
Federico Bergenti, Agostino Poggi,
Giovanni Rimassa and Paola Turci

Dipartimento Ingegneria dell’Informazione
Università degli Studi di Parma

Parco Area delle Scienze, Parma, Italy
email: {bergenti,poggi,rimassa,turci}@ce.unipr.it

Fabio Bellifemine

Telecom Italia Lab
Via G. Reiss Romoli, 274

 10148 Torino, Italy
fabio.bellifemine@tilab.com

Abstract
JADE (Java Agent Development Framework)
is a software environment to build agent sys-
tems for the management of networked infor-
mation resources in compliance with the
FIPA2000 specifications for interoperable in-
telligent multi-agent systems. JADE offers an
agent middleware to implement efficient
FIPA2000 compliant multi-agent systems and
supports their development through the avail-
ability of a predefined programmable agent
model, an ontology development support, and
a set of management and testing tools. This
paper describes the main features of the JADE
system and introduces some of the most im-
portant projects based on the JADE software.

1 Introduction
Agents are one of the most promising information tech-
nologies; however, agent-based technologies cannot keep
their promises, and will not become widespread, until
there are standards to support agent interoperability and
adequate environments for the development of agent sys-
tems.

In this period, there is a lot of activity concerning
the development of agent systems (see, for example,
Bee-gent [Kawamura et al., 1999], MOLE [Baumann
et al., 1998] and RETSINA [Sycara et al., 1996]), and
the standardization of these systems, where in the past
KSE [Patil et al., 1992], OMG [Milojicic et al., 1998]
and then FIPA [FIPA, 2000] led the activity.

Even if there is no system accepted as being consid-
erably superior to the others. At this point in time, the
FIPA standardisation effort is predominant and more and
more systems based on the FIPA specifications are avail-
able.

Such environments provide some predefined agent
models and tools to ease the development of systems.
Moreover, some of them try to inter-operate with other
agent systems through a well-known agent communi-
cation language (e.g., KQML [Finin and Labrou,
1997]).

However, a shared communication language is not the
only element required to support interoperability between
different agent systems, common agent services and
ontologies are also needed. The standardisation work of

tologies are also needed. The standardisation work of
FIPA acknowledges this issue and, in addition to an agent
communication language, specifies the key agents neces-
sary for the management of an agent system and the
shared ontology to be used for the interaction between
two systems.
In this paper, we present JADE (Java Agent Development
framework), a software framework to write agent
applications in compliance with the FIPA2000 specifi-
cations for interoperable intelligent multi-agent systems.
The next section introduces the FIPA specifications. Sec-
tion three presents the main features of JADE. Section
four describes some projects using JADE. Finally, the
last section concludes with a brief discussion about JADE
features.

2 FIPA
The Foundation for Intelligent Physical Agents (FIPA)
[FIPA, 2000] is an international non-profit association of
companies and organizations sharing the effort to pro-
duce specifications for generic agent technologies. FIPA
does not promote a technology for just a single applica-
tion domain but a set of general technologies for different
application areas that developers can integrate to make
complex systems with a high degree of interoperability.

The FIPA standardization process relies on two main
assumptions. The first is that the time required to reach a
consensus and to complete the standard should be as
short as possible, should not impede progress, but should
act as a promoter of stronger industrial commitment in
agent technology. The second assumption is that only the
external behaviour of system components should be
specified, leaving implementation details and internal ar-
chitectures to platform developers. In fact, the internal
architecture of JADE is proprietary even if it complies
with the interfaces specified by FIPA.

Since 1997, FIPA yearly release a set of specifications,
some of them modify the previous ones, some others are
new specifications that try to cover some aspects that
previous specifications did not cope with. Current FIPA
specifications are called FIPA2000. These specifications
revised and abstracted an agent platform, improved agent
communication, and extend the transport layer to support
mobile and wireless applications.

FIPA specifications state the normative rules that al-
low a society of agents to exist, operate and be managed.

