overshoot correction. It can be seen as
finding a more efficient way of computing the summarized
saliency map of the second network.

Put together, our recipe consists of: (1) Training a first
network (subsequently called CNN-α) on the weak in-
stance labels, (2) training a second network (CNN-β) on
the predictions of CNN-α, (3) training a third network
(CNN-γ) on the summarized saliency maps of CNN-β.

5. EXPERIMENTS

To test our approach, we train networks on a dataset of
10,000 weakly-annotated 30-second snippets, then evalu-
ate them on two public datasets for temporal detection and
two public datasets for spectral localization.

5.1 Datasets

5.1.1 Training and Development

We collected 10,000 30-second song snippets of 10,000
artists. Using a custom web interface, 5 annotators sorted
2,000 snippets each into vocal and non-vocal ones, where
“vocal” was defined to be “any use of human vocal
chords”. Annotators were allowed to skip examples they
were very unsure about or that only contained voice-like
sound effects, leaving 9751 annotated clips, 6772 of which
contain vocals. To check inter-annotator agreement, we
had 100 clips be labeled by 6 annotators. Of those, anno-
tators agreed on 97 clips, the remaining 3 were skipped by
at least one annotator and disagreed on by others.

We annotate the multiply-annotated clips with sub-
second granularity to be used for testing, and keep the re-
maining clips for training. We further annotate 100 of the
training clips finely to train a network equivalent to the one
of Schlüter et al. [18] (dataset In-House A in that work).

The finely annotated positive clips feature vocals for
70% of the running time (between 13% and 99% per clip).
Extrapolating, we thus expect CNN-α to be presented with
30% false positives among its positive training instances.

5.1.2 Testing

For testing temporal detection, we use two public datasets
finely annotated with singing voice presence:
– RWC, collected by Goto et al. [5] and annotated by

Mauch et al. [15], contains 100 pop songs.

– Jamendo, curated by Ramona et al. [17], contains 93
songs. It comes with a predefined train/test split, but
we use all songs for testing.



internal RWC Jamendo
AU-
ROC

max
acc.

AU-
ROC

max
acc.

AU-
ROC

max
acc.

CNN-α pred. .911 .888 .879 .856 .913 .865
sal. .955 .896 .912 .843 .930 .849

CNN-β pred. .922 .888 .890 .861 .923 .875
sal. .970 .916 .936 .883 .955 .894

CNN-γ pred. .970 .915 .939 .887 .960 .901
sal. .965 .914 .931 .884 .950 .898

CNN- pred. .979 .930 .947 .882 .951 .880
fine sal. .969 .909 .937 .883 .948 .885

Table 1: Temporal detection results for the three steps of
self-improvement on weak labels (Section 4.3) as well as a
network trained on fine labels, for three datasets.2

For spectral localization, we use two public datasets that
come with separated vocal tracks:
– ccMixter, collected by Liutkus et al. [11], consists of 50

recordings from ccmixter.org.

– MedleyDB, compiled by Bittner et al. [2], contains 174
songs. We only use the 52 songs that feature vocals
(singer or rapper) and do not have bleed between tracks.
Downmixes are provided, we obtain the corresponding
vocal tracks by mixing all vocal stems per song.

5.2 Temporal Detection Results

Singing voice detection is usually evaluated via the classi-
fication error at a particular threshold [9, 10, 15, 18]. How-
ever, different tasks may require different thresholds tuned
towards higher precision or recall. Furthermore, tuning the
threshold towards some goal requires a finely-annotated
validation set, which we assume is not available in our set-
ting. We therefore opt to assess the quality of the detection
curves, rather than hard classifications. Specifically, we
compute two measures: The Area Under the Receiver Op-
erating Characteristic Curve (AUROC), and the classifica-
tion accuracy at the optimal threshold. The former gives
the probability that a randomly drawn positive example
gets a higher prediction than a randomly drawn negative
example, and the latter gives a lower bound on the error.

