
Sarah Mercer*
H.M.G. Communications Centre

Hanslope Park
Hanslope

Milton Keynes, MK19 7BH, UK
email: sarahm@hmgcc.gov.uk

Sue Greenwood
Intell igent Systems Research Group

Department of Computing
Oxford Brookes University
Oxford, OX33 1HX, UK

email: sgreenwood@brookes.ac.uk

Abstract
A multi-agent system is proposed for knowl-
edge sharing in a system designed to advise
on good programming practice. The novelty
of the approach is that the agents within the
system can learn and adapt domain knowledge
to evolve programming standards over time. A
prototype system has been implemented
which uses the proposed architecture to detect
programming defects. The deployment of the
system at Her Majesty’ s Government Com-
munication Centre (HMGCC) is described
with test results provided.

1 Introduction
Software development is moving toward a more engi-
neering based approach. Although slow and variable
(due to the nature of software), the seeds of good en-
gineering practices are in place within industry. Cur-
rently software quality assurance (SQA), structured
and formal methods etc, give a framework by which
the requirements, analysis and design of a software
system can be carried out in a professional manner.
Similarly, testing and evaluation of a system is equally
well placed. However, basic coding mistakes or lack
of good practice can significantly diminish an excel-
lent design. Some of these issues can be aided by
software metric style evaluation but they are not all
encompassing.

The nature of programming is sti l l , in most practical
scenarios, something of an art form. The plethora of
languages, constructs and ways of tackling the same
problem make this a hard area to apply engineering
principles to, without being prescriptive. Note that the
reasonable assumption is that the design under discus-
sion does not arrive on the programmer's desk with
complete l ine-by-line pseudo code.

In the real world, especially on rapid turnaround
jobs, coding remains the main creative process within
an organisation. Experienced programmers are always
respected and have proved invaluable in reviews to
find problems that did not arise at design review and

 * This research is sponsored by Her Majesty's Government
Communications Centre.

are not identified by normal means (such as the com-
piler). This experience leads to the concept of ’Best
Practice’ where traps, pitfalls and maintenance issues
are handed down or presented in document form.

Due to the obscure and indefinite nature of this
problem, it would appear that it is not feasible for a
standard system to provide a solution; there is a need
to introduce a degree of intell igence into a system in
order to provide practical application of the theory. As
mentioned, some coding errors can be detected and
rectified by the use of existing SQA methodologies:
such as guidelines for good design and implementa-
tion. Also the quantitative assessment of conformance
to these guidelines can be measured by the use of
Software Metrics that provide an indirect measure of
quality, such as Halstead's software science and
McCabe's complexity metric [Pressman, 1992]. How-
ever, such formal and mathematical approaches are not
flexible or powerful enough to replace the human “gut-
instinct” that is based on experience.

1.1 System aims (the problem)
The system is designed to aid the engineer in the fol-
lowing areas: coding guidelines, good design, program
correctness and implied knowledge. These are de-
tailed below:

Many establishments have a skeletal set of coding
guidelines that programmers are expected to adhere to.
However these guidelines are usually vague and in-
complete to allow the software engineers a degree of
freedom and creativity. Most cover only those rules
that are undisputed and easy to enforce.

Closely l inked to these guidelines is the concept of
"good design". Many establishments echo ideas and
principles that have been developed within academia
as to what represents a good design. Although this
system will not be applied to the requirements, analy-
sis and design stages of the life cycle, a fair amount of
design is sti l l left to the programmer (this assumes the
real world situation of a 'thin' design specification ar-
riving on the programmers desk). Principles such as
modularity, information hiding, abstraction, cohesion
and coupling can all be measured to some degree at
this stage of implementation.
Program correctness is obviously important to soft-
ware quality. There are two main issues to consider.

A MULTI-AGENT ARCHITECTURE FOR KNOWLEDGE SHARING

Firstly, errors concerned with constructs, data struc-
tures, iterations and conditional statements, such as
buffer overruns. Formal Methods can deal with these
issues; the use of clear and concise mathematical
proofs to establish correctness of code. However,
these are not appropriate for real-l ife scenarios where
tight time scales apply. The second issue is of the im-
plied correctness; these are errors such as race condi-
tions between threads, which are not easily (if at all)
resolved using formal methods.

