
Giacomo Cabri, Letizia Leonardi

Dipartimento di Ingegneria dell ’ Informazione
Università di Modena e Reggio Emili a

Via Vignolese, 905 – 41100 Modena – ITALY
email: { giacomo.cabri, letizia.leonardi} @unimo.it

Franco Zambonelli

Dipartimento di Scienze e Metodi dell ’ Ingegneria
Università di Modena e Reggio Emili a

Via All egri 13 – 42100 Reggio Emili a – ITALY
franco.zambonelli@unimo.it

Abstract

Engineering interactions is a very important
issue in the design and development of Inter-
net appli cations. The wideness, the openness
and the uncertainty of the Internet environ-
ment call for appropriate methodologies. In
this paper we propose XRole, a system that
helps in deali ng with such a kind of interac-
tions in a modular and effective way. XRole is
based on the definit ion of roles, intended as
intermediaries between the appli cation needs
and the environment needs. XRole is imple-
mented exploiting the XML language. An ap-
pli cation example in the agent-negotiation
area shows the effectiveness of the approach.

1 Introduction
The Internet world will be more and more populated by
software agents, which act on behalf of users to carry out
tasks. In this scenario, the interactions among agents are
becoming an important issue that must be taken into con-
sideration at the different phases of the application devel-
opment [Cabri, 2001]. On the one hand, complex goals
are faced by multi-agent systems by dividing the main
goal in several simpler goals, each one assigned to one
agent; this lets emerge the need for making agent of the
same application interact for cooperating to carry out the
global task. On the other hand, the Internet is becoming a
place where resources and services for agents are avail-
able, but often agents have to compete to achieve them;
this points out that interactions between agents of differ-
ent applications are to be dealt with.

We propose to deal with agent interactions by a three-
level model (see Figure 1), thought to manage both inter-
actions among agents of the same application and interac-
tion between agents of different applications. In this
model, the application level is represented by the agents;
the lowest level concerns the environment, which defines
its own policies to rule agent-to-agent and agent-to-
resources interactions. The middle level is the one fo-
cused by this paper, and concretely enables the interac-
tions. To achieve flexibili ty and dynamism, we propose
to center it on the concept of role.

In the agent scenario, a role is defined as the behavior

and the set of the capabilities expected for the agent that
plays such role [Kendall , 2000]. This leads to a twofold
viewpoint of the role: from the environment point of
view, the role imposes a defined behavior to the entities
that assumes it; from the application point of view, the
role allows a set of capabilit ies, which can be exploited
by agents to carry out their tasks. There are some charac-
teristics of roles that lead to deal with them separately
from the concept of agent. The role is temporary, since
an agent may play it in a well-defined period of time or in
a well-defined context. Roles are generic, in the sense
that they are not tightly bound to a specific application,
but they express general properties that can be used in
different applications and then for different agents. Fi-
nally, roles are related to contexts, which means that each
environment can impose its own rules and can grant some
local capabiliti es, forcing agents to assume specific roles.
As mentioned before, roles represent behaviors that
agents are expected to show; who expects such behavior
are entities external to agents themselves, mainly organi-
zations [Zambonelli et al., 2001] and environments.

role role

interaction
policy

application
level

environment
level

resources

middle level

Figure 1. Role-based interaction model

The contribution of this paper is to propose a system,
called XRole, which enables the definition of roles for
agents, in a way that is suitable to be exploited at differ-
ent phases of the li fe cycle of an agent-based application.
Such system is based on XML to exploit all advantages
this language provides. The aim of this system is helping
the definition of the interactions among agents and sup-
porting their implementation.

The paper is organized as follows. Section 2 presents
the XRole system. Section 3 shows an application exam-

XRole: XML Roles for Agent Interaction

ple, which exploits XRole to define and use roles. Section
4 presents the related work. Section 5 concludes the pa-
per and sketches some future work.

2 XRole
In the context of the interaction among agents, we pro-
pose XRole, a system for the definition of roles for
agents.

