Towards an Alternative Semantics for FIPA ACL *

Mirko Viroli, Andrea Omicini
DEIS, Universita degli Studi di Bologna,
via Rasi e Spinelli 176, 47023 Cesena (FC), Italy
email: {mviroli,aomicini}@deis.unibo.it

Abstract

We show how a formal framework for ob-
servation in computer systems can be used
for the specification of agent’s observable
behaviour, and provide for an architecture-
independent approach alternative to the one
currently used for FIPA ACL. Since the
agent architecture induced by our model
is more abstract than the one assumed by
FIPA, our specification tool is likely to be
applicable to a wider set of agents’ architec-
ture, thus better supporting FIPA standard-
isation aims. Some application examples are
shown, describing how the current semantics
of FIPA ACL could be adapted and specified
within our framework.

1 Motivation

Agent-based systems are typically highly dynamic and
complex systems, which often do not allow their be-
haviour to be fully modelled. On the one hand, each
agent can encapsulate a complicated machinery, e.g.
supporting intelligent behaviours, planning, and infer-
ence activities. On the other hand, the agent abstrac-
tion is often exploited as a mean for dealing with the
unknowability of software components — that is, as
a wrapper for legacy systems whose behaviour is no
longer completely known, but which should be any-
way integrated within an existing multi-agent system
(MAS).

As a result, a crucial issue in agent-based systems
is to abstract away from agent’s internal behaviour,
while associating a precise semantics to their commu-
nicative acts, in terms of both how they affect the
receiving agent, and by which means the sender agent
emits them. In general, such a communication lan-
guage’s specification should make it possible to un-
derstand the behaviour of a MAS by simply observing
its communication events and abstracting away from
the inner details of each individual agent’s dynamics.

One of the most relevant examples of this method-
ology is the specification of the FIPA Agent Commu-
nication Language (ACL) [FIPA, 2000], which focuses

*This work has been partially supported by MIUR, and
by Nokia Research Center, Burlington, MA, USA.

on the relations between agents’ communications and
agents’ mental states [Sadek, 1992]. Each FIPA com-
municative act’s specification is equipped by a feasi-
bility precondition (FP) that must hold for the sender,
and a rational effect (RE) that the sender may sup-
pose to occur on the receiver (even though such an ef-
fect is not actually mandatory for the receiver). Both
these specifications, as well as the actual messages’
content, are given in terms of a quantified, multi-
modal logic with modal operators for beliefs (B), de-
sires (D), uncertain beliefs (U), and intentions (I),
called Semantic Language (SL) [FIPA, 2000], which
originated from the work on the BDI framework [Co-
hen and Levesque, 1990]. Despite FIPA does not man-
date any actual architecture for agents, FIPA ACL
semantics implicitly assumes that the agent’s observ-
able behaviour can be interpreted in terms of a BDI-
like architecture, which can be pictorially represented
as shown in Figure 1. Notice that adhering to ACL’s
semantics is mandatory for an agent using the FIPA
ACL communicative acts in a FIPA-compliant envi-
ronment.

This specification approach may provide a suitable
support for standardising the cooperation amongst
BDI-agents. However, it might turn out to be an
ineffective tool for the agents built upon different
frameworks — such as agents wrapping legacy systems,
agents built as simple active objects, or agents with
limited (or even no) intelligent behaviour living on
environments such as mobile devices, and so on. In
all these cases, which are definitely relevant means for
building complex software systems in the Internet era,
it is mostly unclear whether the current specification
may provide some help in the design, implementation,
and validation of the agents’ communications.

Inadequacies of current FIPA ACL specification
have been argued in previous works as well: [Pitt and
Mamdani, 1999; Singh, 1998; Wooldridge, 1998] to cite
some. The general idea is that directly relating agent’s
communications to agent’s mental states — whose dy-
namics are typically described only through rather
complex modal logics — seems generally to poorly sup-
port a true engineering approach to the construction
of MASs. Clearly, choosing a given model for an
agent’s observable behaviour, and using it as the core
paradigm for defining a standardised specification, is

D <:> B |le—»
- RE
agent
| >
internal
machinery 3 » FP
<::> U <«

Figure 1: Agent abstract architecture implicitly as-
sumed by FIPA Semantic Language specification

likely to implicitly promote implementors to rely on
the corresponding agent’s actual architecture. We be-
lieve that choosing the ACL specification model is
crucial for the standardistation aims of FIPA ACL.
So, in this paper we develop on the idea of modelling
an agent’s observable behaviour in an abstract and
architecture-independent way, promoting an alterna-
tive approach for the specification of FIPA ACL.