Middleware and Programming Support for Agent Systems

They identify the roles of some key agents necessary for
managing the platform, and describe the agent manage-
ment content language and ontology. Two mandatory
roles were identified for an agent platform. The Agent
Management System (AMS) is the agent that exerts su-
pervisory control over access to and use of the platform;
moreover, it is responsible for maintaining a directory of
resident agents and for handling their life cycle. The Di-
rectory Facilitator (DF) is the agent that passes on yellow
page services to the agent platform. Notice that no re-
striction is given to the actual technology used for plat-
form implementation: an e-mail based platform, a
CORBA based one, a Java multi-threaded application,
etc. could all be FIPA compliant implementations.
According to FIPA definition, an agent is the fundamen-
tal actor in a domain. It is capable of bringing together a
number of service capabilities to form a unified and inte-
grated execution model that can include access to exter-
nal software, human users and communication facilities.

Of course, the specifications also define the Agent
Communication Language (ACL). Agent communication
is based on message passing, where agents communicate
by sending individual messages to each other. The FIPA
ACL is a standard message language and sets out the en-
coding, semantics and pragmatics of the messages. It
does not set out a specific mechanism for the transporta-
tion of messages. Since different agents might run on dif-
ferent platforms and use different networking technolo-
gies, the messages are encoded in a textual form. It is as-
sumed that the agent has some means of transmitting this
textual form.

The ACL provides the bases for the specification of in-
teraction protocols, common patterns of conversation be-
tween agents aimed at specifying high-level tasks, such
as delegating a task, negotiating conditions, and some
forms of auctions.

FIPA supports common forms of inter-agent conversa-
tions through the specification of interaction protocols,
which are patterns of messages exchanged by two or
more agents. Such protocols range from simple query and
request protocols, to more complex ones, such as the
well-known contract net negotiation protocol and English
and Dutch auctions.

The remaining parts of the FIPA specifications deal
with other aspects, in particular with agent-software
integration, agent mobility, agent security, ontology
service, and human-agent communication; however,
these specifications are either not complete or have a
limited experimentation.

3 JADE
JADE (Java Agent Development framework) is a soft-
ware framework to aid the development of agent applica-
tions in compliance with the FIPA specifications for in-
teroperable intelligent multi-agent systems. JADE is an
Open Source project, and the complete system can be
downloaded from JADE Home Page [JADE, 1999].

The JADE system can be described from two differ-
ent points of view. On the one hand, JADE is a mid-
dleware for FIPA-compliant Multi Agent Systems,
supporting application agents whenever they need to

exploit some feature covered by the FIPA standard
specification (message passing, agent life-cycle man-
agement, etc.). On the other hand, JADE is a Java
framework for developing FIPA-compliant agent ap-
plications, making FIPA standard assets available to
the programmer through object oriented abstractions.
The two following subsections will present JADE from
the two standpoints, trying to highlight the major de-
sign choices followed by the JADE development team.

3.1 Middleware
JADE communication architecture tries to offer flexi-
ble and efficient messaging, transparently choosing the
best transport available and leveraging state-of-the-art
distributed object technology embedded within the
Java runtime environment. While appearing as a single
entity to the outside world, a JADE agent platform is
itself a distributed system, since it can be split over
several hosts with one of them acting as a front end
where AMS and DF agents are placed. A JADE system
comprises one or more Agent Containers, each living
in a separate Java Virtual Machine and delivering run-
time environment support to some JADE agents. The
JADE middleware tries to provide efficient and flexi-
ble messaging services to user applications.

The previous implementation of JADE [Bellifemine
et al., 1999] has been modified according to the new
FIPA 2000 specifications: an agent platform must con-
tain a component called Agent Communication Chan-
nel (ACC for short), whose task is to transparently
provide a Message Transport Service (MTS for short),
relying upon one or more FIPA compliant Message
Transport Protocols (MTPs). Currently, FIPA 2000
has defined MTPs for IIOP, HTTP and WAP proto-
cols, so interoperability can be achieved exploiting any
among the three protocols above.
 JADE distinguishes between inter-platform messaging
(the sender and the receiver agents live on different plat-
forms) and intra-platform messaging (the two interacting
agents are within the same platform). While inter-
platform messaging has to comply with FIPA specifica-
tions, intra-platform message delivery is strictly a JADE
issue, so a more convenient proprietary transport can be
exploited. JADE uses Java RMI for intra-platform com-
munications, but a new kernel is being developed in the
scope of the LEAP project [LEAP, 2000], which will
support different transport protocols for intra-platform
messaging.