2.1 Why XML
The incredible success of HTML has led the WWW con-
sortium to the development of XML [W3C, 1998], a lan-
guage for data representation that is likely to become a
standard for data interoperabili ty in the Internet, due to
the advantages it can provide in this context. In fact,
XML represents data in a famili ar (HTML-like) tagged
form, and explicitly separates the treatment of data from
its representation. This achieves both the well-
appreciated feature of human-readabili ty and the plat-
form-independence required for the Internet. In addition,
XML can be made capable of representing whatever kind
of data and entity one is likely to find in the Internet:
documents, services and objects, as well as agents. These
characteristics let us think that interoperabili ty in the
Internet will be information-oriented and based on XML,
rather than service-oriented as may happens in architec-
tures based, for instance, on CORBA [OMG, 1997].

By using XML, the description of each role can be also
presented to human people via an appropriate XSL sheet
that transforms the information in a human-
understandable document, such as a HTML page. This
lets programmers develop their agents knowing which the
available roles are, for example by searching for appro-
priate roles in a repository.

Moreover, if the XML documents follow appropriate
rules, they can be managed also by automated tools, and
by the agents themselves, which can be enabled to under-
stand the content of a XML documents and exploit or
manipulate it without the need of the intervention of hu-
man people.

With regard to role catalogues, we point out that XML
carries great advantages in this context, since the same
XML document can be exploited for both the description
of a role and the operative use of it.

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT role (name, description?, keyword*,
action*)>
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT description (#PCDATA)>
 <!ELEMENT keyword (#PCDATA)>
 <!ELEMENT action (description, ret_value?,
act_name, parameter*)>

<!ELEMENT ret_value (#PCDATA)>
<!ELEMENT act_name (#PCDATA)>
<!ELEMENT parameter (par_name, type)>
<!ELEMENT par_name (#PCDATA)>
<!ELEMENT type (#PCDATA)>

Figure 2. The DTD followed by XML roles defined in XRole

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
elementFormDefault="qualified">
 <xsd:element name="act_name"
type="xsd:string"/>
 <xsd:element name="action">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="description"/>
 <xsd:element ref="ret_value" minOccurs="0"/>
 <xsd:element ref="act_name"/>
 <xsd:element ref="parameter" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="description"
type="xsd:string"/>
 <xsd:element name="keyword" type="xsd:string"/>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="par_name"
type="xsd:string"/>
 <xsd:element name="parameter">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="par_name"/>
 <xsd:element ref="type"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="ret_value"
type="xsd:string"/>
 <xsd:element name="role">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="name"/>
 <xsd:element ref="description"
minOccurs="0"/>
 <xsd:element ref="keyword" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element ref="action" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="type" type="xsd:string"/>
</xsd:schema>

Figure 3. The XML Schema followed by XRole roles

2.2 Definition of Roles
In XRole, roles are defined by XML documents that re-
spect a well-defined DTD (see Figure 2). Alternatively, a
XML Schema can be used, such as the one reported in
Figure 3. By analyzing both the DTD and the XML
Schema reported, one finds the main elements we have
identified to describe a role. They are:
• name. The name given to the role. It would be useful

that the name was unique, to identify a precise role
all over the world. But we agree that it is a too strong
requirement, so we envision that a name is valid in a
given context (i.e., an application area, an Internet
domain, and so on).

• description. A high-level description of the role. Such
description is useful for designers to understand
which the aim of the roles is, in human-readable sen-
tences.

• keyword. Zero or more keywords can be used to iden-
tify the role. They are useful for human people,
automated tools and also agents in the search of roles
matching given criteria.

• action. It describes actions available to the agent if it
assumes this role, in order to interact with other enti-
ties, such as other agents or execution environments.
This description is quite general, specifying a name,
a description, a return value, and a list of parame-
ters.

The advantage of exploiting the XML language is that
this definition of role can be extended, to meet specific
requirements that will arise in the future.

