
Computational Framework for and the Realization of
Cognitive Agents Providing Intelligent Assistance

Capabilities
Marcin Skowron, Joerg Irran, Brigitte Krenn 1

Abstract. The scope of the presented research covers virtual agents
providing intelligent assistance capabilities for accessing and pro-
cessing information from the Internet, domain specific databases and
knowledge repositories. They receive natural language inputs and
communicate findings to their users via a set of task oriented in-
terfaces. Cognitive agents are conceived to evolve in a response to
the changes of interests, needs and preferences of the users and the
alterations in their environment. We present a virtual embodied cog-
nitive agents architecture, and a computational framework that al-
lows their modular and flexible creation, based on a set of compo-
nents. The framework supports the creation of an environment for
multiple agents and provides communication mechanisms, used to
share knowledge between the agents. The exemplary assembly of
these building blocks to realize smart assistance applications further
demonstrates the platform’s capacity to support development, instan-
tiation and evaluation of collaborative cognitive agents.

1 MOTIVATION AND OBJECTIVES

Our motivation is to create virtual agents that provide personalized
assistance to their users in finding and retrieving information from
the Internet and other resources such as domain-specific databases
and knowledge repositories. The developed virtual agents represent
a growing class of cooperative agents that do not have a physical
presence, but nevertheless are equipped with major ingredients of
cognition including situated correlates of physical embodiment to
become adaptive, cooperative and self improving in a virtual envi-
ronment, given certain tasks. The design of the agents is partially
inspired by embodied cognition originating from interaction-based
robotics, transferred to a virtual context[5, 4]. This is persuade in
the projects RASCALLI (Responsive Artificial Situated Cognitive
Agents that Live and Learn on the Internet) and SELP (Advanced
Knowledge Technologies: Grounding, Fusion, Applications). The
presented work covers the following topics: development of a com-
putational framework for realization of cognitive agents providing in-
telligent assistance capabilities, cognitive architecture and modeling,
perception and action, reasoning, learning, communication, agent-to-
agent and agent-to-user interfaces.

In the symbolic AI tradition, there has been a substantial work on
Internet agents that perform pre-defined tasks on the Internet, includ-
ing information retrieval and extraction tasks2, checking for website
updates, doing price comparisons etc. However, such Internet agents

1 Austrian Research Institute for Artificial Intelligence,Austria, email:
marcin.skowron,joerg.irran,brigitte.krenn@ofai.at

2 http://www.cs.washington.edu/research/softbots

relied rather on extensive statistical analysis and on existing search
engines than on the usage of cognitive architectures in an attempt
to develop adaptive and flexible virtual agents. The Rascalli project
aims at extending the state of the art by developing situated cogni-
tive agents which inhabit the Internet environment. The investigation
of the added value through the usage of cognitive architectures for
improving the agent’s capabilities and the user experience in inter-
action with that agent is a further objective of the presented work.
This is feasible due to the modular approach used in the Rascalli
platform, which supports multiple agent architectures and agent def-
initions, and therefore serves as a testbed for the evaluation and com-
parison of the agents.
The major standards organization in the area of Agent Oriented Soft-
ware Engineering (AOSE) is FIPA3, which is concerned with the
standardization and interoperability of multi-agent systems. JADE4

and similar FIPA compliant agent platforms offer a strong middle-
ware layer for distributed multi-agent systems, including agent life-
cycle management, agent communication, as well as rich graphical
tools for agent development but they do not meet major requirements
of the RASCALLI platform. While the RASCALLI platform sup-
ports the execution of multiple agents, it is not a multi-agent system
in the traditional sense, where agents are independent components of
a larger application. Instead, Rascalli are complete individual entities
that simply happen to exist in the same environment and are intended
to communicate with each other. Furthermore, none of the aforemen-
tioned agent platforms supports the development style targeted by the
RASCALLI platform, where multiple agent architectures and agent
definitions, as well as multiple versions of agent components co-exist
in a single platform instance. This development style is specifically
geared towards research projects experimenting with alternative cog-
nitive architectures, and combining them with a variety of action and
perception tools as it is the case with the exemplary applications (see
section 6) created and integrated in the Rascalli platform. The RAS-
CALLI approach differs also from existing software systems for cog-
nitive modeling such as AKIRA VI5 or AmonI6. While the latter two
provide specific means for modeling cognitive processes, the RAS-
CALLI platform is a more general framework for implementing a
variety of different models and architectures.
The rest of the paper is organized as follows: section 2 describes con-
cepts and design principles of the cognitive agents providing intelli-
gent assistance capabilities. Section 3 introduces the computational

3 http://www.fipa.org
4 http://jade.tilab.com
5 https://sourceforge.net/projects/a-k-i-r-a/
6 htpp://www.cs.bath.ac.uk/ai/AmonI-sw.html



framework for realization of the cognitive agents as implemented in
the Rascalli platform. Section 4 provides an overview of a bottom-
up and top-down cognitive components used in the system. Section
5 introduces the concepts and components implemented in the plat-
form, that are used to create different incarnations of Rascalli agents,
presented in section 6. The last section provides the conclusions and
presents the future work.