A variant of implied correctness is target platform
specific implied knowledge; a system should be able to
enforce rules about the target platform. This aspect of
the system would be helpful in detecting errors caused
by programmers who are unfamiliar with a new envi-
ronment, which is important as many errors are related
to environment specific facets, such as the failure to
close a fi le handle after a successful fi le open within
the Microsoft Win32 environment.

2 Related Work
There are tools available that statically analyse source
code, for example; Nottingham University’ s Ceil idh
system [Zin and Foxley], Ayse Salmon’ s teaching as-
sistant [Salmon, 2001], LCLint [Evans], and Nu-
Mega’s Code-Review [Numega].

The Ceilidh System marks students coursework for
a programming module. It uses many of the previ-
ously mentioned metrics to measure correctness, main-
tainabil ity and efficiency. Although it is very good at
measuring the quality of the coursework, it is unable to
make suggestions to the student to aid the students
learning.

Ayse Salmon’s teaching assistant focuses on the fac-
tors of correctness (dynamic) and maintainabil ity. It is
able to mark the students work, but is also unable to
give advice. Both of these systems procedurally re-
view the code and then use metrics to gain a measure
of the quality but take the process no further.

LCLint is a system that has been used historically in
the HMGCC programming environment for checking
source code. It acts as an advanced compiler pre-
processor. This system does give advice about the
problems found in the code, but it is very tightly
l inked to the language is it is reviewing, and is unable
to measure general qualities such as complexity.

CodeReview from NuMega is a commercial system
that reviews Visual Basic (VB) source code. This sys-
tem gives feedback using the VB help environment by
directing the user to appropriate pages as solutions.
CodeReview allows a standard to be set centrally for
all members of a team of programmers, to ensure qual-
ity is consistent.

None of these systems are able to adapt to the style
or level of competency of the programmer. Neither
can these systems learn from previous experience or
outside influences. All of the systems assume that the
set of coding guidelines will be static over time and
none of them directly use external influences (peer-
reviews, experienced engineers) to evolve their stan-
dards.

3 Proposed solution

3.1 System Requirements (ref ined aims)
For each of the aims listed previously metrics can be
applied to measure the number of defects within a
piece of code. However it is not sufficient merely to
return a measure of quality but also to ensure good
quality in the practices applied by the programmer. To
do this the system needs to be able to suggest alterna-
tive ways to avoid defects.

To be able to suggest alternative solutions the sys-
tem would need an initial, complete and correct
knowledge base of examples, problems and solutions.
This is infeasible given a number of reasons (not least
it is not technically viable), but also the knowledge
within the system must allow for change. This reflects
the way organisation’s guidelines evolve over time,
taking into account new environments, influences and
ideas, and changes in the level of quality required.
Therefore a learning system is required to allow for
the necessary changes in the knowledge.

In a team environment the system should adopt a
distributed architecture. By allowing suggestions to be
made between team members, the number and diver-
sity of the solutions will be increased. If recommenda-
tions are to be made between team members the sys-
tem will need to be flexible about aesthetic style. The
parts of a programmer's style that are not covered by
the guidelines will need to be respected. If a team
member with a different style makes a recommenda-
tion the layout wil l be changed before it is presented to
the other team member. It has been proved that code
laid out in the programmer's style is more understand-
able to that programmer [Pomberger, 1984].

The system will need to be aware of differing levels
of competence within a team environment. Ideally
such a system should learn from an experienced pro-
grammer and teach or guide new team members.
Therefore, the system will adapt a stereotype approach
to users, classifying them into categories that represent
the quality of their coding. This wil l allow the system
to learn more effectively and efficiently. However, it
is important that this mechanism should not appear to
be offensive [Perrolle, 1995], to individual users espe-
cially newcomers.

The system must be usable and acceptable to users
and workable within the current programming envi-
ronment. From discussions with engineers at HMGCC
it appears that an off-l ine system is best suited to their
environment, i.e. it should wait unti l prompted before
giving its opinion and not annoy like the Microsoft
office-assistant. Only code that a programmer be-
lieves to be ready for system review should be submit-
ted and therefore it is a reasonable assumption that the
code will have been compiled, the errors removed and
warnings minimised.