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl"
href="role2html.xsl"?>
<role
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-
instance"
xsi:noNamespaceSchemaLocation="roleSchema.xsd">
 <name>MyRole</name>
 <description>example of role</description>
 <keyword>example</keyword>
 <keyword>XRole</keyword>
 <action>
 <description>interact with
someone</description>
 <ret_value>void</ret_value>
 <act_name>talk_with</act_name>
 <parameter>
 <par_name>receiver</par_name>
 <type>AgentID</type>
 </parameter>
 <parameter>
 <par_name>message</par_name>
 <type>string</type>
 </parameter>
 </action>
</role>

Figure 4. An example of role defined in XRole

2.3 Using Roles
We emphasize that XRole is not bound to a given agent
system or to a given interaction infrastructure. Instead,
thanks to the high degree of interoperabili ty provided by
XML, it can be exploited at different phases and by dif-
ferent systems. In this section we show how XRole can
be exploited at the different phases of the software pro-
duction.

Design phase
The description of roles can be useful at the design phase,
because gives the designers useful information about the
agents that may compose the application under develop-
ment. Like design patterns [Aridor and Lange, 1998], the
description does not provide code or libraries, but high-
level suggestions that can be exploited at this stage of the
software life cycle. In addition, sets of related roles can
be defined, in order to provide a group of interacting
roles to easily build up an application; in fact, each set
can define not only the roles belonging to it, but also the
relationships among the entities playing such roles. More
than bare patterns, XRole descriptions can be automati-

cally translated into actual code, as shown in the next
subsection.

Figure 5. A human-readable description of an XRole role

Thanks to the adaptabili ty of XML, a role defined in
XRole can be presented to the designers in different
ways, to meet different requirements. The simplest way is
to let an appropriate XSL sheet produce a HTML docu-
ment that presents the information about the role. Figure
4 reports a simple role defined in XRole that will be as-
sumed as an example in the following of the section.

Starting from such role, the HTML document reported
in Figure 5 can be created and published. More sophisti-
cated views can be generated by appropriate XSL sheets,
which tell the designers what they need. For example, a
HTML documents can be created, which lists all roles
that refer to the same keyword, or implement a given ac-
tion.

Implementation phase
Using languages that support the notion of interface, such
as Java, it can be very simple to derive an interface from
a given role defined in XRole. For example, by using the
XSL document reported in Figure 6, the role defined in
Figure 4 can be translated into the Java interface shown
in Figure 7, where the name element of the role defined in
XRole is used as the name of the Java interface.

Moreover, situations where one agent plays different
roles are usual. Also in this case, defining the roles in
XML is very useful, because they can be combined by an
appropriate XSL document.

Runtime
From the hosts’ point of view, a hosting server that ac-
cepts agents using a given role must provide for the ac-

tual implementation of the actions defined in such role.
For instance, referring to the role depicted in Figure 4,
the server must somehow implement the action talk_with,
that is, the talk_with method of the interface MyRole of
Figure 7.

<?xml version="1.0" encoding="UTF-8"?>
<!--XRole 0.1-->
<!--Transform a role into a Java interface-->
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fo="http://www.w3.org/1999/XSL/Format"
exclude-result-prefixes="xml">
 <xsl:output omit-xml-declaration="yes"
method="text" indent="yes"/>

 <xsl:template match="role/keyword">
 <xsl:text>"</xsl:text>
 <xsl:apply-templates/>
 <xsl:text>"</xsl:text>
 <xsl:if test=". != /role/keyword[position() =
last()]">
 <xsl:text>, </xsl:text>
 </xsl:if>
 </xsl:template>

 <xsl:template match="role/action/parameter">
 <xsl:value-of select="./type"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="./par_name"/>
 <xsl:if test=". != ../parameter[position() =
last()]">
 <xsl:text>, </xsl:text>
 </xsl:if>
 </xsl:template>

 <xsl:template match="role/action">
 <xsl:text>
 /* </xsl:text>
 <xsl:value-of select="description"/>
 <xsl:text> */
 </xsl:text>
 <xsl:value-of select="ret_value"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="act_name"/>
 <xsl:text>(</xsl:text>
 <xsl:for-each select="parameter">
 <xsl:apply-templates select="."/>
 </xsl:for-each>
 <xsl:text>);</xsl:text>
 </xsl:template>