In [Viroli et al., 2001] we described the observation
issue within computer systems in general, by provid-
ing a common ontology and a formal framework as its
conceptual and scientific foundations. While the on-
tology is meant to characterise the paradigms used to
observe a generic software component’s status, the for-
mal framework provides a tool for precisely specifying
these observation patterns, and for describing a soft-
ware component’s interactions by interpreting them as
related to observation [Viroli and Omicini, 2001]. The
core idea of this approach is to model a software com-
ponent as an observable knowledge source, interact-
ing with others by providing and exploiting services
involving the observation of the source’s status and
its dynamics. On the one hand, this model abstracts
away from any agent’s definition, so it provides a uni-
form framework for the many different agent’s mod-
els, architectures, and implementations currently ex-
isting. On the other hand, our model should be effec-
tive also whenever agentification is exploited to tackle
with legacy systems. We claim that this framework is
suitable for reasoning about an agent’s observable be-
haviour since it is grounded on top of an ontology for
observation, so as to take core concepts related to ob-
servation as first-class paradigms of the model [Viroli
and Omicini, 2001].

The remainder of the paper is organised as follows.
Section 2 presents the observation framework for mod-
elling agents’ observable behaviour, by describing an
agent abstract architecture and the corresponding op-
erational semantics. Section 3 elaborates on the idea
of exploiting the observation framework to the specifi-
cation of FIPA ACL communicative acts. This is done
by re-interpreting current specification and providing
a new semantics grounded on the formal framework
introduced. Whereas general guidelines are outlined,
the specification provided here sticks to a small yet rel-
evant subset of FIPA ACL. Section 4 discusses related
works, and provides perspectives on future directions
in this research.

2 Modelling Agents as Observable
Sources

The ontology for observation presented in [Viroli et al.,
2001] interprets computer systems as made of three
kinds of entity: observable sources, observers, and co-
ordinators. Sources are able to provide their knowl-
edge and services to interested observers by manifest-
ing an observable behaviour through chunks of infor-
mation delivered in form of messages. Coordinators
are entities that can configure sources so as to pro-
duce particular kinds of manifestation to observers,
namely by conditioning the sources’ observable be-
haviour. Observers and coordinators can be consid-
ered as the ends of the observation patterns, so they
can be easily modelled as black-box entities repre-
sented in terms of their outputs — coordinators pro-
ducing conditionings — and inputs — observers receiv-
ing manifestations. On the other hand, sources are
the core of the observation pattern, so a source’s inner
state and dynamics are worth to be explicitly repre-
sented, at least as far as they affect the way in which
the source participates to the observation pattern. As
a result, the core idea of our framework based on ob-
servation is to represent components as sources and
their interactions in terms of the observation pattern
[Viroli and Omicini, 2001].

2.1 The Source Abstract Architecture

On top of this ontology we define an abstract archi-
tecture for agents interpreted as (observable) sources,
focussing on representing the agents’ interactions with
their environment and their relation to the agents’ sta-
tus changes.

An agent is conceptually divided in two parts, the
agent (observable) core and the agent internal ma-
chinery, as show in Figure 2. The agent’s core rep-
resents the part of the agent directly involved in how
the agent’s behaviour can be perceived by and can af-
fect its environment. In order to clearly represent how
the agent internal machinery may affect the observable
behaviour, the core is itself divided in two parts: po-
sition (P) and configuration (C). The agent’s position
represents the part of the agent’s status affecting its
observable behaviour; the agent’s configuration is the
part keeping track of the interactions the agent is in
charge of handling.