Usage
Establishments that use coding guidelines usually en-
force them by a formal end-of-stage code review and
sometimes at milestone points, conducted during the

implementation stage of the software lifecycle. The
most common format is the peer-review, where a team
of engineers review the code individually, and then
meet to form a consensus of findings. This allows not
only the quality of the code to be measured and im-
proved, but also allows for the process itself to evolve.
This is where new guidelines are found and better so-
lutions are provided, which is imperative due to the
obscure nature of software quality assurance. It is in-
teresting to note that at this stage the main strength
behind the code-review process is the team of engi-
neers; it has been shown at HMGCC that when using a
team of 3-5 people (5 or 6 being the upper limit for a
piece of code) the number of anomalies pinpointed is
significantly greater than a review with just 1 or 2 en-
gineers.

Implementation

Code Review
System

Peer Review

Compilable code
1,3

Peer Reviewed
code

6

Solutions
2

Review
Recommendations

5

 Code deemed
ready for peer-

review
4

Figure 1: Life cycle including Code Review System.

Figure 1 shows the way in which a code review system
could be used to minimise the number of defects found
in code, prior to peer review.

We envisage a system, which comprises a set of
learning systems, that adapt to their users and repre-
sent the user’ s practices and preferences in a team en-
vironment. It is hoped that this system will exhibit
similar strengths to the peer-review format; improving
quality across the team; lowering the number of de-
fects in code prior to peer-code-review, and by evolv-
ing its knowledge of guidelines and solutions.

3.2 System Design
The system comprises multiple nodes. Each node is a
standalone system that works for and represents an
engineer.

Source code is read into the system, checked that it
is syntactically correct and translated into an appropri-
ate representation. This representation is then used to
extract basic information about the code, to give a
framework of the code, upon which defect detection
can be facil itated. Interrogating this extracted infor-
mation and comparing it against an initial set of guide-
lines enables anomalies in the code to be detected.
Solutions can then be suggested as workarounds or
fixes for the identified anomalies, these solutions are
provided from the system’s local knowledge, or by
asking other nodes for possible solutions.
 Each node is able to learn new guidelines and solu-
tions, and is able to learn both by direct feedback from
the user and by identifying repetitive behaviour that

conforms to the guidelines and applying modified so-
lutions to similar situations (case-based reasoning).
As nodes share solutions and guidelines, and each
node records information about the engineer supplying
them, an internal view of the team is developed. Over
time, agents that represent experienced, or reliable,
engineers are recognised and so too are learners. This
has a bearing on suggestions made to those users and
to the weighting of confidence in suggestions given.
An initial view of the team is given using stereotypes.
Learning reinforcement and knowledge refinement
wil l be derived from the feedback of results of the
formal peer-review. The outcome of which will have
precedence over initial states.

A global view of the team and a central set of guide-
lines are also gathered by monitoring all interactions
between nodes. The central set of guidelines can then
be reviewed to check that the consensus of the system
matches that of the team.

3.3 Why Agents
As previously described the system comprises a set of
user-nodes, each programmer in a team has their own
node, that adapts to their style and preferences. As
these systems will be working concurrently, co-
operation between them is essential to the effective-
ness of each node and the system as a whole. To this
end, the nodes will need to be autonomous in the at-
tainment of their goals, such that their use of speech
act base communication and knowledge enables them
to co-operate to intell igently derive, from information
gathered from a set of individuals, a reinforced and
agreed consensus. These requirements echo the main
aspects of agency, specifically the need for autonomy
and co-operation, it is assumed that this wil l afford the
system the same benefits as the peer-review, where the
whole is worth ore than the sum of its parts.

3.4 Agent-Architecture
As discussed earlier, an agent approach is appropriate
for the sharing of knowledge between individual users.
It is also appropriate for the knowledge sharing and
co-operating within each node. The high-level agent
architecture is shown in Figure 2.

Figure 2: Proposed agent architecture.

User Interface
Agent

Sensor
Agent

Learning
Agents

(Direct and
Example-based)

Facilitator
Agent

Solution
Agents

Detection
Agents

W orker
Agents

Network

User

The sensor agent is responsible for parsing the source
code and producing the language specific representa-
tion of the constructs within the code. The worker-
agents then perform rudimentary reasoning over the
constructs to extract information about the basic ele-
ments; declarations, function definitions and state-
ments.