Since JADE is a distributed agent platform, the ACC
component is split in different parts, running on the dif-
ferent agent containers that make up the platform. The
major features of JADE ACC are:
• Multiple MTPs, deployed as plug-ins on multiple

containers.
• One hop message routing for outgoing and incoming

messages.
• Protocol independent address caching.

The general JADE messaging framework allows to de-
ploy new transport ports during normal platform opera-
tion: the JADE administrator can add a new protocol to
any agent container, simply logging in the management

GUI and providing the Java class that implements the
MTP.

An agent platform can now have any number of ad-
dresses, scattered around different hosts. Message routing
support is needed to manage this rather general topology;
the ACC provides a routing service that is guaranteed to
require at most one hop. When a message reaches the
platform through one of the available external communi-
cation ports, the ACC looks up the receiver agent ID to
retrieve the agent container where it must dispatch the
incoming ACL message. If the agent lives within the
same container, the ACC uses an optimized local call;
otherwise it relies on Java RMI.

When an agent wants to send a message to another,
living on a different platform, it asks its local ACC for
delivery service. The ACC reads the address list of the
agent ID of the message recipient and tries all the ad-
dresses until one of them succeeds; for a specific address,
the ACC discovers which MTP has to be used (FIPA ad-
dresses are URLs, so they contain a part that identifies
the protocol) and checks to see whether that MTP is in-
stalled on the current agent container. If so, the locally
available MTP is used, otherwise the ACC routes the
message to a suitable container using a table that stores
the deployment location of each MTP in the agent plat-
form.

The JADE messaging subsystem also has an address
caching feature that allows direct communication be-
tween agents, without unnecessary table lookups: intra-
platform addresses and standard FIPA addresses are
cached on each container exactly in the same way: on
cache hits, the messaging subsystem does not even need
to know whether the receiver is local, intra-platform or
inter-platform. The cache is updated according to an op-
timistic attitude (i.e., if a cached address becomes stale
the message delivery operation fails with an exception
and the cached item is refreshed) and the cache replace-
ment policy is the usual Least Recently Used one.

The JADE ACC can also be deployed on its own,
without a complete agent container. This is meant to
enable users to build and deploy agent level gateways
and firewalls: a standalone ACC lives within a JVM
that can route and filter ACL messages but cannot host
FIPA agents.

3.2 Agent Model
FIPA specifications state nothing about agent internals,
but when JADE was designed and built they had to be
addressed. A major design issue is the execution model
for an agent platform, both affecting performance and
imposing specific programming styles on agent develop-
ers. As will be shown in the following, JADE solution
stems from the balancing of forces from ordinary soft-
ware engineering guidelines and theoretical agent proper-
ties.

A distinguishing property of a software agent is its
autonomy; an agent is not limited to react to external
stimuli, but it’s also able to start new communicative acts
of its own. A software agent, besides being autonomous,
is said to be social, because it can interact with other
agents in order to pursue its goals or can even develop an
overall strategy together with its peers.

FIPA standard bases its Agent Communication Lan-
guage on speech-act theory [Searle, 1970] and uses a
mental model to build a formal semantic for the perfor-
matives agents exchange. This approach is quite different
from the one followed by distributed objects and rooted
in Design by Contract; a fundamental difference is that
invocations can either succeed or fail but a request
speech act can be refused if the receiver is unwilling to
perform the requested action.

Trying to map the aforementioned agent properties
into design decisions, we can say:
• Agents are autonomous then are active objects.
• Agents are social then intra-agent concurrency is

needed.
• Agent messages are speech acts then asynchronous

messaging must be used.
• Agents can say “no” then peer-to-peer communication

model is needed.
The autonomy property requires each agent to be an

active object with at least a Java thread, to proactively
start new conversations, make plans and pursue goals.
The need for sociality has the outcome of allowing an
agent to engage in many conversations simultaneously,
dealing with a significant amount of concurrency.

The third requirement suggests asynchronous message
passing as a way to exchange information between two
independent agents that also has the benefit of producing
more reusable interactions. Similarly, the last require-
ment stresses that in a Multi Agent System the sender and
the receiver are equals (as opposed to client/server sys-
tems where the receiver is supposed to obey the sender).
An autonomous agent should also be allowed to ignore a
received message as long as he wishes; this advocates
using a pull consumer-messaging model, where incoming
messages are buffered until their receiver decides to read
them.