2 CONSTITUTION OF THE AGENTS

In the RASCALLI project the creation of virtual agents that provide
personalized assistance to users in finding and retrieving information
from the Internet and other resources such as knowledge reposito-
ries and domain-specific databases is pursued. The set of actions the
agents are able to perform includes web and database search mecha-
nisms, techniques for extracting information from social networks
and news-feeds, techniques for extracting information from texts,
logging of user interactions and recommendation of related content.
The agents evolve in response to the changes of interests, needs and
preferences of the users and to the alterations in the agents environ-
ment. Therefore the agents need a certain degree of autonomy and
flexibility in their behavior. To achieve this, the agents have a bio-
logically inspired virtual embodiment consisting of three layers (see
Fig. 1), a perception layer with which they perceive (analyse) their
environment, a cognitive layer with learning and reasoning capabil-
ities, and an actuator layer which allows them to act on the environ-
ment employing a selection of processing tools. Everything outside
the agent, including the user, Internet resources, local databases and
other Rascalli agents is considered as a part of the environment. Due
to the modular design of the platform (refer to section 3), a cogni-
tive component can be realized using various approaches (refer to
section 4) and different agents can be assembled using a selected set
of action-perception and user-agent interface components (refer to
section 5).

Figure 1. Layers of the agents virtual embodiment and the interaction loop
with the environment

3 RASCALLI PLATFORM - A
COMPUTATIONAL FRAMEWORK FOR
COGNITIVE AGENTS

In the scope of the Rascalli project, various sets of action-perception
tools as well as knowledge acquisition, reasoning and decision mak-
ing mechanisms are being conceptualized, developed and tested. The
Rascalli development platform[10] supports a flexible creation of in-
dividual virtual agents via assembly from a set of existing software
components. The platform allows also multiple instances of agents

to be run on a single platform instance, thus different incarnations
of virtual agents can be exposed to the same environmental condi-
tions, as well as developed and evaluated in parallel. The Rascalli
project provides also several interface modules for the realization
of agent-human interaction, including an Embodied Conversational
Agent interface and other interfaces described in section 5.7. The
interfaces are treated in the Rascalli platform in the same way as
the other components. Since the components are isolated building
blocks, they can be separately evaluated, according to what informa-
tion they have gathered, what outputs they have produced to certain
tasks or according to the the user satisfaction. Consequently, different
system incarnations (including various implementations of a cogni-
tive component) can be assembled and evaluated to find an optimal
set of system components for a given objective (see section 6).
The design of the software architecture of the RASCALLI platform
is determined by a number of requirements. They stem from the need
for distributed development of individual components, the wish to
run multiple Rascalli on a single platform, the need for a platform
that supports a plug and play approach, and that supports the re-
alization of and experimentation with different cognitive architec-
tures/models/components. We additionally aim at a research setting,
where the integration of existing components is preferable to re-
implementation, and where system integration is likely to be a tech-
nically non-trivial task.
The RASCALLI platform supports the implementation of agents of
different constitutions, structured in several layers (see Fig.2 for an
overview):

Figure 2. Rascalli platform and its layers

Infrastructure Layer : The infrastructure layer contains basic tech-
nologies and components the RASCALLI platform is build upon.
Framework Layer : The framework layer contains general platform
services and components available to all RASCALLI agents.
Agent Architecture Layer : This layer defines the constitution of the
general agents architecture (e.g. Mind-Body-Environment).
Agent Component Layer: The Agent Components layer contains
implementations of the components/interfaces defined by the Agent
Architecture Layer.
Agent Definition Layer: An agent configuration is an assembly of
specific components of the Agent Component Layer.
Agent Layer: The agent layer contains the actual individual agents.



Each agent is an instantiation of a specific agent configuration, based
on a set of agent components defined within a specific agent architec-
ture. An individual agent might have additional configuration beyond
what is provided on the agent configuration layer such as an individ-
ual agent’s name, name of its user, etc. A more detailed description
of the agents cognitive and other components is provided in the fol-
lowing sections.

4 TOP-DOWN AND BOTTOM-UP COGNITIVE
CAPABILITIES

Considering the agents’ cognitive component, we follow two strands
of knowledge acquisition and action selection for the agents: a low
level bottom-up approach where an agent acquires knowledge based
on logs from its interaction with the user and the other entities from
its environment, and a theory driven (top-down) approach based
on the DUAL/AMBR cognitive model[8]. To realize an interaction
based knowledge acquisition architecture for virtual environments, a
virtual embodiment for our agents is created. They are equipped with
a collection of sensor channels geared towards the particular envi-
ronment, and a set of specialized software tools (actions) through
which they interact with the environment. These are described in
more detail in section 5. Both approaches have a specific character-
istic and predispositions in the scope of their applications. While the
data-driven approach, is more flexible and robust, the theory-driven
approach provides more fine-tune capabilities and accuracy for re-
stricted domains. Our aim is to take advantage of the best properties
from both approaches and employ the above presented features of
the Rascalli platform, reconciling both strands in a hybrid model, by
matching the structures emerging in the bottom-up approach with the
ones implemented in a top-down fashion by the cognitive model[15].
The research on the cognitive component includes the following top-
ics: knowledge acquisition process, impact of the design of the envi-
ronment, the design and constitution of the agent, and the training sit-
uation, flexibility/robustness in task solving strategies, dealing with
changing situations (dynamic environment, novel input, sensor chan-
nels, tools), scalability (with increasing complexity of sensor chan-
nels, tools and tasks).

5 BUILDING BLOCKS OF THE SYSTEM

In this section the concepts and implemented components are pre-
sented in more detail, including the principles of the agents cognitive
components, their relations to the agents action-perception capabil-
ities, strategies used for knowledge acquisition, user profiling and
user-agent interfaces. In section 6 it is demonstrated how the selected
building blocks can be assembled to achieve a particular goal.

