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Abstract

Simulation methods offer an experimental
approach to analyzing the dynamic behav-
ior of multi-agent systems. If agents are
specified in the modeling language and be-
come part of the simulation, the simulation
system has to support reflection, i.e. mod-
els which assess and access their own struc-
ture and behavior. In JAMES, a Java-based
agent modeling and simulation environment,
models of dynamic systems including agents
are described as composite, time triggered,
and reflective state automata that are able
to change their own structure and behavior.
Often agents are tested by interacting with
the simulation environment as a kind of black
box. To support experimenting with agent
models and agents, equally, in JAMES mod-
els can serve as interfaces. During executing
the agent, these models reflect the agent’s be-
havior projecting it into the simulation. This
type of interaction is facilitated, as will be
shown, with the mobile agent system MOLE,
if the agent system is implemented in JAVA,
because in this case the mechanisms of re-
flection that JAVA offers can be utilized.

1 Introduction

The more complex applications of agents become in
terms of number of agents, nodes to be visited, or
deliberation capabilities, the more the effort will pay
to thoroughly specify agents and analyze the perfor-
mance of their different planning, cooperation or mov-
ing strategies in virtual environments. As agents are
aimed to function in open dynamic environments, sim-
ulation methods have been employed for analyzing the
agent’s behavior [7; 10; 9; 4; 5].

The ability of agents to adapt their own interac-
tion, composition and behavior pattern challenges the
expressiveness of modeling and simulation formalisms
(e.g. [2; 8; 17]). To support the modeling of agents the
simulation and its underlying formalism have to sup-
port reflection, i.e. models which assess and access
their own structure and behavior. Among the formal

approaches to discrete event simulation the DEVS for-
malism has been used as a basis for exploring possi-
bilities and implications of integrating and expressing
variable structures since the 80ties [20]. Whereas most
discrete event simulations pertain to events and pro-
cesses as elementary units, DEVS describes dynamic
systems as time and event triggered state automata, a
perception which coincides with an acknowledged in-
terpretation of agents. JAMES, a Java-Based Agent
Modeling and Simulation Environment, adds reflec-
tion to the DEVS formalism to capture the notion of
self aware and self manipulating agents.

The implementation and application of dynamic
test scenarios for multi-agent systems requires con-
siderable modeling effort. Typically, the agent is not
modeled in its entirety. E.g., one of the first simulation
systems for agents allowed to plug code fragments, or
single modules into the skeleton of an agent model [11].
To reduce the modeling effort agents are sometimes
treated as external source and drain of events [13;
1] with the simulation being interpreted as black box.
The loose coupling of simulation and agents saves the
user the extra effort to specify the agent in the model-
ing language of the simulation system. However, typi-
cally more effort is required to analyze the interaction
and actions of agents in the virtual world. Agents
are not explicitly represented in the test environment
and their behavior can only be analyzed based on the
induced effects.

On the one hand, one would like to have the
possibility to execute agents as they are switching
arbitrarily between an execution in the real envi-
ronment and in the virtual test environment [19;
14]. On the other hand, one would like to have agents
specified as integral part of the experimental setting
and as such perceivable and controllable. It would
help to focus the view on relevant aspects and changes
within the agents.

To meet both necessities the idea of representatives
is introduced in JAMES [19]. A discrete model is as-
sociated with the actual agent which represents the
agent and reflects the behavior of the agent which
runs concurrently to the simulation. The potential
of this idea we will explore with the mobile agent sys-
tem MOLE [3] which is implemented in JAVA. The use
of JAVA reflection methods facilitates plugging MOLE
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Figure 1: An agent model moving between two locations

agents into JAMES and introduces the third kind of
reflection we wish to explore in simulating and testing
agents.

2 Composite, reflective time triggered
automata

JAMES is based on DEvVS [20] which belongs to the
formal and general approaches to discrete event sim-
ulation. The model design is coined by a hierarchical,
compositional construction of models. It distinguishes
between atomic and coupled models. The role of the
coupled model is to define the interaction structure
between its components. Coupled models have no be-
havior of their own. The behavior of an atomic mod-
els is defined by transition functions, an output func-
tion, and a time advance function which determines
how long a state persist “per se”. An internal transi-
tion function dictates state transitions due to internal
events, the time of which is determined by the time
advance function. The external transition function is
triggered by the arrival of external inputs. This allows
the modeler to describe agents and their environment
as time-triggered composite automata.