The detection agents interrogate the worker agents
to ascertain information about the codes structure, con-
trol flow and so forth. They use this to detect anoma-
lies in the code. The detection agents co-operate to
ensure all of the guidelines have been checked, to do
this they employ a BDI (Beliefs, Desires and Inten-
tions) architecture to assist them in attempting to
model the intentions of other agents [Finin, 2001].
The BDI model allows practical reasoning, which is
reasoning directed towards actions [Wooldridge and
Parsons, 2001], by analysing the current environment,
its own knowledge (the beliefs) and goals (or desires)
the agent can decide what to do next, and what it needs
to do to achieve it (its intentions or plan). This wil l
allow the agents a degree of autonomy, as they will be
able to dynamically plan how they will inspect the
code and what information they need to obtain from
other agents, to ensure the code is defect free and
therefore achieve their goals.

The solution agents offer solutions to the user for
the found defects, allowing the user to choose the pre-
ferred one. Solutions are found in the local knowledge
base. If the solution agent is confident the solution is
appropriate, alternatives will not be suggested. How-
ever, in certain circumstances where the defect has not
been seen before (or the user is unhappy with the sug-
gested solution), the learning agents can attempt to
devise a solution, based on previous experience (Case-
Based Reasoning), [Kolodner, 1993; Leake, 1996], or
the node can ask other user nodes. The learning agents
can also directly learn from the user (direct-learning),
allowing the user to identify new defects or solutions
that the system can immediately integrate into the sys-
tems knowledge.

All interaction with the user is accomplished
through the interface agent, which allows pertinent
information about choices to not only be reported back
to the solution agents, but also to the learning agents.

As shown in Figure 1, when the user has made the
appropriate alterations, the code is entered into the
system again, where the learning agents can adapt their
knowledge based on solutions that have been imple-
mented and upheld by the user and defects that have
not been rectified and solutions that have been ig-
nored.

If no further defects are found, the code can then be
submitted for peer-review. The results of which allow
the system to refine and reinforce its knowledge. The
revised code that includes the peer-review recommen-
dations is again entered into the system, where the
system can again adapt based on, where new defects
have been spotted, resulting in a new or amended
guideline; where a known defect has been ignored,
resulting in an amended guideline; where suggestions

have been overturned, resulting in a solution being
modified or replaced.
 At any point during this l ifecycle the user can add
new guidelines and provide new solutions, but it is
intended that the system does not allow the user to edit
or remove them. This wil l ensure the evolution of the
system, as negative or not preferred solutions will die
out over time.

By monitoring the user selection and the outcome of
peer-reviews the system is able to make judgements as
to the user’ s level of competence. It wil l also be able
to build a model of the user’ s view of the team. As
this information has bearing on the solutions provided
and the learning mechanism of the system, each user
wil l initially be assigned to a stereotype group, which
reflects approximately the user’ s competence.

By monitoring interaction between the team mem-
bers a model can be built of the team. A consensus of
guidelines can be also be constructed that should re-
flect the teams current level of quality.

4 The Prototype System
A subset of the system has been implemented as a pro-
totype and tested in the real world situation of
HMGCC. The aim of the prototype is to assess the
knowledge representation and the ontology used, for
(non-learning related) reasoning, therefore ensuring
that the next stage of implementation (learning) has a
stable foundation upon which to work. Certain as-
sumptions have been made; the preferred software lan-
guage, and therefore the language to be reviewed, at
HMGCC is ‘C’ as defined in the MSDN1, the system is
l imited to only detecting defects from the initial set.

4.1 Implementation
The prototype was implemented in Java, using JESS
(Java Expert System Shell) as the agents’ internal rea-
soning engine (IRE) [Friedman-Hill] . Java was chosen
as it is the most appropriate language for this type of
rapid development and integration with Jess. Figure 3
shows the subset of the main architecture that has been
implemented as the stage 1 prototype.

Figure 3: Prototype design.