5.1 Agent environment - virtual entities

The agent environment includes the Internet, databases, knowledge
resources, the user and other Rascalli agents. The Rascalli agent per-
ceives its environment (via a set of perception sensors, implemented
as software tools - see 5.2) as a set of unique virtual entities with their
own characteristics and properties. These include strings of written
language originating from the user or extracted from HTML docu-
ments, markup tags, meta-data information about binary files, infor-
mation about the accessibility of various Internet and local tools and
resources, user feedback, etc. Therefore, the agent has to dealwith
a dynamic environment i.e. evolving content of the websites, perma-
nent or temporary inaccessibility of Internet services, appearance of

a new content or services, changes in the user preferences and inter-
ests, as well as the unrestricted natural language input from the user
and the web-pages. Similarly, all the agents actions in its environ-
ment are performed on the above introduced set of entities (refer 5.4
for an extensive overview of the agents” actuators).
Since interaction-based learning is a bottom-up driven learning ap-
proach of increasing complexity, it necessitates a simplification of the
initial environment of the Rascalli. This is achieved by providing a
reduced set of resources, e.g. closed domain databases, selectedRSS
feeds and websites, as well as a reduced and simplified instruction-
driven user input.

5.2 Perception layer - sensor channels of the agent

The aim of the perception layer is to provide the agents with the ca-
pabilities to perceive an input situation and to distinguish a set of fea-
tures necessary for selecting an appropriate action (tool application),
based on the similarities between input situations and the episodes,
which the agent encountered before.

5.2.1 Concept of the classification driven perception

The perception layer contains all components that are used by agents
to sense their environment. Those components are designed to al-
low classification driven perception. The perception layer implemen-
tation in the Rascalli platform includes the Input-Processing Tool,
which is based on the classification of input data and recognition of
the source of an input (e.g. user utterance, pdf document, web page,
user feedback). Various classes and categories are for example as-
signed to the data originating from the user utterance such as named
entities (locations, organizations, person names), part-of-speech tags,
coarse-grained utterance classes (greeting, question, acceptance,re-
jection, etc.), question categories, syntactic parse trees. Similarly,
various classes are provided for the other types of virtual entities such
as file extension and size, the content of an HTML file (title, headers,
links, etc.), the meta-data related to binary files (title, artist, album,
width, frame rate, etc.), input class (user utterance; praise/scolding
button value, data input from the Internet/databases), IO error mes-
sage status from the action application, user feedback. The classes
are assigned based on:

• information perceived directly from the environment (e.g. file ex-
tension, name of an artist originating from a music file header,
input class, feedback)

• machine learning based classifiers developed or adopted for
the agents requirements(Maximum Entropy[6] based utterance
classification, Supported Vector Machines[19] based question
classification[17]

• available NLP tools (e.g. parsers, pos-taggers, named entity clas-
sifiers)

5.2.2 Natural Language Input Processing

Natural Language Input Processing (T-IP) involves a set of sensor
channels each of which allows the agent to perceive certain aspects
of a natural language input situation. T-IP performs actions on enti-
ties from the agent’s environment such as part-of-speech tagging the
user utterance, finding the question focus word or segmenting text.
At the current stage of development, the tool provides the following
information to the agent:



• utterance class (greeting, question, agreement, rejection, find-
similar, other),

• question class (6 coarse grained categories: abbreviation, descrip-
tion, entity, human, location,number; and 50 fine-grained cate-
gories [12]),

• POS tags [1],
• question focus word [17],
• instances, concepts, relations from the Rascalli ontology,
• NP Chunks,
• Minipar parse [13],
• Wordnet entries (antonyms, synonyms, hypernyms,coordinate

terms, polysemy count, etc.)[2],
• DUAL interest [9],
• DUAL question [9],
• DUAL free-question flag [9].

5.3 Cognitive layer - from knowledge acquisition to
action selection

To achieve intelligent assistance capabilities, an agent must have
abilities to select appropriate actions in a given situation. It has to
be able to find cues in an input situation that can be related to one
or more possible action applications. In the current Rascalli system,
these cues can be related to action selection via a rule based system,
a top-down driven cognitive architecture, a bottom-up based knowl-
edge acquisition and classification driven action selection.

5.3.1 Rule based action selection

The rule based action selection component ’Simple Mind’ is a triv-
ial implementation of a mind component, based on hard-coded ac-
tion selection rules. These rules match to specific cues in the input
data arriving from sensor channels. ’Simple Mind’ extracts relevant
information and passes this information on to the appropriate effec-
tor tool. Even though seemingly non-trivial behavior can be accom-
plished through a series of interactions of the Simple Mind and the
available tools, the Simple Mind does not contain any cognitive as-
pects such as memory or learning.

5.3.2 Top-down driven action selection

The top-down action selection mechanism is implemented in the
current version of the platform as the DUAL/AMBR cognitive
architecture[8]. It includes a long term memory (LTM) where gen-
eral and episodic knowledge is stored, and a working memory (WM)
constituted by the active part of LTM, perceptual input and goals.
The DUAL mind operates only on represented knowledge and has
only a mediated connection to the body and the environment. Thus
it contains a partial, selected representation of the environment at an
abstract conceptual level and experiential memories related to spe-
cific episodes like organization of the interaction of a Rascalli agent
with its environment, see [15] for more details.