As do other formal approaches to discrete event
simulation, DEVS presupposes static model structures
and does not provide means for reflection; both are
crucial in modeling and simulating agents. To support
models that are able to assess and access their com-
position, interaction, and behavior structure from an
agent’s perspective, a formalism has been developed
which expresses agents as reflective, time-triggered au-
tomata [17] (Figure 2). As the coupled model holds
the information about composition and interaction be-
tween components, a change of composition or interac-
tion, even though induced by an atomic model, takes
effect at the level of the coupled model. The formal-
ism shall not be described in more detail in this paper
(see [17]).

Executing the model according to the user’s spec-
ification and the given initial situation is the task of
a discrete event simulator. Each model is interpreted
and executed by a tree of processors which reflects
the hierarchical compositional structure of the model.
Each of the processors is associated with a component
of the model and responsible for invoking the compo-
nent’s methods and controlling the synchronization by
exchanging messages with the other processors of the

processor hierarchy. The change of model structure is
reflected in an according change of the processor tree.

Based on this processor tree different distributed,
parallel execution strategies have been implemented
in JAMES. Whereas one adopts a conservative strat-
egy where only events which occur at exactly the same
simulation time are processed concurrently, two other
strategies split simulation and external processes into
different threads and allow simulation and delibera-
tion to proceed concurrently by utilizing simulation
events as synchronization points. The performance
of the different strategies to test planning agents are
compared in [18].

2.1 An Example - Modeling Mobility

Modeling the movement of agents in JAMES as an ex-
ample for variable structure models requires the uti-
lization of the different transition functions, and the
output function of the atomic model [16]. The process
of moving comprises adding and removing model com-
ponents from coupled models (Figure 1), modifying
the interaction structure within the coupled models,
and, in addition, the possibility of sending references,
i.e., names or model components within messages.

In the scenario depicted in Figure 1 the model com-
ponent that represents a client C requests a task from
another model component that represents an agent
A. The agent model responds by invoking its exter-
nal transition function and decides to move to the
location L2. Both locations L1, L2 are represented
by coupled models. After some simulation time has
elapsed as determined by the time advance function,
the agent model charges its port with a request to mi-
grate and thus initiates the migration. Output func-
tion and internal transition function are intrinsically
connected; they form a unity and are invoked at the
same simulation time. This offers the opportunity to
update the state of the agent model at the moment
at which the migration starts. The model ceases to
exist within the former location L1. The structure
of the coupled model L1 has changed. The time the
movement will take to complete depends on the model
which is located on the path towards the destination,
i.e. Channel. The Channel that connects both loca-
tions L1 and L2 might be modeled as a simple atomic
model, a coupled model or even represent an entire
network simulation system.

Finally, the message including the agent A will reach
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Figure 2: The formalism behind JAMES that allows models to change their own state and behavior pattern and
to interact with other models and with external processes.

its destination S. The receiver S will be activated via
its external transition function and will be asked to
insert the agent model into the new location L2. After
inserting the agent into its new location, S will wake
up the moved agent by sending a welcome message.
At that moment the external transition function of
the agent model serves as an entry point to resume
processing according to the input, code, and state of
the agent.

In the above paragraphs we sketched a single sim-
ulation run based on modeling agents and their envi-
ronment entirely in JAMES. Since both, i.e. mobile
agents and their environment, have been modeled the
modeling formalism served as a specification language.
In the example the agent model only represents a mo-
bile agent but has not been connected to an agent or
a part of agent code running.

2.2 Interface to External Processes

In the above example a communication with external
processes does not take place. Agents and their virtual
environment are entirely modeled in JAMES. To test
planning and commitment strategies of agents [15],
JAMES has been equipped with outer ports, which are
now used to support the interaction of atomic models
with external processes in general.