According to this structure, the agent’s dynamics
can be described as follows. The agent is said to be
in equilibrium when its core does not change. Be-
cause of the architecture shown in Figure 2, this does
not model agent’s inactivity, but rather the internal
machinery’s activity not perceivable by the environ-
ment. Equilibrium can be broken in one of two ways.
On the one hand, a coordinator entity — e.g. another
agent — can change the agent’s configuration through
a conditioning (Cnd), modelling the agent receiving a
message. On the other hand, the agent can perform
a so-called spontaneous move (Spn), representing the
internal machinery’s activity causing a change on the
place. Spontaneous moves are used to model the agent
proactively willing to manifest some kind of observ-

coordinators

Cnd@
Mnf@

observers

agent
internal
machinery

agent observable core

Figure 2: Agent abstract architecture in the observa-
tion framework

able behaviour. As a result of one of these two events,
the agent enters in motion and performs an observa-
tion action, that is, it evaluates the current state of
place and configuration, producing: (i) a change on
their state — namely a place update (Pu) and a config-
uration update (Cu) — and (ii) a set of messages sent
out to some observers — called the agent’s manifesta-
tions (Mnf). This evaluation is performed by a logical
agent’s component called the core engine (Eng). In
particular, the evaluations fired as response to a con-
ditioning corresponds to manifestations of a reactive
behaviour, whereas those due to spontaneous moves
corresponds to a proactive behaviour. After process-
ing an observation action, the agent returns in equi-
librium waiting for a new conditioning or spontaneous
move.

2.2 Notation

Given any set X, ranged over by variable z by default,
the set of multisets over X is denoted by X, and is
ranged over by variable Z. The union of two multisets
is represented through the binary operator ‘|, as in
Z =7 |z, while the void multiset is denoted by e.

Given any set X, symbol Ly is used to denote
an exception value in set X defined as X U {Lx}.
Variable Z is automatically defined that ranges over
set X). The set of functions associating elements of
the set Dom to elements of the set Range is denoted
by Dom +— Range; function updating is defined by
the operator f[d — r], defined as f \ {(d — ') €
f}u{d — r}, which denotes a function obtained from
f by updating (or adding) f(d) to r.

A finite sequence (or tuple) of elements x1, .., %y, is
represented by the symbol {z1, .., z,,) ranging over the
set (X1,.., Xn) = X1 X..x X,. A record R containing
a tuple of sets (X1, .., X,), each tagged by a different
label [y,...,l,, of any sort, is denoted by the syntax
(l1 : X1, ., 1y : X)) ranged over by elements r = (I :
Z1, .y ln t @p). R is defined as the function ({L1} —
X1) U...U ({ln} = Xn), so that T(lz) =7, =T; € X;.

In this paper, we exploit the formal framework of
transition systems, which is widely used in the field
of process algebra [Bergstra et al., 2001] to specify
the operational semantics of interactive systems. A
transition system over set X is a triple (X, —, Act)
where Act is called the set of actions and -C X x
Act x X is a relation. The occurrence of (x,act,z')
in — means that the software component of interest

may move from state x to state ' processing action
act — modelling either an internal computation or an

interaction with environment —, and is represented by

. act
notation z — z'.!

2.3 Operational Semantics

In this section we provide the operation semantics of
the agent abstract architecture described in Figure 2.
The specification of an agent’s observable behaviour
is given in terms of a triple (P,C,E).

P = (P,Spn, PU, —spn, —>py) defines the struc-
ture of the agent’s place and its dynamics through
spontaneous moves and place updates. Set P defines
the states of the agent’s place, and is briefly referred
to as the set of places; Spn is the set of spontaneous
moves and PU is the set of place updates. —sp,, de-
fines the effects of spontaneous moves on agent’s place,
so transition system (P, —spn, Spn) gives semantics

to notation p ﬂ)gpn p' — representing place p mov-
ing to p' due to spontaneous move spn. Analogously,
—py, defines the effects of place updates to places, so
that transitions system (P, —p,, PU) gives seman-

tics to notation p 2= p,, p' — representing place p mov-
ing to p’ due to place update pu.

C =(C,Cnd, CU,—>¢pg, —rcy) defines the struc-
ture of the agent’s configuration and its dynamics
through conditionings and configuration updates. Set
C defines the states of the agent’s configuration, and
is briefly referred to as the set of configurations; Cnd
is the set of conditionings and CU is the set of con-
figuration udpates. Analogously to the case of places,
—>cng and —>¢, define the effects of conditionings
and configuration updates by means of transitions sys-
tems {C, —¢nd, Cnd) and (C, —>¢q, CU), giving se-

. . cnd cu
mantics to notations ¢ —¢cna ¢ and ¢ —¢, .