5.3.3 Bottom-up driven knowledge acquisition

In the bottom-up approach, the Rascalli agents acquire knowledge
about their environment by relating the input to their own action-
perception capabilities. In this process the agents build their own
”understanding” about the properties of the virtual entities that con-
stitute the environment. The agents ground the knowledge about the
entities by relating them to a set of actions applicable to those entities

in a given input situation, as well as to the consequences of a given
action application.
With the bottom-up knowledge acquisition, we aim at a robust mech-
anism which to a possible extent autonomously endows the agent
with the knowledge necessary to perform its tasks. Since the agent
deals with a dynamic environment as described in section 5.1, it is in-
feasible to provide ex-ante (e.g. through human expert knowledge) a
full spectrum of knowledge required by the agent to perform its wide
range of tasks and to adapt to the ever-occurring changes. Therefore
we propose a learning mechanism that is sensitive to its environment,
including the user activities within the system.
The major objective is the development of a cognitive component
that enables the agents to gain knowledge, clearly different from hu-
man knowledge but grounded in interaction based self experience.
This kind of grounded knowledge forms the basis for action selec-
tion within a Rascallo and allows modeling information exchange
between Rascalli (see 5.5), as well as knowledge exchange between
the Rascalli and their users (see 5.7).
Depending on the developmental stage of an individual Rascallo,
tools are selected and executed arbitrarily, motivated by drives, or
deliberately chosen based on the given input and previously made
experience. The outcomes of the tools application on the environ-
ment (see 5.4) are also treated as an input to the sensor channels
(see 5.2). In a way this is similar to a robot’s perception of the con-
sequences of an action application. For each action tool ti an ap-
plication space appi is created over time that contains tool related
interaction episodes. These episodes include the input situation short
before the tool was applied and the outcome situation as perceived
by the agent via its sensor channels. Feedback provided by the user
(if available) is part of the outcome. Steps of the learning approach as
’partitioning the episodes’, ’extraction of relevant sensor channels’,
’feature extraction’ and ’characterizing involved entities’ [4] are ap-
plied to the application spaces to derive generalized input (ci

n) and
outcome characterizations (co

m) from the sets of stored episodes. The
generalized input characterizations are - related to the affordances
theory - cues for possible action applications. If a given input sit-
uation matches to one ore more of those generalized input charac-
terizations (cin), then the assumption can be made that this situation
affords the application of the related tool ti resulting in the expected
outcome (com). The set of input characterizations (I), the set of tools
(T), the set of outcome characterizations (O) and their interrelation
form the knowledge repository I-T-O. As this repository is growing
during further exploration of the environment including user feed-
back, it allows the Rascallo to act more purposefully on future input.

5.3.4 Classification driven action selection

The classification driven approach is a foundation of the agent action
selection mechanism. Based on the available knowledge, including
the perception of an input situation (task description, set of available
actions and resources, user feedback received previously, etc.)the
agent finds a set of actions that can be applied to this input situation.
The selection of a particular action is based on the similarities with
other actions the agent had successfully performed in the past, i.e.
received positive feedback from the user. The action selection clas-
sifiers are implemented as Maximum Entropy[6] models. The data
used for training the classifiers represents an input situation in terms
of entities perceived by the agent and an action associated with it. The
examples of the classification driven action selection application are
e.g. a choice of a particular website which is returned as an answer
to the user, based on the similarities between the current input and



previously experienced inputs that led the agent to decide to access a
given website (e.g. wikipedia.org, news.google.com, youtube.com);
a selection of a particular communication channel with the user (e.g.
email, ECA, web-browser, music player) based on the type of data
to be presented, or the user’s preferences and his/her status (online,
offline).

5.3.5 Bottom-up knowledge acquisition scenarios

The Rascalli agent acquires the knowledge about its environment, the
agents own capabilities, task solving strategies and the user prefer-
ences via the following mechanisms:

• learning via self-experience about the entities that constitute the
agent environment in the relation to the agent capabilities,

• learning via exploration of the agents environment and the inter-
action with the user,

• learning in the training mode from examples provided by an expert
(human or other Rascalli agent),

• learning via the communication with other Rascalli agents using
grounded and agreed upon symbols.

5.4 Action layers

The Rascalli agents actuators are geared towards performing actions
necessary to assist the user in accessing information from the In-
ternet, knowledge databases and communicating the findings to the
user. The agent actions are realized as software tools the agent is
equipped with, including:

• actions related to accessing information from the Internet and
the databases - Question Answering System (see 5.4.2), Natu-
ral Language Database Query Interface (see 5.4.1), various In-
ternet site specific accessing tools (wikipedia.org, dictionary.com,
youtube.com, news.google.com, etc.),

• actions related to communication with the user - Multi-Modal
Generation Tool (see 5.4.5),

• actions related to the agents perception7 (equivalent to active per-
ception in robotic and human)- the extensive set of components
integrated in the Perception Layer, (see 5.2).

5.4.1 Natural Language Database Query Tool

The Natural Language Database Query Tool (T-Nalqi) is used in the
Rascalli platform for querying the databases accessible to the Ras-
calli agents, in a search for instances and concepts that can pro-
vide answers to the user questions. The component analyses a user’s
natural language questions and retrieves answers from the system’s
domain-specific databases. The tool comprises the following three
sub-components:
1. A relation extraction component, which finds patterns of pos-tags
that represent relational structures and their arguments.
2. A relation-to-DB mapping component which identifies relations
or concepts that are contained in a relational DB.
3. A query generation component which generates SQL queries and
retrieves results from the database, and post-processes the results.
If the mapping is successful a query is formulated and executed, re-
turning the information about question relevant instances and con-
cepts.