1 Microsoft Developer Network, Visual C++, C Reference.

Sensor Agent
(constructs)

Facilitator Agent
(KQML

messages)

Detection Agent
#1

(variables)

Expression
Agent

(statements)

Function Agent
(func-definitions)

Variable Agent
(declarations)

Knowledge & the Domain
Representations (syntax trees) are shown for the
statement “a=a+1;” and the declaration “ int a, b=4;”

declaration

declarationSpecs

initDeclarator

declaratorint-keyword

"int"

typeSpecifiers

directDeclarator

identifier

"a"

initDeclaratorList

comma initDeclaratorList

initDeclarator

declarator

directDeclarator

identifier

semi-colon

","

"b"

";"

equals initializer

"="

"4"

assignmentExpression

primaryExpression

constant

...

......

statement

unaryExpression

postfixExpression

primaryExpression

identifier

"a"

expression

assignmentOperator assignmentExpression

conditionalExpression

shiftExpression

additiveExpression

multiplicativeExpression

semi-colon

"="

"a"

";"

plus multiplicativeExpression

"+"

"1"

castExpression

primaryExpression

constant

expressionStatement

assignmentExpression

additiveExpression

primaryExpression

identifier

Figure 4: Syntax trees, as constructed by Sensor Agent.

The representations shown in Figure 4, allow the
agents to interpret the meaning of the constructs, for
example given the first syntax tree, the ordered set of
sub-clauses { expression-statement, assignment-
expression and additive-expression} imply that the
expression is the assignment of an addition, given the
second tree, the leaf nodes of branches which contain
“directDeclarator” are the names of the variables de-
clared.

Communication
For agents to share knowledge they need to communi-
cate using a common language, which can be divided
into syntax, semantics and pragmatics.

The syntax used both internally and shared between
the agents is JESS, which is loosely based on that used
by CLIPS and is highly expressive. This system al-
lows full interaction between the rule base system and
Java objects, giving powerful flexibil ity.

The semantics are described in the ontology, which
defines a common vocabulary. It describes the do-
main; including representations for common source
code elements (declarations, functions, control flow),
system specific details (experts, suppliers) and knowl-
edge sharing axioms (wants-to-know, need-to).

The pragmatics are based on KQML [Finin et al,
1993], which describes the way the agents communi-
cate, i.e. how to ask a question, how to respond to a

question, etc. The current set of performatives used is;
ask, tell, reply, subscribe, advertise and recommend.

Ontology
Each agent contains a JESS expert system, as its IRE.
Each agent’ s IRE is initialised with the ontology of the
system. The main items of knowledge for the worker
agents are the syntax trees that represent the con-
structs, as previously described. Due to the complete
nature of the source code domain, parts of the ontol-
ogy can be expressed in terms of tree parsing func-
tions.

Sensor Agent
There are no goals defined within the Sensor Agent, as
it is purely reactive. When instructed to by the user
(via the interface) it reads in the source code and pro-
duces a representation for each construct contained
within. It is advertised as the “expert-in” constructs,
streaming the set of constructs on demand to other
agents.

To produce a representation of the source code, the
Sensor Agent has a second JESS rule base that is ini-
tialised with C specific knowledge. The sensor agent
is the only agent that includes language dependent
knowledge. This clear separation of the C specific
knowledge and the agents IRE allows the supported
language to be replaced easily. One obvious advan-
tage of working in the knowledge domain of a pro-
gramming language is that it already has a complete
and correct specification that can be easily ported to a
set of rules ready for inclusion into the system.

Expression/Variable/Function Agents
These agents are very similar in their aims. They re-
ceive constructs that represent statements, declarations
and function definitions respectively. A small amount
of reasoning is used to ascertain rudimentary informa-
tion that is available to other agents on demand.

Detection Agent #1
The goal of the detection agent is to detect defects in
the code that are related to variable usage. To achieve
this the set of variable declarations are requested from
the variable agent, for each of these variables a request
is made to the expression agent to ascertain how the
variable is used and manipulated during the flow of the
program, a conclusion can then be drawn about the
appropriate use of the variable, etc.

4.2 Testing
The test plan aimed to prove the legitimacy of the ar-
chitecture by ensuring that the first stage of implemen-
tation provided a good foundation, upon which the
learning mechanism could be implemented. To ensure
this the system was compared to others, in its abil ity to
parse the source code, produce the correct syntax trees
and detect defects in the code, from an initial set of
guidelines.

For the former the prototype system was exposed to
a variety of source code modules, within the HMGCC
environment. The system was able to correctly parse

the fi les and successfully reasoned over the elements
within the code.