The above considerations help in deciding how many
threads of control are needed in an agent implementation;
the autonomy requirement forces each agent to have at
least a thread, and the sociality requirement pushes to-
wards many threads per agent. Unfortunately, current op-
erating systems limit the maximum number of threads
that can be run effectively on a system. JADE execution
model tries to limit the number of threads and has its
roots in actor languages.

The Behaviour abstraction models agent tasks: a
collection of behaviours are scheduled and executed to
carry on agent duties. Behaviours represent logical
threads of a software agent implementation. According
to Active Object design pattern, every JADE agent
runs in its own Java thread, satisfying autonomy prop-
erty; instead, to limit the threads required to run an
agent platform, all agent behaviours are executed co-
operatively within a single Java thread. So, JADE uses
a thread-per-agent execution model with cooperative
intra-agent scheduling.

JADE agents schedule their behaviour with a “coop-
erative scheduling on top of the stack”, in which all be-
haviours are run from a single stack frame (on top of the
stack) and a behaviour runs until it returns from its main

function and cannot be preempted by other behaviours
(cooperative scheduling).

JADE model is an effort to provide fine-grained paral-
lelism on coarser grained hardware. A likewise, stack
based execution model is followed by Illinois Concert
runtime system [Karamcheti et al., 1996] for parallel ob-
ject oriented languages. Concert executes concurrent
method calls optimistically on the stack, reverting to real
thread spawning only when the method is about to block,
saving the context for the current call only when forced
to.

Choosing not to save behaviour execution context
means that agent behaviours start from the beginning
every time they are scheduled for execution. So, behav-
iour state that must be retained across multiple executions
must be stored into behaviour instance variables. A gen-
eral rule for transforming an ordinary Java method into a
JADE behaviour is:
• Turn the method body into an object whose class in-

herits from Behaviour.
• Turn method local variables into behaviour instance

variables.
• Add the behaviour object to agent behaviour list dur-

ing agent startup.
The above guidelines apply the reification technique

[Johnson and Zweig, 1991] to agent methods, according
to Command design pattern; an agent behaviour object
reifies both a method and a separate thread executing it.
A new class must be written and instantiated for each
agent behaviour, and this can lead to programs harder to
understand and maintain. JADE application programmers
can compensate for this shortcoming using Java Anony-
mous Inner Classes; this language feature makes the code
necessary for defining an agent behaviour only slightly
higher than for writing a single Java method.

JADE thread-per-agent model can deal alone with the
most common situations involving only agents: this is
because every JADE agent owns a single message queue
from which ACL messages are retrieved. Having multi-
ple threads but a single mailbox would bring no benefit in
message dispatching. On the other hand, when writing
agent wrappers for non-agent software, there can be
many interesting events from the environment beyond
ACL message arrivals. Therefore, application developers
are free to choose whatever concurrency model they feel
is needed for their particular wrapper agent; ordinary
Java threading is still possible from within an agent be-
haviour.

The developer implementing an agent must extend
Agent class and implement agent-specific tasks by writ-
ing one or more Behaviour subclasses. User defined
agents inherit from their superclass the capability of reg-
istering and deregistering with their platform and a basic
set of methods (e.g. send and receive ACL messages, use
standard interaction protocols, register with several do-
mains). Moreover, user agents inherit from their Agent
superclass some methods to manage the agent behaviours

JADE contains ready made behaviours for the most
common tasks in agent programming, such as sending
and receiving messages and structuring complex tasks
as aggregations of simpler ones. JADE recursive ag-

gregation of behaviour objects resembles the technique
used for graphical user interfaces, where every inter-
face widget can be a leaf of a tree whose intermediate
nodes are special container widgets, with rendering
and children management features. An important dis-
tinction, however, exists: JADE behaviours reify exe-
cution tasks, so task scheduling and suspension are to
be considered, too.

Thinking in terms of software patterns, if Composite
is the main structural pattern used for JADE behav-
iours, on the behavioural side we have Chain of Re-
sponsibility: agent scheduling directly affects only top-
level nodes of the behaviour tree, but every composite
behaviour is responsible for its children scheduling
within its time frame.