Table 1 shows the results. We compare four CNNs:
CNN-α to CNN-γ from the three-step self-improvement
scheme of Section 4.3, and CNN-fine, a network of the
same architecture trained on 100 finely-annotated clips,
as a reimplementation of the state-of-the-art by Schlüter
et al. [18]. For each network, we assess the quality of
its predictions and of its summarized saliency map, on the
held-out part of our internal dataset as well as the two pub-
lic datasets. 2

We can see that for CNN-α, summarized saliencies are
better than its direct predictions in terms of AUROC, but
worse in terms of optimal classification error. CNN-β,
which is trained on the predictions of CNN-α, performs
strictly better than CNN-α and gains a lot when using

2 Note that we did not train on the public datasets and used the full
datasets for evaluation, so results are not directly comparable to literature.

ccMixter MedleyDB
prec. rec. F1 prec. rec. F1

baseline .324 .947 .473 .247 .955 .361
KAML [12] .597 .681 .627 .416 .739 .484
CNN-α .575 .651 .603 .467 .637 .497
CNN-β .565 .763 .643 .522 .618 .529
CNN- fine .552 .795 .646 .494 .669 .528

Table 2: Spectral localization results for the baseline of
just predicting the spectrogram of the mix, a voice/music
separation method, and saliency maps of three networks.

summarized saliencies instead of predictions. CNN-γ is
trained to predict the saliencies of CNN-β and matches or
even outperforms those. Its saliency maps do not provide
any benefit. Figure 3 provides a qualitative comparison of
the predictions for the three networks.

Comparing results to CNN-fine, we see that it performs
comparable to CNN-γ: It is strictly better on the internal
test set (which is taken from the same source as the train-
ing data), but not on the public test sets, indicating that
CNN-γ profits from its larger training set despite the weak
labels. The summarized saliencies of CNN-fine do not pro-
vide any improvement, which was to be expected: There is
no overshoot they could correct as in Section 4.2.

5.3 Spectral Localization Results

Spectral localization of singing voice, i.e., identifying the
spectrogram bins containing vocals, is not an established
task. The closest to this is singing voice extraction, which
is evaluated with standard source separation measures
(Source to Distortion Ration, Source to Interference Ra-
tio). However, developing our method into a full-fledged
source separator is out of scope for this work. We therefore
resort to comparing the saliency map produced by the net-
work for a mixed signal to the spectrogram of the known
pure-vocal signal. Specifically, we compute a general-
ization of precision, recall and F1-measure towards real-
valued (instead of binary) targets: For a predicted saliency
map Pij and pure-vocal spectrogram Tij , we define the to-
tal amount of true positives as t =

∑
i,j min(Pij , Tij).

We then obtain precision as p = t/
∑

i,j Pij , recall as
r = t/

∑
i,j Tij , and F1-measure as f = 2pr/(p+ r).

Results are shown in Table 2. We first compute a sim-
ple baseline: Using the spectrogram of the mix as our vo-
cal predictions. In theory, this should give 100% recall,
but since the songs are mastered, the mix spectrogram is
sometimes lower than the spectrogram of the vocal track,
leaving a gap. We then obtain results for KAML [12], a re-
fined implementation of KAM [11] described in Section 2.
As the vocal prediction Pij , we compute the spectrogram
of the vocal signal it extracts, clipped to 8 kHz to be com-
parable to our network’s saliency maps. Finally, we eval-
uate the saliency maps of CNN-α, CNN-β and CNN-fine,
post-processing them as described in Section 4.1. We omit
CNN-γ as it is tailored for temporal detection and will not
produce better saliencies than CNN-β.

ccmixter.org


We find that all methods are comparably far from the
baseline, with the CNNs obtaining higher F1-measure than
KAML. As in temporal detection, CNN-β has an edge over
CNN-α, and is close to CNN-fine. While these results look
promising, it should be noted that the saliency maps will
not necessarily be better for source separation: A lot of
the improvement in F1-score hinges on the fact that the
saliency maps are often perfectly silent in passages that
do not contain vocals, while KAML still extracts parts of
background instruments. To obtain high recall, for pas-
sages that do contain vocals, the post-processed saliency
maps include more instrumental interference than KAML.

6. DISCUSSION

We have explored how to train CNNs for singing voice de-
tection on coarsely annotated training data and still obtain
temporally accurate predictions, closely matching perfor-
mance of a network trained on finely annotated data. Fur-
thermore, we have investigated a method for localizing the
spectral bins that contain singing voice, without requiring
according ground truth for training. We expect the recipe
to carry over from human voice to musical instruments,
if good contrasting examples are available – training on
weakly-annotated data can only learn to distinguish instru-
ments that occur independently from one another in differ-
ent music pieces.