The evaluation of spontaneous moves and condition-
ings is defined by the third element & = (w, p), where
7 and p are relations of the kind:

7w C (P,C,Spn) x (PU,,CU,, Mnf)
p C (P,C,Cnd) x (PUL,CU,L, Mnf)

7 accepts a triple (p, ¢, spn) where (p,c) models the
current equilibrium state — also denoted by p[c| —
and spn is the spontaneous move firing the evalua-
tion. p accepts a similar triple (p, ¢, cnd) representing
equilibrium state p [¢| and conditioning end. Then,
both relations non-deterministically associates to that
triples tuples of the kind (pu, cu, mnf). There, pu and
cu represent place and configurations updates that are
applied to the agent’s core as a result of evaluation —
with L py and L ¢y denoting that no changes affect
place and configuration, respectively. mnf represents
the multiset of manifestations sent out due to the eval-
uation. Tuple (p, ¢, spn, pu, ¢, mnf) occurring in 7 is
denoted by symbol (p, ¢, spn) < > (pu, cu, mnf), and
analogously, (p, ¢, cnd, pu, ¢, mnf) occurring in p is
denoted by (p, ¢, end) < >, (pu, cu, mnf).

'Here, relation L ris supposed to hold by default.

Given an agent specification (P,C,E), the corre-
sponding operational semantics (its interactive be-
haviour over time) is given by transition system Obs:

Obs = (P x C,—ops, {cnd > mnf,spn ¢ mnf})

Obs describes the core engine’s behaviour, that is, how
an agent’s equilibrium state — also called position —
evolves through two kinds of interaction with the en-
vironment: the agent spontaneously sending manifes-
tations (symbol ¢), or the agent reacting to a con-
ditioning sending manifestations (symbol). This
behaviour is described by the rules:

spn. o~ o~ —F
po ~spn P (P, co, spn) < B (pl, U, mnf)
P Epup o —cuc

mnf
po [co | mmbsp [c]
<p07 Cla C’I’Ld) 4,\[>P<m7 Eﬂa mnf)

cnd, ,

Co —Cnd C __
[; cu,

C —Cy C

Po —Pu P

cnd > mnf

polco] ———opsp[c]

Transitions can be of two kinds:
mnf
pofco) 22T opsplc)

cnd > mnf

polco] ——onsp[c]

In the former case, the agent in position pg [¢o | moves
to position p[c¢]| producing manifestations mnf. In
particular, as the place changes due to spontaneous
move spn, relation w provides (i) a place update lead-
ing to p, (ii) a configuration update leading to ¢, and
(iii) a set of manifestations mnf. In the latter case, the
agent in position pg [¢p | receives conditioning cnd,
thus moving to position p[c¢| and producing mani-
festations mnf. In particular, as the configuration is
conditioned by cnd, relation p provides (i) a place up-
date leading to p, (ii) a configuration update leading
to ¢, and (iii) a set of manifestations mnf.

3 FIPA ACL in the observation
framework

In this section we provide a semantics for a small sub-
set of FIPA ACL, aiming at providing some guide-
lines and hints on how it can be specified in a more
architecture-independent way. First of all, since here
we try to abstract away from the agent’s architecture,
we avoid to represent those details of the FIPA ACL
semantics that strictly relates to the agent’s mental
state. Roughly speaking, we stick to the operational
aspects of such details.

The two basic communicative acts we consider are
INFORM and REQUEST. Along with CONFIRM
and DISCONFIRM they can be used to define any
other act — the latter two not considered here because
they are just variations of INFORM involving a differ-
ent mental state in the sender, namely what the sender
believes the receiver knows. In our model, both IN-
FORM and REQUEST are sent as results of a sponta-
neous move in the agent, thus abstracting away from

their actual cause. While INFORM carries a generic
fact f € F, modelling some information the agent may
carry — e.g., in SL a proposition to believe or not —,
REQUEST carries a generic action a € A the agent
can be able to internally execute. We consider that
F = S x V is an association between state-variables
s € S and values v € V. Receiving an INFORM or
a REQUEST through a conditioning causes a change
on the agent’s place, namely starting either an inter-
nal action execution or evaluating how to consider the
fact (or whether to do so or not), which we uniformly
refer to as a processing.