The classical ports of DEVS models collect and offer
events that are produced by models. The outer ports
in JAMES allow models to communicate with processes
that are external to the simulation. Thereby, not the
entire simulation system as one black box interacts
with external agents, but each single model can func-

tion as an interface to external processes. If agents and
simulation shall interact in simulation time, a function
transforms external resource consumption into simu-
lation time (Figure 2). All functions, including state
transition functions, model transition function, output
function, and time advance function are also based on,
and partly directed to the outer ports. The external
process fills the outer ports at a time when the ex-
ternal process finishes its execution or at a simulation
time which is calculated by applying the time model to
the resource consumption. The model offers its events
to the external process via the outer ports (see Figure
2). This mechanism can not only be used to invoke
external planners from inside the modeled agent but
to connect a model to an agent as a whole which runs
concurrently to the simulation.

3 Representatives - “Reflecting” An
Agent’s Behavior

Typically, the agent is not modeled in its entirety,
as in the above simple example, but part of the
agent is modeled and part of the agent’s modules,
e.g. planners are invoked. To reduce the model-
ing effort agents are often treated as external source
and drain of events. Requests and messages that
are normally sent to the agent’s real environment
are redirected to the simulation system. Agents
and simulation system are synchronized in simulation
time, in this case messages exchanged between agents
and simulation are labelled with time-stamps [13;
1], or they interact in wall-clock time. An example
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Figure 3: Locations, agents and their processes in
JAMES

for the latter is the soccer simulator of the RoboCup
initiative [12]. It checks frequently whether any agent
has produced a message for the simulator, otherwise
the simulator proceeds simulating. Slowing down the
execution of the simulation engine diminishes the time
pressure for the agents. The purpose of these type
of simulation is to support competition games rather
than a thorough testing which requires more control
of the experiment. Recently the introduced bias has
been analyzed to improve the synchronization between
simulator and agents [6].

A loose coupling allows to switch arbitrarily be-
tween an execution in the real environment and in the
virtual test environment. By modeling agents they
become an integral part of the experimental setting.
The idea of representatives is to allow models to be as-
sociated with an actual agent to combine the benefits
of both approaches. Atomic models not only represent
the agent but reflect, i.e. give evidence of, the actual
agent’s behavior.

In the following we will define representatives for
agents of the mobile agent system MOLE.

3.1 Mole

MOLE represents a Java-based mobile agent system
[3]. Engines, which represent the MOLE runtime sys-
tem, transform and forward messages between loca-
tions and the network. Each engine might comprise
a set of locations. They offer certain services to the
agent and represent the source and destination of mov-
ing agents. MOLE agents are equipped with a set of
methods, e.g. for migrating, remote procedure calls
(RPC), sending and receiving messages, and for han-
dling the individual life cycle. In addition, MOLE
agents can use the entire functionality of JAVA, only
constrained by the security model employed. Agents
can comprise a dynamic set of concurrent running or
waiting threads and are not restricted to one line of
activity.

3.2 The Representative

The life of an agent starts in the moment a loca-
tion initiates the creation of an agent. To become an
active member of an agent’s society the preparation
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Figure 4: The JAMES model of a satellite described as
a statechart

method signs responsible. The preparation method is
invoked at the time at which an agent is created or
just awakened after a successful migration. There-
after, the working phase of an agent starts, which
includes activating the start method and the heart
beat (a method which is invoked with a certain fre-
quency), and handling incoming messages and calls
concurrently. Whereas the start and the heart beat
runs exactly once (if at all), several messages and calls
can arrive at the same time which require several com-
putation processes to handle them. In JAMES a MOLE
agent is represented as one model surrounded by mod-
els that represent its running or waiting threads (Fig-
ure 3).

At the moment, e.g. a RPC reaches the agent core
model, the core agent will create a satellite to dispatch
the remote procedure call (Figure 4). The satellite’s
states, i.e. Created, Running, SendAndContinue,
Resuming, and Waiting, reflect the phases that the
thread undergoes during execution.