3.3 Ontology Support
Complex knowledge management domain leads to com-
plex interactions between agents; in order to support this
complexity it is necessary to have a good support for con-
tent language and ontology. JADE offers a general sup-
port for ontologies based on a model of the content lan-
guage, which is able to describe:
• Object, construct that represents an identifiable entity;

this is mainly important to realize a typed knowledge
base.

• Proposition, e.g. the content of an “inform” commu-
nicative-act is a predicate (a subtype of proposition).

• Action, e.g. in the “request” communicative-act, tries
to express an activity that can be carried out by an ob-
ject.

• IRE (Identifying Reference Expression) , e.g. in the
“query-ref” communicative-act.

This model is composed of:
• An abstract content language; ontology independent

abstract model, that is a generic model of the concepts
that any content language must be able to express
(e.g. schemas representation, like predicate, action,
etc.).

• A concrete content language (instance of the abstract
content language with possible different logic frame-
works, like Modal logic, Deontic logic, etc.).

The whole ontology support framework is character-
ized by four hot spots: it is possible to have different
content language instances (e.g. Deontic logic content
language, Modal logic content language, …), different
content language concrete syntaxes (e.g. RDFS, SL-
expression), different ontologies, and different ontol-
ogy concrete representations (RDFS, SL-expression).

3.4 Management and Testing Tools
In addition to a runtime library and an agent program-
ming library, JADE offers some tools to manage the run-
ning agent platform and to monitor and debug agent so-
cieties. All these tools are implemented as FIPA agents
themselves, and they require no special support to per-
form their tasks, they simply rely on JADE AMS. The
general management console for a JADE agent platform
is called RMA (Remote Management Agent). The RMA
acquires the information about the platform and executes
the GUI commands to modify the status of the platform
(creating new agents, shutting down peripheral contain-

ers, etc.) through the AMS. On the one hand, the RMA
asks the AMS to be notified about the changes of state of
platform agents, on the other hand, it transmits to the
AMS the requests for creation, deletion, suspension and
restart received by the user. The Directory Facilitator
agent also has a GUI of its own, with which the DF can
be administered, adding or removing agents and config-
uring their advertised services.

The three graphical tools with which JADE users can
debug their agents are the Dummy Agent, the Sniffer
Agent and the Debugger Agent.

 The Dummy Agent is a simple, yet very useful, tool
for inspecting message exchanges among agents. The
Dummy Agent facilitates validation of an agent message
exchange pattern before its integration into a Multi Agent
System and facilitates interactive testing of an agent. The
graphic interface provides support to edit, compose and
send ACL messages to agents, to receive and view mes-
sages from agents, and, eventually, to save/load messages
to/from disk.

The Sniffer Agent makes it possible to track messages
exchanged in a JADE agent platform. When the user de-
cides to sniff a single agent or a group of agents, every
message directed to or coming from that agent or group is
tracked and displayed in the sniffer window, using a
notation similar to UML Sequence Diagrams. The user,
who can also save and load every message track for later
analysis, can examine every ACL message.

The Debugger Agent makes to trace the internal
execution of each agent. In particular, it allows view-
ing the input message queue, the agent life cycle state
and the behaviors running.

4 Applications
Even if JADE is a young project and was designed with
criteria more academic than industrial, and even if it has
been released under an Open Source License only re-
cently, it has already been used by a number of projects.
In particular, it has been used and is used in four projects
sponsored by the European Commission: FACTS
[FACTS, 1998], LiMe [LiMe, 1999], LEAP [LEAP,
2000], CoMMA [CoMMA, 2000] and Agentcities.RTD
[Agentcities, 2001].

FACTS [FACTS, 1998] is a project in the framework
of the ACTS programme of the European Commission
that used JADE in two application domains. In the first
application domain, JADE provides the basis for a new
generation TV entertainment system. The user accesses a
multi-agent system to help him on the basis of his profile
that is captured and refined over time through the col-
laboration of agents with different capabilities. The sec-
ond application domain deals with agents in collabora-
tion, and at the same time competing, in order to help the
user to purchase a business trip. A Personal Travel Assis-
tant represents the interests of the user and cooperates
with a Travel Broker Agent in order to select and rec-
ommend the business trip.