7 The concept of active perception, includes tool usage to sense the agent
environment.

5.4.2 Question Answering System

The open-domain question answering system (T-QA) (which is based
on the work described in [18], [16]) is used in the Rascalli platform
to provide answers to the user factoid-type questions expressed in
natural language. A typical use-case scenario involves a situation
where an answer cannot be found or does not exist in the databases
accessible to the Rascalli agents. The processing stages of the sys-
tem include: question analysis, accessing the Internet resources, and
analyzing the accessed documents. The system incorporates a num-
ber of natural language processing tools and resources (named en-
tity recognition, part-of-speech tagger, text segmentation, chunker,
stemmer, gazetteers, etc.), information retrieval tools (document in-
dexing and querying engine) and machine learning based classifiers
and clustering solutions. A set of tools usable to access a variety of
Internet websites such as wikipedia.com, dictionary.com, howstuff-
works.com, wordnet.org., and the Internet search engines such as
Google, Yahoo, Altavista posses the capabilities to interpret the re-
sults of Internet resources, e.g. extract distinct definitions for a given
term, report on ambiguity of a used term or possible misspellings,
provide information on the number of available documents for a
given query, distinct senses for a given term, the lack of term related
documents or of a searched definition.

5.4.3 ChatBot

In the Rascalli project a wrapper to an existing ChatBot system was
implemented. This component is based on the work undertaken in
the A.L.I.C.E Artificial Intelligence Foundation8, which aims at the
creation of a natural language ChatBot capable to engage in the con-
versation with a human. In the Rascalli platform the current JAVA
based implementation of the ChatBot can be used to handle unspe-
cific user utterances of the type ’Are you a fish?’ or ’Is it boring to
be a computer?’.

5.4.4 RSS Feed Tool

The RSS Feed tool provides a mechanism for Rascalli agents to re-
trieve current information that might be of interest for the user. While
technically RSS feeds have to be polled and retrieved (and thus ob-
taining information from an RSS feed is an active behavior), they can
be easily modelled within the Rascalli system to be part of a dynamic
and changing environment, with new feed items arriving in a manner
that is temporally unpredictable for the agent. Thus a RSS feed tool
which continuously (i.e. in very short intervals) polls and retrieves
feeds that have been registered by a Rascalli agent without requiring
any further intervention was implemented. As soon as new data is
retrieved, the tool triggers a signal which is perceived by the Ras-
calli agent. The RSS feed tool includes a mechanism to filter news
feeds for sets of keywords, allowing Rascalli to retrieve only relevant
information of user interest based on user profiling (see 5.6).

5.4.5 Multi-Modal Generation Component

The Multi-Modal Generation Component provides a middle-ware
functionality between generated agent output and the user interfaces.
The generation component implements a template-based approach
by encoding vocabulary, phrases, gestures etc. - which can be com-
bined with the output of the Rascalli tools and context data - in the

8 http://www.alicebot.org



form of Velocity templates. The use of Velocity9, a template gener-
ation engine, allows to design and refine templates separately from
the application code. For example the multi-modal generation com-
ponent generates the speech, gestures and facial expressions forthe
Embodied Conversation Agent interface (see 5.7.1) used to commu-
nicate with the user. The output is encoded in an XML format that
includes SSML (speech synthesis markup language) and BML[20]
(behavior markup language) markup, making it interpretable by the
MARY speech synthesis and the Rascalli User Interface (Nebula
Client10).

5.5 Sharing knowledge - communication of
grounded symbols between the agents

To enrich the task solving capabilities of the agents, which are
equipped with symbol acquiring mechanisms, agent-to-agent com-
munication was conceptualized in the Rascalli platform. This con-
cept and its implementation allow agents to share their experi-
ences (exchange knowledge) obtained through interaction with the
environment[5]. Each agent has its own experience base compris-
ing generalizations over the outcomes (O) of action applications, and
generalizations of the input types (I) tools (T) that can be applied to.
Due to the differences in their experience bases a negotiation process
between Rascalli takes place establishing common labels for their
individual knowledge of inputs and outcomes. Such an agreement
process includes several cycles of exchanging prototypes and/or sin-
gle episodes. For instance an agent A provides a prototype descrip-
tion d to another agent B, B tries to matchd to its own experience
base. Given a successful match, the agents choose a common label
depending on the existence of labels from previous negotiations. In
case the match at prototype level is not successful, the agents resort
to instance level. This may lead to the creation of new prototypes in
the agents which form a new basis for establishing a common label.
If the negotiation at instance level fails, the agents’ current experi-
ence bases are too distant. This however may change with further
acquisition of knowledge. Using a set of labels, agents can exchange
information more efficiently than by exchanging prototype represen-
tations or instance data. Since the shared labels are grounded in each
agent’s experience due to virtual embodiment and the affordance
approach, knowledge exchange is possible even though the agents
do not share the same internal representations. With the agreed la-
bels, agents can exchange task solving strategies: which tools or tool
chains to use in a given situation, how to react on a given input, or
reach a desired outcome. For example, an agent may present a user
input to another agent and ask for a recommendation what tool to
use. This reduces the search space of individual agents for finding
applicable tool or tool chain usage and increases the probability of
satisfying the user.