 <xsl:template match="role">
 <xsl:text>public interface </xsl:text>
 <xsl:value-of select="name"/>
 <xsl:text>
{
 String description = "</xsl:text>
 <xsl:value-of select="description"/>
 <xsl:text>";
 String keyword[] = {</xsl:text>
 <xsl:for-each select="keyword">
 <xsl:apply-templates select="."/>
 </xsl:for-each>
 <xsl:text>};
 </xsl:text>
 <xsl:for-each select="action">
 <xsl:apply-templates select="."/>
 </xsl:for-each>
 <xsl:text>
}</xsl:text>
 </xsl:template>
</xsl:stylesheet>

Figure 6. The XSL document from XML to Java interfaces

However, XRole does not define the ways methods are
implemented, and each architecture can choose the most
appropriate one.

In a dynamic environment agents can search for an ap-
propriate role by using a XML query language [Deutsch
et al., 1999]. In addition, agents can dynamically search
for appropriate roles that are needed, and assume the
found roles at runtime. This is permitted by the fact that
valid XML documents can be managed in an automated
way, in this case by agents themselves, which can under-
stand the description of a role decide whether assume or
not such role, on the basis of different criteria.

public interface MyRole
{
 String description = "example of role";
 String keyword[] = {"example", "XRole"};

 /* interact with someone */
 void talk_with(AgentID receiver, string
message);
}

Figure 7. The XRole example translated into a Java interface

3 Application Example
In this section we present an example of application
where interactions are designed following the three levels
of the model introduced in the previous section.

An interesting negotiation means in the Internet context
is the auction. In an auction there are entities that make
resources available and entities that are interested in us-
ing/acquiring such resources. The former ones are usually
called sellers, while the latter ones are called bidders.
Usuall y, there is an intermediate entity, called auctioneer,
which actually performs the negotiation. The price of the
resources sold by sellers via an auction is not fixed, but it
is dynamically determined by the interest of the bidders.
The seller can set a reserve price, i.e., a price under
which it does not want to sell the resource.

There are several different forms of auction, depending
on the number of participants, on the criteria with which
the resources are assigned, and so on. We focus on the
auctions with one seller and multiple bidders at a time,
ruled by several mechanisms: for example, English,
Dutch, first-price and Vickery [Agorics, 1996].

In the following we show how XRole can be exploited
to describe roles that can be assumed by agents of auction
applications. The reported XML documents are quite
simple (due to the paper length limitation), but they aim
at giving an idea of the features of XRole, and can be ex-
tended to be used in a real application.

The following role can be defined as “standard” by a
set of auction sites, which either make the corresponding
XML documents available to designers/developers or
point to a “repository” from which roles can be retrieved.
As previously stated, these roles can be part of a set of
roles related to auction applications, which defines also
the relationships among roles. The implementations of

the actions are then delegated to each site accepting
agents that play these roles.

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl"
href="role.xsl"?>
<role
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-
instance"
xsi:noNamespaceSchemaLocation="roleSchema.xsd">
 <name>bidder</name>
 <description>an agent attending an auction,
which can bid to achieve a good on
sale</description>
 <keyword>auction</keyword>
 <keyword>bidder</keyword>
 <action>
 <description>make a bid</description>
 <ret_value>void</ret_value>
 <act_name>bid</act_name>
 <parameter>
 <par_name>good_id</par_name>
 <type>string</type>
 </parameter>
 <parameter>
 <par_name>bid</par_name>
 <type>int</type>
 </parameter>
 </action>
 <action>
 <description>ask for the status of an
auction</description>
 <ret_value>int</ret_value>
 <act_name>ask_status</act_name>
 <parameter>
 <par_name>good_id</par_name>
 <type>string</type>
 </parameter>
 </action>
</role>