LiMe [LiMe, 1999] is a Long Term Research Pro-
gramme of the European Commission under its `I-cubed'
(Intelligent Information Interfaces) programme. The goal
of the project was to create a multi-agent system for the

enhancement of social interaction within connected
communities. JADE has successfully supported the LiMe
communicating agents for dynamic user profiling, collec-
tive information dissemination and memory management
for a 2-day field trial.

LEAP [LEAP, 2000] is a going project in the frame-
work of the IST programme of the European Commis-
sion. This project is addressing the need for open infra-
structures and services that support dynamic, mobile en-
terprises and will extend JADE to support mobile and
wireless applications. LEAP develops agent-based ser-
vices supporting three requirements of a mobile enter-
prise workforce: Knowledge management (anticipating
individual knowledge requirements), decentralized work
co-ordination (empowering individuals, coordinating and
trading jobs), travels management (planning and coordi-
nating individual travel needs).

CoMMA [CoMMA, 2000] is a going project in the
framework of the IST programme of the European
Commission that is using JADE to help users in the
management of an organization corporate memory and
in particular to facilitate the creation, dissemination,
transmission and reuse of knowledge in the organiza-
tion. The main objective of this project is to implement
and test a Corporate Memory Management framework
based on agent technology. The innovative aspect of
the project is to integrate several emerging technolo-
gies that were generally used separately until now:
agent technology, knowledge modeling, XML technol-
ogy, information retrieval techniques and machine
learning techniques. Integration of these technologies
in one system is already a challenge yet another chal-
lenge is the definition of the methodology supporting
the whole design process. The project intends to im-
plement the system in the context of two scenarios (1)
the insertion of new employees in the company and (2)
the technology monitoring.

Agentcities.RTD [Agentcities, 2001] is a going pro-
ject in the framework of the IST programme of the
European Commission. The project's objectives are to
create an on-line, distributed testbed to explore and
validate the potential of agent technology for future
dynamic service environments. The project aims to
produce the following important results: i) an open,
stable, scalable and reliable network architecture that
allows standards compliant agents to discover each
other, communicate and offer services to one another;
II) models, methodology and prototype solutions for
the integration of business services into the service en-
vironment; and III) practical methodologies for the ap-
plication of agent communication technologies (se-
mantic models, ontology, expression of content and
protocols) to service modeling in open heterogeneous
environment.

5 Conclusions
In this paper we presented JADE (Java Agent Develop-
ment framework), a software framework to aid the devel-
opment of agent applications in compliance with the
FIPA2000 specifications for interoperable intelligent
multi-agent systems.

JADE is written in Java language and comprises vari-
ous Java packages, giving application programmers both
ready-made pieces of functionality and abstract interfaces
for custom, application dependent tasks. Java was the
chosen programming language because of its many at-
tractive features, which are particularly geared towards
object-oriented programming in distributed heterogene-
ous environments.

Starting from the FIPA assumption that only the exter-
nal behaviour of system components should be specified,
leaving the implementation details and internal architec-
tures to agent developers, we produced a very general but
primitive agent model that can serve as a useful basis to
implement, for example, reactive or BDI architectures. In
addition, the behaviour abstraction of our agent model
permits an easy integration of external software. For ex-
ample, we created a JessBehaviour that makes it possible
to use JESS [Friedman-Hill, 1998] as agent reasoning en-
gine. In comparison to the agent development tools intro-
duced in the previous section, JADE offers a more effi-
cient implementation and a more general agent model.
Such an agent model is more “primitive” than the agent
models offered, for example, by RETSINA [Sycara et
al., 1996], however, the overhead given by such sophisti-
cated agent models might not be justified for agents that
have to perform some simple tasks. In addition, sophisti-
cated agent models such as BDI and reactive architec-
tures, as previously mentioned, can be implemented on
top of our “primitive” agents model.

The development of JADE has not yet terminated. Our
intention is, initially, to introduce additional support for
Web technology integration and to provide some new
tools to ease the development of agent systems such as,
for example, a visual tool to compose agent behaviours,
and to offer some higher level agent architecture as, for
example, BDI architecture.