To this simple behaviour we add the communicative
acts QUERY-REF and REQUEST-WHEN, which we
use as paradigmatic examples of interaction patterns
deserving a different treatment. On the one hand, a
QUERY-REF specifies a state-variable s for which a
corresponding value v € V is requested. Instead of re-
lying on the REQUEST/INFORM pattern, QUERY-
REF will be handled as a conditioning immediately
reading the value from the agent’s place and then
sending an INFORM message — which in the observa-
tion framework is a well defined pattern called direct
reactive observation [Viroli et al., 2001]. This exam-
ple should generalise the case in which a part of an
agent is directly observable: allowing other entities to
access it is generally easier and less expensive for the
agent, requiring no special processing or deliberation.
Furthermore, it also shows how to handle the case in
which it is necessary to constraint an agent to answer
to a message.

On the other hand, REQUEST-WHEN specifies an
action a € A and a condition, here expressed as a fact
f € F the receiving agent may includes or not: only
when the condition is true the action is executed. This
is explicitly modelled as (i) the corresponding condi-
tioning that adds the request in the agent’s config-
uration, (4) such request remaining there until the
condition becomes true, and (iii) then causing the
action to be executed as in the case of REQUEST
— the whole pattern referred to as an indirect one-
time-proactive observation [Viroli et al., 2001]. This
example should emphasise how the agent’s configura-
tion can be used to explicitly represent the interactions
the agent is in charge of handling — e.g., information
on the status of these interactions within their com-
munication protocol (following the protocol-oriented
approach discussed in [Pitt and Mamdani, 1999)).

The whole behaviour can be formalised in our
framework as follows. Agents identifiers are denoted
by variables i, j. Communicative acts are elements
ca € Ca somewhat resembling actual FIPA ACL syn-
tax, which can be either req(i, f,a), inf (i, f), and
qry (i,s), the former elements — also denoted by vari-
able ca, — modelling a REQUEST if f is the exception
value Lp, or a REQUEST-WHEN otherwise. Vari-
able a € A ranges over the set of actions an agent can
execute. Manifestations are elements <¢,ca> where 3
is the sending agent. The set of places is defined as:

P = (a:<i,ca>,w:<i,ca> 0:2")

Given a place p € P, (i) the component p, de-

P spn_chg (F") Spn p[a . F,] p spn_proc Spn p[a s .] spn_issue(<i,ca>) Spn p[(“J . m] (SPN)
pu_proc(<i,ca>) Pu p[a — pa|m] » pursty Pu p[w — .] p pursty Pu p[a — .] (PU)
cnd(<i,ca>) end € c cu-add(ca,) u cap|c cu-drop(ca,) Cu €~ m (CND’CU)
f =1lr V f eEF (REQ)
(p, ¢, cnd(<i,req(i, f,a)>)) < >,(pu_proc(<i,req(i, f,a)>), Lcy,e)
(p,c,cnd(<i,req(i, f,a)>)) < >,{(Lpy, cuadd(<i,req(i, f,a)>),e)
(s,0) € po (QRY)
(p, ¢, cnd(<i,qry(j,s)>)) <A >,{(Lpy, Lpy,<j,inf (i, (s, v))>)
(p, ¢, spn_issue(<i,ca>)) < >, (purst,, Loy, <i,ca>) (SND)
(p, ¢, spn_proc) < > (pursty, Lou,e) (PRC)
<i,cap> = {<i,req(j,f,a)>€c: feF'} (CHG)

(p, ¢, spn_chg(F')) < > (pu_proc(<i,ca,>), cudrop(<i,ca,>),e)

Figure 3: Formal semantics

notes the requests to be processed, (i) p, the mes-
sages the agent proactively decided to send out,
and (#i) p, the observable status, modelled as a
set of facts. Spontaneous moves are either (%)
updates in the observable part spn_chg(F') (with
F' C F), (i) events denoting the start of process-
ing spn_proc, and (iii) the issuing of messages to be
sent spn_issue(<i,ca>). Place updates involve reset-
ting components w and a in the place, orderly through
purst, and pu_rst,, and adding processing requests
in a through pu_proc(<i,ca>).