Figure 8. A bidder role defined in XRole

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE role SYSTEM "roleDTD.dtd">
<?xml-stylesheet type="text/xsl"
href="role.xsl"?>
<role>
 <name>seller</name>
 <description>an agent attending an auction,
puts a good on sale</description>
 <keyword>auction</keyword>
 <keyword>seller</keyword>
 <action>
 <description>put a good on sale</description>
 <ret_value>void</ret_value>
 <act_name>put_on_sale</act_name>
 <parameter>
 <par_name>good_id</par_name>
 <type>string</type>
 </parameter>
 <parameter>
 <par_name>description</par_name>
 <type>string</type>
 </parameter>
 <parameter>
 <par_name>reserve_price</par_name>
 <type>int</type>
 </parameter>
 </action>
</role>

Figure 9. A seller role defined in XRole

The first important role in an auction is the bidder. This
role is assumed by an agent whose will ing is to buy a re-
source on sale. In Figure 8 is reported the XML docu-
ment conforming to XRole, which describes the role of
the bidder.

In this example, two main actions are allowed for the
agent that assumes such role: the bid, which is used to
make a bid and the ask_status, which asks for the status of
an auction.

The second significant role in the auction context is the
seller. Figure 9 shown how a seller role can be described
by XRole.

In this example, an agent that assumes the role of seller
is allowed (and also is expected) to put a good on sale by
means of the put_on_sale action, specifying information
about the good and the minimum price it wants to earn.

4 Related Work
Even if it has not been designed in connection with roles,
Aspect Oriented Programming (AOP) seems to provide
interesting mechanisms to support the management of
roles for agents [CACM, 2001]. AOP starts from the con-
sideration that there are behaviors and functionalities that
are orthogonal to the algorithmic parts of the objects
[Kiczales et al., 1997]. So, it proposes the separate defini-
tion of components and aspects, to be joined together by
an appropriate compiler (the Aspect Waver), which pro-
duces the final program. The separation of concerns in-
troduced by AOP permits to distinguish the algorithmic
issues from the behavioral issues. Since an aspect is “a
property that affect the performance or semantics of the
components in systemic way” , it is evident the similarity
with a role. Differently from XRole, AOP is thought to
achieve performance and maintainabili ty in software de-
velopment. In our opinion, even if the AOP is very simi-
lar to XRole, one possible limitation is its lack of flexibil-
ity in the definition and usage of aspects/roles. This is
due to the fact that AOP focuses on software develop-
ment rather than addressing the uncertainty and complex-
ity issues of wide-open environments, such as the Inter-
net. From this point of view XRole differs from AOP be-
cause it exploits the high degree of interoperability given
by XML.

The AOP has been exploited to implement the concept
of role by E. Kendall [Kendall , 2000]. She well describes
the importance of modeling roles for agent systems. Our
aim is to go beyond Kendall’s considerations, and to pro-
pose roles as intermediaries for the interactions between
agent applications and environments. Our concept of role
is more dynamic and aims at covering different stages of
the life cycle of agent-oriented applications in a more
practical way, concretely supporting both the design and
the implementation phases.

AALAADIN [Ferber and Gutknecht, 1998] is a meta-
model to define models of organizations. It is based on
three core concepts: agent, group and role. Even if our
approach is quite similar to the AALAADIN one, it dif-
fers for some reasons. First, we disregard the concept of
group, while focusing on the interactions among agents

and between agents and environments. Second,
AALAADIN roles are tightly bound to the notion of
agent, while our aim is to describe roles in a more inde-
pendent way, both of applications and environments.
Third, in AALAADIN environments are mainly modeled
by service agents, which is generally acceptable, but do
not cover all real situations, where also agents that play
roles of “pure clients” must be taken into account.

The ROPE project [Becht et al. 1999] recognizes the
importance of defining roles as first-class entities, which
can be assumed dynamically by agents. It proposes an
integrate environment, called ROPE (Role Oriented Pro-
gramming Environment), which can be exploit to develop
applications composed by several cooperating agents.
Rather than defining an integrated but close environment,
XRole aims at proposing an open methodology to define
agent roles. It addresses interoperabilit y and also the dy-
namic use of roles. Moreover, XRole can be used to de-
fine roles also for interactions among agents that do not
belong to the same application (i.e., are competitive); this
is a relevant aspect in the design of applications for wide-
open environments, such as the Internet.