Acknowledgments
Thanks to all the people that contributed to develop-
ment of JADE and to all the partners of the EC pro-
jects introduced in the paper. This work is partially
supported by TILab, Torino and by the European
Commission through the contracts IST-1999-12217 -
CoMMA - Corporate Memory Management through
Agents and IST-1999-10211 – LEAP – Lightweight
Extensible Agent Platform and IST-2000-28385 -
Agentcities.RTD.

References
[Agentcities, 2001] Agentcities.RTD Home Page.

Available at http://www.agentcities.org/EURTD/.
[Baumann et al., 1998] J. Baumann, F. Hohl, K. Ro-

thermel and M. Straßer. Mole - Concepts of a Mo-
bile Agent System, World Wide Web,1(3):123-137,
1998.

[Bellifemine et al., 1999] F. Bellifemine, A. Poggi
and G. Rimassa. JADE - A FIPA-compliant Agent
Framework. In Proc. Fourth International Confer-
ence on the Practical Application of Intelligent

Agent and Multi Agent Technology (PAAM99), pp.
97-108, London, UK, 1999.

[CoMMA, 2000]CoMMA Home Page. 2000. Avail-
able at http://www.ii.atos-
group.com/sophia/comma/HomePage.htm.

[FACTS, 1998] FACTS Home Page. Available at
http://www.labs.bt.com/profsoc/facts/.

[Finin and Labrou, 1997] T. Finin and Y. Labrou.
KQML as an agent communication language. In:
J.M. Bradshaw (ed.), Software Agents, pp. 291-316.
MIT Press, Cambridge, MA, 1997.

[FIPA, 2000] Foundation for Intelligent Physical
Agents. Specifications. 2000. Available at
http://www.fipa.org.

[Friedman-Hill, 1998] E.J. Friedman-Hill. Java Ex-
pert System Shell. 1998. Available at
http://herzberg.ca.sandia.gov/jess.

[JADE, 1999] JADE Home Page, 1999. Available at
http://jade.cselt.it.

[Johnson and Zweig, 1991] R.E. Johnson and J.M.
Zweig. Delegation in C++. The Journal of Object
Oriented Programming, 4(7):31-34, 1991.

[Karamcheti et al., 1996] V. Karamcheti, J. Plevyak
and A. Chien. Runtime Mechanisms for Efficient
Dynamic Multithreading. Journal of Parallel and
Distributed Computing, 37:21-40, 1996.

[Kawamura et al., 1999] T. Kawamura, N. Yoshioka,
T. Hasegawa, A. Ohsuga and S. Honiden. Bee-gent :
Bonding and Encapsulation Enhancement Agent
Framework for Development of Distributed Systems.
Proceedings of the 6th Asia-Pacific Software
Engneering Conference, 1999.

[LEAP, 2000] LEAP Home Page. 200. Available at
http://leap.crm-paris.com/.

[LiMe, 1999] LiMe Project Page. Available at
http://www.ee.ic.ac.uk/tour/ResearchSections/Intelli
gentCommunications/lime.html.

[Milojicic et al., 1998] D. Milojicic, M. Breugst, I.
Busse, J. Campbell, S. Covaci, B. Friedman, K. Ko-
saka, D. Lange, K. Ono, M. Oshima, C. Tham, S.
Virdhagriswaran, and J. White. MASIF - The OMG
Mobile Agent System Interoperability Facility. In K.
Rothermel and F. Hohl, Eds. Proc. 2nd Int. Work-
shop Mobile Agents, pp. 50-67, Springer, 1998.

[Patil et al., 1992] R.S. Patil, R.E. Fikes, P.F. Patel-
Scheneider, D. McKay, T. Finin, T. Gruber and R.
Neches. The DARPA knowledge sharing effort: pro-
gress report. In: Proc. Third Conf. on Principles of
Knowledge Representation and Reasoning, pp 103-
114. Cambridge, MA, 1992.

[Searle, 1970] J. Searle. Speech Acts: An Essay in
the Philosophy of language. Cambridge Univ. Press,
1970.

[Sycara et al., 1996] K. Sycara, A. Pannu, M. Wil-
liamson and D. Zeng. Distributed Intelligent Agents.
IEEE Expert, 11(6):36-46. 1996.