While our results are promising, there are a few short-
comings that provide opportunities for further research.
For one, our networks produce good prediction curves, but
when used for binary classification, we still need to choose
a suitable threshold (e.g., optimizing accuracy, or a preci-
sion/recall tradeoff). We did not find good heuristics for se-
lecting such a threshold solely based on weakly labeled ex-
amples. Secondly, comparing training on 10,000 weakly-
labeled clips against 100 finely-labeled clips is clearly ar-
bitrary. The main purpose in this work was to show that
training from weakly-labeled clips can give high tempo-
ral accuracy at all, which is useful if such weak labels are
easy to obtain. For future work, it would be interesting to
compare the two methods on more even grounds. Specif-
ically, we could investigate if weak labeling, fine labeling
or a combination of both provides the best value for a given
budget of annotator time.

The spectral localization results could be a starting point
for instrument-specific source separation. But as for tem-
poral detection, this route would first have to be com-
pared on even grounds to learning from finely-annotated
or source-separated training data, and its viability depends
on how easily these types of data are obtainable. And in
contrast to temporal detection, it requires further work to
be turned into a source separation method.

Finally, the kind of saliency maps explored in this work
could be used for other purposes: For example, it can be
used to visualize and auralize precisely which content in a
spectrogram was responsible for a particular false positive
given by a network, and thus give a hint on how to enrich
the training data to improve results.

(a) spectrogram of a 30-second test clip containing vocals

0.0
0.5
1.0

(b) corresponding ground truth

(c) spectrogram of corresponding vocal track

0.0
0.5
1.0

(d) predictions of CNN-α (trained on weak labels)

(e) saliency map of CNN-α

0.0
0.1
0.2

(f) summarized saliency map of CNN-α

0.0
0.5
1.0

(g) predictions of CNN-β (trained on predictions of CNN-α)

(h) saliency map of CNN-β

0.0
0.2
0.4

(i) summarized saliency map of CNN-β

0.0
0.5
1.0

(j) predictions of CNN-γ (trained on tanh squashed sal. of CNN-β)

Figure 3: Qualitative demonstration of the self-
improvement recipe in Section 4.3 for a single test clip
(0:24 to 0:54 of “Vermont” by “The Districts”, part of
the MedleyDB dataset [2]). Visit http://ofai.at/
~jan.schlueter/pubs/2016_ismir/ for an in-
teractive version.

7. ACKNOWLEDGMENTS

The author would like to thank the anonymous review-
ers for their valuable comments and suggestions. This
research is funded by the Federal Ministry for Transport,
Innovation & Technology (BMVIT) and the Austrian Sci-
ence Fund (FWF): TRP 307-N23 and Z159. We also grate-
fully acknowledge the support of NVIDIA Corporation
with the donation of a Tesla K40 GPU used for this re-
search. Finally, we thank the authors and co-developers of
Theano [22] and Lasagne [3] the experiments build on.

http://ofai.at/~jan.schlueter/pubs/2016_ismir/
http://ofai.at/~jan.schlueter/pubs/2016_ismir/


8. REFERENCES

[1] S. Andrews, I. Tsochantaridis, and T. Hofmann. Sup-
port vector machines for multiple-instance learning. In
Advances in Neural Information Processing Systems
15, pages 577–584. 2003.

[2] R. Bittner, J. Salamon, M. Tierney, M. Mauch, C. Can-
nam, and J. P. Bello. MedleyDB: A multitrack dataset
for annotation-intensive MIR research. In Proc. of the
15th Int. Soc. for Music Information Retrieval Conf.
(ISMIR), Taipei, Taiwan, Oct 2014.

[3] S. Dieleman, J. Schlüter, C. Raffel, E. Olson, S. K.
Sønderby, D. Nouri, et al. Lasagne: First release., Aug
2015.

[4] J. Foulds and E. Frank. A review of multi-instance
learning assumptions. Knowledge Engineering Review,
25(1):1–25, 2010.

[5] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka.
RWC music database: Popular, classical, and jazz mu-
sic databases. In Proc. of the 3rd Int. Conf. on Mu-
sic Information Retrieval (ISMIR), pages 287–288, Oct
2002.

[6] L. Hou, D. Samaras, T. M. Kurç, Y. Gao, J. E. Davis,
and J. H. Saltz. Efficient multiple instance convolu-
tional neural networks for gigapixel resolution image
classification. CoRR, abs/1504.07947v3, 2015.

[7] S. Ioffe and C. Szegedy. Batch normalization: Accel-
erating deep network training by reducing internal co-
variate shift. In Proc. of the 32nd Int. Conf. on Machine
Learning (ICML), 2015.