The set of configurations is C' = ca,: thus at
any time the configuration contains a multiset of
pending requests REQUEST-WHEN waiting to be
served. Conditionings are of the kind cnd(<i,ca>),
and configuration updates are either cu.add(ca,)
cu_drop(ca,), respectively adding a request or drop-
ping a set of requests from the configuration. The
simple semantics of spontaneous moves (—spn), place
updates (—p,), conditionings (—¢nq), and configura-
tion updates (—¢y), is formally reported in the upper
side of Figure 3.

In the lower side, instead, we reported the ac-
tual evaluation semantics, that is, element & of the
specification. Rule (REQ) describes the acceptance
of a REQUEST communication act or a satisfiable
REQUEST-WHEN, which simply inserts the action
in the @ component of the place. Rule (REQW) han-
dles the case where a REQUEST-WHEN is added to
the configuration for it is not currently satisfiable.
Rule (QRY) describes the acceptance of QUERY-
REF, causing an INFORM to be immediately sent.

Rule (SND) describes the behaviour of an agent
proactively sending messages outside, which is fired
by spontaneous move spn_issue(.) also causing com-
ponent w to be reset through place update pu_rst,,.

Proactive rule (PRC) is about the agent consuming
processing requests currently pending in the place,
producing no manifestations. Proactive rule (CHG)
handles the case where, due to a state change, requests
pending in the configuration are served.

The communicative acts not presented here can be
managed similarly, e.g. acts CANCEL, REQUEST-
WHENEVER, SUBSCRIBE following the examples
reported in [Viroli and Omicini, 2002].

4 Discussion and Related Works

In this paper we define a framework for reason-
ing about an agent’s observable behaviour in an ab-
stract and architecture-independent way. This is
done by defining an abstract and parametric machine
grounded on top of the observation ontology presented
in [Viroli et al., 2001], and defining its operational
semantics through a transition systems-based specifi-
cation. The suitability of this model for agent-based
systems is studied in [Viroli and Omicini, 2001], where
typical properties of agents such as reactivity, proac-
tiveness, autonomy, and social ability are accounted
for in the observation framework. In this paper, in-
stead, we focus on defining a semantics for FIPA ACL
in the observation framework, by describing through
an operational semantics which conditions cause a
communicative act to be sent and what is the effect on
the receiver, similarly to the existing FIPA ACL spec-
ification. Most of these ideas are appliable to other
ACL as well, such as KQML [Labrou and Finin, 1997].
Here we concentrated on the case of FIPA, since we
believe the motivations of our work are fairly crucial
for an organisation aiming at defining a standardisa-
tion of agent-based systems.

Critics to current FIPA ACL specification and dif-
ferent semantics are introduced also in other works.

In [Pitt and Mamdani, 1999], it is argued that the
semantics of a standardised ACL, which in the case
of FIPA only concerns intentional aspects internal to
each agent, should instead be more protocol-oriented
(as claimed also in [Singh, 1998; Wooldridge, 1998)).
In their proposal each communicative act is seen in the
context of a protocol, and therefore it is possible to as-
sociate to each message receiving a corresponding mes-
sage sending the agent is obliged to perform. More-
over, each agent has to take into account the current
state of the protocols it is currently involved in. We
believe that the framework we described in this paper
can indeed be a suitable basis for specifying a protocol-
oriented semantics to communications as well, since it
easily allows both to models the required causality re-
lations between messages receiving and sending (such
as in our specification of QUERY-REF), as well as
the concept of a message as part of a protocol (exem-
plified by our management of REQUEST-WHEN) —
thanks to the powerful abstraction of the agent’s con-
figuration. However, providing more details on this
issue and a complete specification in the observation
framework is left as future work.

Another well known approach to modelling an agent
communication language has been developed by van
Eijk et al. In [van Eijk et al., 2000], for instance,
a programming language is defined where agents are
characterised by their mental state — including belief
states and a goal state — and where agent communi-
cations follow the rendezvous schema, a version of the
classic remote procedure call (RPC) where the target
processes requests using an interleaved pattern. Then,
the semantics of the language is defined through an op-
erational semantics, describing how agents evolve by
internal computations (such as believes update) and
through communications. The aim of that work, how-
ever, is not to reconsider agent communication lan-
guages, but rather to give an operational semantics to
existing ones. From a more technical point of view,
the main difference with respect to our approach is
that the observation framework relies on a parametric
machine — i.e., the abstract architecture — which can
be specialised to different behaviours, the specification
of FIPA ACL outlined here being just one of them.