5.6 User profiling

User profiling is based on logs from the user interactions with the sys-
tem via selected user interfaces. The data are aggregated in a profiling
component that allows the Rascalli agent to learn from the user ac-
tions about the interests and preferences of the respective user. These
mechanisms are part of the agent assembly we term Smart Music
Companion (6.3). The Smart Music Companion is an incarnation of
a Rascalli agent that supports the user in finding and retrieving infor-
mation on the popular music domain. Thus, the Music Companion is

9 http://velocity.apache.org
10 http://nebuladevice.cubik.org

equipped with two special purpose tools/components which allow the
user to browse a large music archive (currently up to 150 000 songs,
see 5.7.2) and also access background information on the artists from
a database comprising entries for approx. 15 000 individual artists
and groups (5.7.3). Apart from these domain-specific interfaces,user
action data are also collected from the ECA interface (5.7.1) which
is the major user interface to the RASCALLI agent. Through this
interface, the user may pose questions to her agent and evaluate the
agent’s responses, as well as introduce specific URLs and RSS feeds
the agent should monitor for the user. The logs of the user actions
contain the following information: user X does Y on item Z at time
T. They are part of the (implicit) user profile which is used by differ-
ent generator components of the profiling system in order to provide
the agent with up-to-date information of the kind USER X LIKES/IS
INTERESTED IN Z. This is crucial information for the Rascalli to
adapt to their users and provide their users with (new) information
that might be relevant given the user profile. For instance, when re-
trieving information from the domain databases (5.4.1), the Rascalli
agent first of all provides information that is high ranked according
to the user’s current interest profile. Similarly, when applying the
question answering system (5.4.2), first of all those web pages are
analyzed which best fit the current user interests and/or have been
explicitly introduced by the user to her agent. Combining the user in-
terest profiles with an item-based recommender system that operates
on the data from the music domain enables the Rascalli to propose
new music/artists to the user. Moreover, the logs from the user actions
may also be used as an input to the episode learning mechanism of
the cognitive model DUAL (6.2).

5.7 Interfaces for agent-user interactions

In the following, we give an overview of the user interfaces which
have been implemented up to date for the Rascalli agents.

5.7.1 Embodied Conversational Agent interface

While user input to the system via the ECA interface is constrained to
free text input into a window of restricted size and pressing a praise
and a scolding button (thumbs up/thumbs down), the system presents
its output to the user via multi-modal, verbal and nonverbal behavior.
See Figure 3, for a screenshot of the current design of the ECA in-
terface, where the character sits in his fantasy room and waits for the
user to type in her question. The output of the generation component
is encoded in a BML-compliant format[20], which is then interpreted
by a 3D animation component built on top of the Nebula platform11

For speech synthesis the MARY TTS system12 is employed. Fig-
ure 3 shows the ECA interface together with the Rascalli web page
through which the user may introduce URLs and RSS feeds to the
agent, and from which the music exploration interface and the mu-
sic browser interface may be accessed. Through these interfaces the
following user actions are logged: 1. the user utterance (text string),
2. clicks on the praise and scolding buttons, 3. switches to the music
exploration and browsing interfaces, 4. user specified URLs and RSS
feeds.

5.7.2 Music exploration interface

Figure 4 shows the exploration interface to the music archive the
Rascalli have access to. The user may enter her favorite artist, song

11 http://www.radonlabs.de/technologynebula2.html
12 http://mary.dfki.de



Figure 3. Embodied Conversational Agent interface

or genre. The underlying application provides then a list of songs
which belong to the selected artist or genre and computes for each
song the user is interested in a list of songs that have similar acoustic
properties. The best matching eight songs are displayed in a music
map visualized in a 3x3 grid of album covers. Every suggested song
can be listened to as a 30 second sample. The music player is invoked
by either clicking on a cover or on an element in the play list. For
each song played the user can state ’I like it!’ (thumbs up) or ’No
thanks!’ (stop hand). From each song, there is a link to background
information about the artist, which can be browsed via the music
browser interface (5.7.3). All user clicks within the music exploration
interface are assigned with a specific action label, logged and used as
input to the profiling component (5.6).

Figure 4. Music explorer interface

5.7.3 Music browser interface

Figure 5 shows the music browser interface which allows the user
to explore the background information on a certain artist or group
available to the Rascalli. This information has been harvested from
the Internet, employing a seed-based information extraction meth-
ods which uses the already known in order to extract new, related

information for text documents[21]. The browser provides not only
facts about artists but also a network view of people related to them.
Again, all user clicks on the links in the interface are logged. Each
link is assigned a specific action label. The logs are in put to the
profiling component (5.6).

Figure 5. Music browser interface - 2

5.7.4 Jabber interface

A Jabber client interface (6) was developed as a simple user inter-
face mechanism for the Rascalli system. It allows Rascalli agents to
connect to the Jabber (an XML-based open source instant messaging
protocol) network13. Various Jabber clients provide an easy-to use
text-based interface by which the user can contact her Rascallo (the
Rascallo can be added to the user’s contact list just like other - hu-
man - contacts), and can be notified or contacted by her Rascallo in
an unobstrusive manner.

Figure 6. Jabber client interface

5.7.5 Command line client interface

A plain version of the agent-user communication interface is realized
as a command line client. This type of interface is especially useful
for system development and testing.

13 http://www.jabber.org



6 ASSEMBLING THE BUILDING BLOCKS -
REALIZATION OF SPECIAL PURPOSE
RASCALLI

Below we present how selected building block and interfaces
presented in chapter 5 and section 5.7 were used and integrated in
the Rascalli platform to create sample agents fulfilling particular
goals.

Based on the Rascalli computational framework three different
Rascalli configurations were conceptualized, developed and imple-
mented. These are the initial implementation of a Rascalli agent with
a basic set of tools (sandbox for testing the system components and
their integration), a Rascalli agent utilizing an implementation of the
DUAL cognitive architecture as central control unit, and a Smart Mu-
sic Companion.