5 Conclusions and Future Work
This paper has presented XRole, a XML-based system
designed to define roles for agent applications. The ex-
ploitation of the XML language gives flexibili ty and in-
teroperabilit y to systems, and allows exploiting the defi-
nition of roles at different phases of the life cycle of ap-
plications.

Some research directions for future work may be the
following.

First, the implementation of XRole is in progress, and
some issues related to the actual implementation of roles
are to be faced. The fact that an agent can assume a role
at runtime must be carefully evaluated, and the related
implementation may require appropriate mechanisms and
constructs, possibly provided by the implementation lan-
guage.

Second, it could be interesting the definition of “ reposi-
tories” of roles, from which agents can chose the more
appropriate for their tasks. Which could be the most
appropriate technology to create such repositories? And
which access policies must be defined? If each repository
is seen as a resource, meta-roles could be defined to rule
the access to them. Moreover, the fact that agents can as-
sume roles dynamically at runtime, imposes to resolve
the issues sketched in the previous paragraph, to make
effective an approach based on role repositories.

Finally, we are going to test XRole in applications dif-
ferent from the auction-related area, to verify its applica-
bili ty in a wide range of application areas.

Acknowledgements
Work supported by the NOKIA Research Center Boston,

by the Italian MURST within the project “MUSIQUE”
and the Italian Research Council (CNR).

References
[Agorics, 1996] Agorics, Inc., “Going, going, gone! A

survey of auction types” ,
http://www.agorics.com/new.html, 1996.

[Aridor and Lange, 1998] Y. Aridor, D. Lange, “Agent
Design Pattern: Elements of Agent Appli cation de-
sign” , the International Conference on Autonomous
Agents, ACM Press, 1998.

[Becht et al. 1999] M. Becht, T. Gurzki, J. Klarmann,
M. Muscholl, “ROPE: Role Oriented Programming
Environment for Multi agent Systems” , the Fourth
IFCIS Conference on Cooperative Information Sys-
tems (CoopIS'99), Edinburgh, Scotland, Sept. 1999.

[Cabri, 2001] G. Cabri, “Role-based Infrastructures for
Agents” , The 8th IEEE Workshop on Future Trends
of Distributed Computing Systems (FTDCS 2001),
Bologna (I), October 2001.

[CACM, 2001] Communication of the ACM, Special
Issue on Aspect Oriented Programming, Vol. 33,
No. 10, October 2001.

[Deutsch et al., 1999] A. Deutsch, M. Fernandez, D.
Florescu, A. Levy, D. Maier, and D. Suciu, “Query-
ing XML data”, Bulletin of the Technical Committee
on Data Engineering, Vol. 22, No. 3, pp. 27-34,
1999.

[Ferber and Gutknecht, 1998] J. Ferber and O.
Gutknecht, “AALAADIN: A meta-model for the
analysis and design of organizations in multi -agent
systems” , The Third International Conference on
Multi -Agent Systems (ICMAS'98), 1998.

[Kendall, 2000] E. A. Kendall, “Role Modelli ng for
Agent Systems Analysis, Design and Implementa-
tion” , IEEE Concurrency, 8(2):34-41, April -June
2000.

[Kiczales et al., 1997] G. Kiczales, J. Lamping, A.
Mendhekar, C. Maeda, C. Lopes, J. M. Loingtier, J.
Irwin, “Aspect-Oriented Programming,” Xerox Cor-
poration, 1997.
http://www.parc.xerox.com/csl/projects/aop/

[OMG, 1997] OMG, “CORBA 2.1 specifications” ,
1997, http://www.omg.org.

[W3C, 1998] WWW Consortium, eXtensible Markup
Language (XML) 1.0, W3C Recommendation,
http://www.w3.org/TR/REC-xml, 1998.

[Zambonelli et al., 2001] F. Zambonell i, N. R.
Jennings, M. Wooldridge, “Organizational Rules as
an Abstraction for the Analysis and Design of Multi -
agent Systems” , International Journal of Software
Engineering and Knowledge Engineering, 11(3):303-
328, 2001.