One of the most important applications to an ACL
specification is as a reference for implementors, thus,
it is crucial to provide a validation test stating if an
agent implementation actually conforms to the ACL
specification. However, there are serious doubts about
finding an adequate conformance test for current FTPA
ACL specification. While this is considered a future
work by FIPA organisation, Wooldridge argued it is
likely that such a specification is not verifiable at all
[Wooldridge, 1998].

Currently, we have not faced the problem of test-
ing conformance in our framework, however, we ar-
gue that this should be easier than in a specification
based on SL language. On the one hand, as in [Viroli
and Omicini, 2001; 2002] we showed how the obser-
vation framework is generally suitable for modelling
an agents’ observable behaviour independently from
its architecture. On the other hand, modelling an in-

teractive software component through an operational
semantics is one of the classical approaches on which
existing techniques for validating interaction protocols
are based on — e.g. in the field of process algebras
[Bergstra et al., 2001]. Addressing the conformance
issue, and analising in detail the specification of FIPA
ACL and their adaptation to the observation frame-
work are our main research directions in this field.

References

[Bergstra et al., 2001] Jan A. Bergstra, Alban Ponse, and
Scott A. Smolka, editors. Handbook of Process Algebra.
North-Holland, 2001.

[Cohen and Levesque, 1990] Philip R. Cohen and Hec-
tor J. Levesque. Intention is choice with commitment.
Artificial Intelligence, 42(2-3):213-261, 1990.

[FIPA, 2000] FIPA.FIPA communicative act library spec-
ification. http://www.fipa.org, 2000. Doc. XC00037H.

[Labrou and Finin, 1997] Yannis Labrou and Tim Finin.
A proposal for a new KQML specification. Technical
Report TR-CS-97-03, University of Maryland Baltimore
County, 1997.

[Pitt and Mamdani, 1999] Jeremy Pitt and Ebrahim
Mamdani. A protocol-based semantics for an agent com-
munication language. In Thomas Dean, editor, 16th
Intl. Joint Conf. on Artificial Intelligence (IJCAI °99),
pages 486-491, Stockholm, Sweden, 1999. Morgan Kauf-

mann.

[Sadek, 1992] M. David Sadek. A study in the logic of in-
tention. In 8rd Conf. on Principles of Knowledge Rep-
resentation and Reasoning, pages 462-473, Cambridge
(MA), USA, 1992.

[Singh, 1998] Munindar P. Singh. Agent communication
languages: Rethinking the principles. IEEE Computer,
31(12):40-47, 1998.

[van Eijk et al., 2000] Rogier M. van Eijk, Frank S.
de Boer, Wiebe van der Hoek, and John-Jules Ch.
Meyer. Operational semantics for agent communication
languages. In Frank Dignum and Mark Greaves, editors,
Issues in Agent Communication, volume 1916 of LNAI,
pages 80-95. Springer, 2000.

[Viroli and Omicini, 2001] Mirko Viroli and Andrea
Omicini. Multi-agent systems as composition of observ-
able systems. In WOA 2001 — Dagli oggetti agli agenti:
tendenze evolutive dei sistemi software, Modena, Italy,
4-5 September 2001. Pitagora Editrice Bologna.

[Viroli and Omicini, 2002] Mirko Viroli and Andrea
Omicini. Specifying agents’ observable behaviour.
In Ist Intl. Joint Conf. on Autonomous Agents and
Multi-Agent Systems (AAMAS 2002), Bologna, Italy,
15-19 July 2002. ACM.

[Viroli et al., 2001] Mirko Viroli, Gianluca Moro, and An-
drea Omicini. On observation as a coordination pattern:
An ontology and a formal framework. In 16th ACM
Symposium on Applied Computing (SAC 2001), pages
166-175, Las Vegas (NV), 11-14 March 2001. ACM.

[Wooldridge, 1998] Michael Wooldridge. Verifiable seman-
tics for agent communication languages. In Yves De-
mazeau, editor, 8rd Intl. Conf. on Multi Agent Systems
(ICMAS ’98), Paris, France, 4-7 July 1998. IEEE Press.