6.1 Sandbox for testing the system components and
their integration

The goal of the sandbox application is to provide a method that al-
lows to evaluate single components with respect to their feasibility
for integration and their interoperability in the platform. For this pur-
pose the building block ’simple mind’ - a rule based action selection
mechanism (see 5.3.1) has been developed. It allows the definition
and application of a set of rules that describe how to react on a certain
input/cue. Interaction with the user is handled via the ECA interface
which is connected with the natural language input processing tool to
analyse the user input and the multi-modal generation tool to produce
the multi-modal output specification for the ECA. The command line
interface (see 5.7.5) provides a fast and sufficient capability for de-
veloping and testing the system.
As a case-study example a particular system incarnation was assem-
bled with the following building blocks: T-IP (see 5.2.2), ’simple
mind’, T-QA (see 5.4.2), T-ChatBot (see 5.4.3), T-Nalqi (see 5.4.1),
T-MMG (see 5.4.5), ECA interface (see 5.7.1).
In addition to testing system integration, it was possible to assemble
a system that was capable to realize a wide range of actions, provid-
ing a user with relevant information to her input. Due to the smart
characteristics of the perceptor and actuator components (T-Nalqi, T-
IP, T-QA) this was achievable even with a fairly simple rule-based
action selection mechanism.

6.2 DUAL cognitive architecture as a control unit
for a Music Information Assistant

As a cognitive enhancement to the initial Rascalli configuration, (see
6.1) a system incarnation was created that incorporates a proof-of-
concept implementation of the DUAL cognitive architecture[8] as
its central control unit. This implementation was accomplished for
a very restricted set of show cases in the music domain. The imple-
mented system incarnation is capable of providing answers to music
and gossip related questions of the following kind: ”Tell me some-
thing about Britney Spears”, ”Who are the children of Madonna?” or
”Do you happen to know who is Madonna married to?”.
A case-study example for the particular system incarnation was as-
sembled with the following building blocks: T-IP (see 5.2.2), T-QA
(see 5.4.2), T-Nalqi (see 5.4.1), T-MMG (see 5.4.5), ECA interface
(see 5.7.1).
The goal of this Rascalli incarnation was to explore and further de-
velop the cognitive model in order to prepare for reimplementation

of selected cognitive functionality in a way that the system is able to
scale up.

6.3 Smart Music Companions

The Smart Music Companion incarnation of the Rascalli agent pro-
vides information from the music domain, learns about user prefer-
ences, and uses this knowledge to present the user with new infor-
mation that is related to her preferences[11]. The particular environ-
ment a Rascalli agent has to deal with in this application consists
of: external knowledge sources, in particular the Internet and some
domain-specific knowledge bases and the user. The application do-
main is popular music. Apart from the Internet, the Rascalli have ac-
cess to the following two domain-specific knowledge resources: (1) a
database with up to 150 000 tracks annotated with meta-information
such as track name, album name, genre, artist or group name; (2) a
database comprising background information of artists and groups
such as band members, personal relations of artists, etc.
As case-study example for the particular system incarnation was as-
sembled with the following building blocks: T-IP (see 5.2.2), ’Simple
Mind’ (see 5.3.1), User Profiling Component (see 5.6), T-QA (see
5.4.2), T-Nalqi (see 5.4.1), T-MMG (see 5.4.5), Music Exploration
Interface (see 5.7.2), Music Browser Interface (see 5.7.3), ECA in-
terface (see 5.7.1).
The user interacts with the companion via two kinds of interfaces: 1)
The ECA interface where face-to-face dialog interaction between the
embodied conversational companion and the user takes place. 2) The
special purpose interfaces Music Explorer and Music Browser which
support the user in exploring the Rascalli music databases. The spe-
cial purpose interfaces are an addition to ECA for the following rea-
sons 1) easiness to obtain information about the user preferences; 2)
easiness and naturalness in providing unambiguous information to
the system in an explicit way, which would be hard to achieve via the
ECA interface due to erroneous natural language processing.

7 CONCLUSIONS

The RASCALLI computational framework introduced in this paper
allows to flexibly add, remove and modify components according to
the needs of a particular assembly of a system application. Due to the
platform modularity and its well defined interfaces the integration
of existing components is possible, and even preferred to the cre-
ation and re-implementation of new ones. In this way the platform
can be continuously updated and enhanced, matching the state-of-
the-art developments in intelligent artifacts. As demonstrated above,
the platform provides already a sandbox for testing new and exist-
ing components and their interoperability. This development style
is specifically geared towards research projects experimenting with
alternative cognitive architectures, and combining them with a vari-
ety of processing and generation tools. The presented work demon-
strates that the platform and its components support a prompt and
purpose-driven creation of various incarnations of agents, where dif-
ferent cognitive components, action-perception tools and interfaces
can be realized. The cognitive component can incorporate a wide
range of approaches, including bottom-up driven, top-down driven
or combined cognitive models. The Multi-Modal Generation Com-
ponent as a middle-ware layer allows the usage of various user-agent
interfaces without the need of modifying the agents output. This al-
lows to operate in different contexts and to realize various agent ap-
pearances, different interaction behavior capabilities, etc.