The satellite will transform the incoming request
by using the JAVA reflection into calling a concrete
method of the MOLE agent. The satellite itself
changes to the state Running. In the opposite direc-
tion significant events of the executing MOLE thread,
e.g. the invocation of the migration method, are trans-
lated into events, directed to the simulation system
which the satellite will forward to the agent core model
(Figure 5). In the case of a migration request, the
core agent will ask all its satellites to suspend current
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Figure 5: Intertwining MOLE and JAMES

threads, launches the migration request into the net-
work, and will turn into the state migrating. During
this time the agent only represents a shadow of itself.
It waits for either an acknowledgement of a success-
ful migration or a notification that the migration has
failed. In the former case, the agent has been suc-
cessfully installed at its new location and has invoked
its start routine, at the old location the shadow is no
longer needed. It informs all satellites to stop them-
selves and commits suicide. In the latter case some-
thing has hindered the installation of the agent in its
new location, in this case the shadow becomes lively
again, and informs its satellites to resume their activ-
ities.

Some of the state changes are initiated by incoming
simulation events produced by other models. Other
state changes of the model are initiated by the associ-
ated agent.

4 Java Reflection Intertwining Mole
and James

Methods in MOLE are not simply executed as JAVA
methods but reflected to make sure that the execution
adheres to the security policy. Due to this mechanism
of reflection within MOLE, the invocation of meth-
ods can easily be identified and the calling thread can
be suspended to be resumed afterwards. Methods of
the MOLE API which constitute the interface between
MOLE agents and their run-time environment, have
only to be slightly changed to redirect calls and mes-
sages to the simulation system. Those methods fill
in automatically an outer port and trigger the state
changes of the atomic model. The port is filled at
a simulation time which is determined by applying
a function to translate the ressources consumed into
simulation time. The ressources have been consumed
inbetween starting the thread and the thread reach-
ing a method invokation that is directed to the envi-

ronment of the agent. Executing one of these meth-
ods results in charging an outer port of the associated
satellite, i.e. Z (Figure 4), and in suspending the exe-
cuting thread of the MOLE agent. Later the thread
will be resumed or stopped by the satellite model.
Thus, each agent to agent communication in MOLE is
transformed into a communication from MOLE agent
to JAMES simulation and back. In the opposite di-
rection, if events produced by models reach the agent
core model, the core agent model will either create
new satellites which will generate a new agent thread
by invoking a method via JAVA reflection, or will for-
ward the message to an existing satellite which will
resume the suspended thread (Figure 5).

Whereas the agent core model represents the central
focus of control, its satellites provide the interfaces to
the agent’s processes. All of them implement an ab-
stract view of the state and the behavior of an agent.
An agent’s behavior is described by piecewise constant
trajectories, where each episode is separated from the
next by the occurrence of a discrete event, e.g. the
sending or receiving of messages and calls. Not only
MOLE agents but also MOLE locations and engines
are associated with representatives, which themselves
are part of a network simulation. Messages, calls,
and agents are propagated through the virtual net-
work based on the simulation mechanisms provided
in JAMES, and according to the actual model of the
physical network which underlies the experiment.

5 Conclusion

Our approach shows how a general modeling and con-
current simulation formalism for multi-agent systems,
i.e. JAMES, can be adapted to test agents of a concrete
mobile agent system and how different forms of reflec-
tions come in handy. By using the JAVA reflection and
slight changes of the MoLE API, MOLE agents can be
plugged into the models without changing the source
code. Agents are thus associated with a model which
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and reflects crucial state changes and events during
the agent’s lifespan including the adaptation to en-
vironmental changes and new requirements. For that
purpose, JAMES supports the definition and execution
of reflective models with the ability to represent, con-
trol, and modify their own behavior. By combining
these types of reflection the representative can also
be used in early phases to test single strategies and
agent components in isolation. Thus, the agent de-
veloper gains flexibility how and when to test his or
her agents, whether as abstract model, as frame partly
filled with software components or in its entirety. The
programmer can switch arbitrarily between an exe-
cution in the real environment and the virtual test
environment. The interaction of agents and simula-
tions via models facilitates systematic experiments to
analyze the behavior of multi-agent systems. How-
ever, so far only few experiments with small networks
have been executed to demonstrate the feasibility of
the approach.
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