For defect detection the testing concentrated on one
guideline, ’ appropriate use of variables’ . The proto-
type system was compared against LCLint and the
Microsoft Compiler. This guideline was chosen, as it
is easily measurable, when comparing performance
against other systems.

The test results showed that the prototype system is
able to analyse and detect more anomalies in the code
than either of the other two systems used. The most
notable difference between the systems was that only
the prototype was able to recognise variables that
should be made constants. This highlights that the
prototype system is able to detect anomalies in the
code, which are not just related to correctness, as rec-
ommending a variable be made constant is a typical
peer-review recommendation to improve the maintain-
ability of the code.

We believe that it is evident that the prototype is
able to compete with static analysis tools in the area of
correctness, and out perform them in other areas of
software quality such as maintainability. Therefore we
also feel, that this is an appropriate foundation, upon
which to proceed with implementing the full architec-
ture.

5 Discussion & Conclusion
Development of the prototype system was aided by the
powerful all iance of JESS and the Java language, al-
lowing knowledge and control to be integrated easily.
There were a number of drawbacks, mainly in the area
of performance. During development it was shown
that the system is able to keep the language specifics at
the knowledge level only, hence improving the port-
ability of the system, but this proved to be too resource
intensive, and limited the size of source code that
could be reasoned over at any one time. Language
specific heuristics were implemented such that the
system was able to fragment the code before process-
ing it at the knowledge level. Although this improved
the usability of the system, it detracts from its portabil-
ity.

In the homogeneous architecture of the prototype, a
strong development benefit emerged in respect to the
combination of the JESS rule-base and KQML. In the
prototype system, message contents were explicitly
asserted into the rule base, this allowed the system to
implement the ontology directly, as no processing or
parsing of information was needed.

Further work wil l include the implementation of so-
lution and learning agents that wil l facil itate case-
based reasoning, such that the system can learn both
new defects and solutions. The next stage of the re-
search will be concerned with the feasibil ity of the
BDI architecture in allowing the detection agents to
co-ordinate and share information to achieve their joint
goal of ensuring all guidelines are being adhered to,
and to investigate whether this architecture is appro-
priate for implied correctness guidelines.

References
[Pressman, 1992] Roger S. Pressman. Software Engi-

neering: A Practitioners Approach. McGraw-Hill,
1992.

[Zin and Foxley] Abdullah M. Zin and Eric Foxley.
Automatic Program Assessment System http://www.
cs.nott.ac.uk/~ceil idh/papers/ASQA.html

[Salmon 2001] Ayse Salmon. Unpublished PhD The-
sis. OBU, 2001.

[Evans] David Evans, project leader. 'LCLint/Splint
Homepage'. University of Virginia, http://lcl int.cs.
virginia.edu/.

[Numega] Compuware/NuMega. ‘ Code Review for
Visual Basic’ , http://www.compuware.com/products/
numega/dps/vb/cr.htm.

[Pomberger, 1984] G. Pomberger. Software Engineer-
ing and Modula-2. Prentice-Hall, 1984.

[Perrolle, 1995] J. A. Perrolle. Surveil lance and Pri-
vacy in Computer Supported Cooperative Work, in
David Lyon and Elia Zureik, eds., New Technology,
in Surveil lance and Social Control. University of
Minnesota Press, 1995. http://www.ccs.neu.edu/
home/perrolle/privacy.html.

[Finin, 2001] Tim Finin. Tutorial on Agent Commu-
nication Language, Autonomous Agents 2001, Mont-
real, Canada, May 2001.

[Wooldridge and Parsons, 2001] Michael Wooldridge
and Simon Parsons. Tutorial on Rational Action in
Autonomous Agents, Autonomous Agents 2001,
Montreal, Canada, May 2001.

[Kolodner, 1993] Janet Kolodner. Case-based reason-
ing. Morgan, Kaufmann, 1993,

[Leake, 1996] D. B. Leake. Case-based reasoning:
Experiences, Lessons & Future Directions. AAAI,
1996,

[Friedman-Hill] Ernest J. Friedman-Hill. JESS Home-
page. http://herzberg.ca.sandia.gov/jess/

[Finin et al., 1993] Tim Finin, co-chair. Specification
of the KQML Agent-Communication Language.
http://www.cs.umbc.edu/kqml/kqmlspec/spec.html.