The presented computational framework also provides an environ-
ment for a simultaneous existence of multi-agents, ranging from mul-
tiple instances of one agent configuration to multiple instances of
agents assembled with different components. The agents have indi-
vidual users and due to their unique interaction history their expe-
rience bases deviate from each other. As a result the collective ex-
perience base is diverse and covers a broader range of knowledge.
To enable an agent to take advantage of this distributed knowledge,
a method for communication between the agents in the platform
was conceptualized. In addition the multi-agent platform provides
the basis for the evaluation of the fitness of particular incarnations
of agents, and thus helps to identify those agents that solve a given
problem more effectively and purposefully than others. It also helps
to explain why some agent types are more successful in their envi-
ronment. The presented action-perception components are used by
the agents to perceive their environment and perform actions on their
environment such as accessing and processing information from the
Internet and knowledge repositories. The three presented application
scenarios exemplarily demonstrate the modularity, flexibility and in-
tegration capabilities of the processing tools and the platform.
Future work includes further enhancement of the platform, ex-
tended integration between the top-down and bottom-up cognitive
approaches at a conceptual level and at execution level. The charac-
teristic of the presented computational framework also enables fur-
ther research on the goal orientated collaboration of multiple-agents
and the usage of various communication strategies that facilitate dis-
tributed task solving.

ACKNOWLEDGEMENTS

This research is supported by the EC Cognitive Systems Project IST-
027596-2004 RASCALLI, by the national FFG programme ’Ad-
vanced Knowledge Technologies: Grounding, Fusion, Applications’
(project SELP), and by the Federal Ministry of Economics and
Labour of the Republic of Austria. The work presented here builds
on joint work within the Rascalli project. In particular the authors
would like to thank our collegues from the following institutions:
SAT, Radon, NBU, Ontotext and DFKI.

REFERENCES

[1] E. Brill, Transformation-based Error Driven Learning and Natural Lan-
guage Processing: A Case Study in Part of Speech Tagging, Computa-
tional Linguistics 21(4), 543-566, (1995).

[2] Fellbaum, Wordnet: An Electronic Lexical Database, Bradford Books,
(1998).

[3] G. T. Heineman and W. T. Councill, Component-Based Software En-
gineering: Putting the Pieces Together. Addison-Wesley Professional,
Reading, (2001).

[4] J. Irran, F. Kintzler and P. Plz, Grounding Affordances.In proceedings:
Trappl R. (ed.): Cybernetics and Systems 2006, Vienna: Austrian Soci-
ety for Cybernetic Studies, (2006).

[5] J. Irran, G. Sieber, M. Skowron, B. Krenn, Acquisition and Exchange
of Knowledge From Real to Virtual Embodiment, In Proceedings of the
Symposium on Language and Robots, (2007).

[6] E.T. Jaynes, Information Theory and Statistical Mechanics, in Physical
Review May 1957 Volume 106, No. 4 (pp. 620-630), (1957).

[7] F. Kintzler, et al., Affordance-related Robotics Research A Survey .
Journal for research on adaptive behavior in animals and autonomous,
artificial systems, (2007).

[8] B. Kokinov, A hybrid model of reasoning by analogy. In K. Holyoak
and J. Barnden (Eds.), Advances in connectionist and neuralcomputa-
tion theory: Vol.2. Analogical connections (Chapter 5, pp.247- 318).
Norwood, NJ: Ablex, (1994).

[9] S. Kostadinov, Petkov, M. Grinberg, Embodied conversational agent
based on the DUAL cognitive architecture, International Conference on
Web Information Systems and Technologies, WEBIST 2008, (2008).

[10] B. Krenn and C. Schollum, The RASCALLI Platform for a Flexi-
ble and Distributed Development of Virtual Systems Augmented with
Cognition. In Proceedings of the International Conferenceon Cognitive
Systems (CogSys 2008), (2008).

[11] B. Krenn, and G. Sieber, Functional Markup for Behaviour Planning:
Theory and Prac-tice. In Proceedings of the AAMAS 2008 Workshop
FML: Functional Markup Language. Why Conversational Agentsdo
what they do. 12. -16. May 2008

[12] X. Li and D. Roth, Learning Question Classifiers, In Proceedings of the
19th International Conference on Computational Linguistics, pp. 556–
562, (2002).

[13] Lin, Dependency-based evaluation of MINIPAR, In Proceedings of the
Workshop on the Evaluation of Parsing Systems, First International
Conference on Language Resources and Evaluation, (1998).

[14] E. Pampalk, S. Dixon and G. Widmer, On the Evaluation of Perceptual
Similarity Measures for Music. In Proceedings of the 6th International
Conference on Digital Audio Effects, (2003).

[15] G. Petkov, K. Kiryazov, M. Grinberg, and B. Kokinov, Modeling Top-
Down Perception and Analogical Transfer with Single Anticipatory
Mechanism. In Proceedings of EuroCogSci07: The second European
Cognitive Science Conference, (2007).

[16] M. Skowron, A Web Based Approach to Factoid and Common-
sense Knowledge Retrieval, Doctoral Dissertation, Hokkaido Univer-
sity, (2005).

[17] M. Skowron and K. Araki, Effectiveness of Combined Features for Ma-
chine Learning Based Question Classification. Special Issue of the Jour-
nal of the Natural Language Processing Society Japan on Question An-
swering and Automatic Summarization, Vol.12, No. 6, (2005).

[18] M. Skowron and K. Araki, What Can Be Learned from Previously An-
swered Questions? A Corpus-based Approach to Question Answering,
Advances in Soft Computing. New Trends in Intelligent Information,
Proceedings of the International IIS: IIPWM04 Conference, 379–387,
(2004).

[19] V. Vapnik, The Nature of Statistical Learning Theory. Springer-Verlag,
(1995).

[20] H. Vilhjalmsson et al., The Behavior Markup Language: Recent Devel-
opments and Challenges. In Proceedings of the 7th International Con-
ference on Intelligent Virtual Agents, (2007).

[21] F. Xu, H. Uszkoreit and H. Li., A Seed-driven Bottom-up Machine
Learning Framework for Extracting Relations of Various Complexity.
In Proceedings of ACL 2007, (2007).