[8] J. D. Keeler, D. E. Rumelhart, and W. K. Leow. In-
tegrated segmentation and recognition of hand-printed
numerals. In Advances in Neural Information Process-
ing Systems 3, pages 557–563. 1991.

[9] S. Leglaive, R. Hennequin, and R. Badeau. Singing
voice detection with deep recurrent neural networks. In
Proc. of the 2015 IEEE Int. Conf. on Acoustics, Speech
and Signal Processing (ICASSP), Brisbane, Australia,
Apr 2015.

[10] B. Lehner, G. Widmer, and S. Böck. A low-latency,
real-time-capable singing voice detection method with
LSTM recurrent neural networks. In Proc. of the 23th
European Signal Processing Conf. (EUSIPCO), Nice,
France, 2015.

[11] A. Liutkus, D. Fitzgerald, Z. Rafii, B. Pardo, and
L. Daudet. Kernel additive models for source sep-
aration. IEEE Transactions on Signal Processing,
62(16):4298–4310, Aug 2014.

[12] A. Liutkus, D. Fitzgerald, and Z. Rafii. Scalable au-
dio separation with light kernel additive modelling. In
Proc. of the 2015 IEEE Int. Conf. on Acoustics, Speech
and Signal Processing (ICASSP), Brisbane, Australia,
Apr 2015.

[13] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier
nonlinearities improve neural network acoustic mod-
els. In Proc. of the 30th Int. Conf. on Machine Learning
(ICML), 2013.

[14] M. I. Mandel and D. P. W. Ellis. Multiple-instance
learning for music information retrieval. In Proc. of the
9th Int. Soc. for Music Information Retrieval Conf. (IS-
MIR), Philadelphia, USA, 2008.

[15] M. Mauch, H. Fujihara, K. Yoshii, and M. Goto. Tim-
bre and melody features for the recognition of vocal
activity and instrumental solos in polyphonic music. In
Proc. of the 12th Int. Soc. for Music Information Re-
trieval Conf. (ISMIR), 2011.

[16] Z. Rafii and B. Pardo. REpeating Pattern Extraction
Technique (REPET): A simple method for music/voice
separation. IEEE Transactions on Audio, Speech, and
Language Processing, 21(1):73–84, Jan 2013.

[17] M. Ramona, G. Richard, and B. David. Vocal detection
in music with support vector machines. In Proc. of the
2008 IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing (ICASSP), pages 1885–1888, 2008.

[18] J. Schlüter and T. Grill. Exploring data augmentation
for improved singing voice detection with neural net-
works. In Proc of the 16th Int. Soc. for Music Informa-
tion Retrieval Conf. (ISMIR), Malaga, Spain, 2015.

[19] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep in-
side convolutional networks: Visualising image clas-
sification models and saliency maps. In Workshop of
the 2nd Int. Conf. on Learning Representations (ICLR),
Banff, Canada, 2014.

[20] P. Smaragdis and J. C. Brown. Non-negative matrix
factorization for polyphonic music transcription. In Ap-
plications of Signal Processing to Audio and Acoustics,
2003 IEEE Workshop on., pages 177–180, Oct 2003.

[21] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M.
Riedmiller. Striving for simplicity: The all convolu-
tional net. In Workshop of the 3rd Int. Conf. on Learn-
ing Representations (ICLR), San Diego, USA, 2015.

[22] Theano Development Team. Theano: A Python frame-
work for fast computation of mathematical expres-
sions. arXiv e-prints, abs/1605.02688, May 2016.

[23] M. D. Zeiler and R. Fergus. Visualizing and under-
standing convolutional networks. In Proc. of the 13th
European Conf. on Computer Vision (ECCV), pages
818–833, Zürich, Switzerland, 2014.

[24] Z.-H. Zhou and M.-L. Zhang. Neural networks for
multi-instance learning. Technical report, Nanjing Uni-
versity, China, Aug 2002.


	1. Introduction
	2. Related Work
	3. Ingredients
	3.1. CNN-based Singing Voice Detection
	3.2. Multiple-Instance Learning
	3.3. Saliency Mapping

	4. Recipe
	4.1. Naive Training
	4.2. Overshoot Correction
	4.3. Self-Improvement

	5. Experiments
	5.1. Datasets
	5.1.1. Training and Development
	5.1.2. Testing

	5.2. Temporal Detection Results
	5.3. Spectral Localization Results

	6. Discussion
	7. Acknowledgments
	8. References

