What Can Be Learned from Previously
Answered Questions? A Corpus-Based
Approach to Question Answering

Marcin Skowron and Kenji Araki

Graduate School of Engineering, Hokkaido University,
Kita-ku Kita 13-jo Nishi 8-chome, 060-8628 Sapporo, Japan

Abstract. We present corpus-based approach to question answering, which en-
ables our system to classify a question category, generate a query and verify answer
candidates. The system uses the Internet to find information required to provide
an answer. The role of the corpus-based modules is to support the system with
knowledge that provides the means to effectively use previously answered questions
as the system experience base. We present the Query Pattern Generation method,
which demonstrates that the system can automatically acquire knowledge on how
to optimally generate a query for a given question category and question syntax.
The corpus-based answer candidate verification is an effective tool to exclude an-
swer candidates that do not belong to a question category, and is able to provide a
proper length for the answer.

1 Introduction

In recent years the amount of text available online has been rapidly increas-
ing; in 2003, there were 3 billion web pages and their numbers continue to
grow. While the amount of coverage and information increases, it has also
become more difficult for the average Internet user to access specific and
reliable information. We consider that for many users the most natural ap-
proach to such a task would be to ask a question in natural language form
such as “Who discovered Pluto?” or “What company is the largest Japanese
ship builder?”. The result ought to be an exact answer, resembling as close
as possible, those given by human beings. However, the current open domain
Internet based Question Answering (QA) Systems! often fail to meet this
requirement.

The analysis of the working process of the current QA Systems reveals the
problem areas inherent in them, among which we find a query generation and
answer candidates extraction processes to be the most significant ones. Sheer
size of the textual resources accessible on the Internet makes it unfeasible to
apply on a larger scale the complicated and time-consuming Natural Lan-
guage Processing (NLP) techniques. As a result, Internet based QA systems

! From now on we refer to open domain, Internet based Question Answering Sys-
tems simply as a QA Systems

2 Skowron, Araki

are bound to use fast and relatively simple methods to deliver an answer in
a timely manner. At the same time, these systems need to guaranty high
performance, by providing users with the correct information. In this paper
we will introduce methods that address the flaws of the current QA Systems,
and provide higher precision in a query generation and answer candidate ex-
traction process. Such approaches contribute also to a reduction in the overall
processing time.

Our system differs from most QA Systems in its extensive use of the modules
built based on the corpus, which consist of questions with correct answers and
question category classification. These modules are used to assign a question
category, generate a query and verify answer candidates. Our system uses the
Internet to find information required to provide an answer. The role of the
corpus-based modules is to support the system with knowledge that provides
the means to effectively use previously answered questions as the system ex-
perience base. For question classification, we use Support Vector Machine
(SVM) [3], which is known to work well for sparse, high dimensional prob-
lems, and the Category-Unique Pattern pre-classification method. Using this
approach we achieved better results than those reported in previous liter-
ature. We present a Query Pattern Generation method, which for a given
category and question syntax, forms a set of queries that return answers in
a relatively undistorted set of snippets. The preliminary tests have demon-
strated a significant improvement in the results when using this method of
query generation, over the currently used one in the QA Systems. Answer
candidate verification is performed by applying a set of regular expressions
that are automatically generated using the surface, syntactic and semantic
features of the answers, from the same question category. The length of the
answer returned by our system is question-dependent, aiming only to include
those words that are required.

2 Corpus-Based Methods for Question Answering

2.1 Question Classification

In order to provide an answer to a user’s question from a large collection
of texts, the system is required to impose some constraints on the scope
of possible answers, such as question classification. In addition, in our sys-
tem question category information is used in the query generation process.
The system performs question classification using the Category-Unique Pat-
terns (CUP), and models generated by Support Vector Machine (SVM) [6]
and trained on the corpus consisting of 5,500 questions labeled manually by
UIUC [8], with 6 coarse-grained and 50 fine-grained categories. Table 1 shows
these question categories.

Out tests with the SVM demonstrated that when using only text sur-
face features (a bag-of-words approach), the classification generates errors
when words from a question does not appear in the feature space, and other

A Corpus-Based Approach to Question Answering 3

Table 1. The coarse and fine-grained question categories

Coarse | Fine

ABBR | abbreviation, expansion

DESC definition, description, manner, reason

ENTY | animal, body, color, creation, currency, disease, event, food,
instrument, language, letter, other, plant, product, religion,
sport, substance, symbol, technique, term, vehicle, word
HUM description, group, individual, title

LOC city, country, mountain, other, state

NUM code, count, date, distance, money, order, other, percent,
period, speed, temperature, size, weight

words are not sufficient to assign a question to a correct category. This is
a case in the question like: “What is BBC?” - where the word “BBC” is
not found in the feature space, and the remaining words “What” and “is”
appear in several categories, preventing the assignment of a correct category
(ABBR:expansion). To address such problems, we add a surface feature of
the words (letter capitalization) as a new entry to the feature space. For ex-
ample, it assigns the same feature for nouns consist of only capitalized letters
like words BBC or CPR, which is different from a feature assigned for word
Tokyo (the first capitalized letter followed by the small letters).

Another method is required to correctly discriminate questions like “What
is the Ohio state bird?” (ENTY:animal) and “What is Australia’s national
flower?” (ENTY:plant). Here, several words like: Ohio, state, bird, Aus-
tralia, national, flower are highly undistinguishable, existing at the same
time in a few categories (DESC:definition, description; ENTY:animal, plant;
LOC:country, city, state; NUM:count, date). To enable correct assignment
of a category for these kind of questions, additional semantic features were
introduced, using 22 selected WordNet [9] hyponym categories like: length,
body part, plant, substance, animal, time period, quantitative relation, etc.
If found, these hyponyms are assigned for all common nouns found in a ques-
tion and add as a new entry in the feature space. This approach has lead to
the improvement of classification results, as presented in Table 2.

Further analysis of the training data revealed that some sentence patterns
that frequently exist in one category, do not appear in others. These patterns
were constructed using the fivegrams, fourgrams and trigrams of the initial
question words, with common nouns substituted with the selected hyponyms
category, where words formed only with capitalized letters were represented
in the one symbolic form. If such a pattern is found to frequently exist in one
category and do not appear in others, it is stored and used to discriminate a
question category for the entries from the test data. These Category-Unique
Patterns are used to pre-classify questions before the SVM classifier. Using
this combined approach, our Question Classification module generated a bet-
ter result than those reported by others [8,14], for the same training and test

4 Skowron, Araki

data collection. Table 2 shows the accuracy of question classification for the
fine-grained categories.

Table 2. The question classification accuracy for the fine-grained categories

SVM [14] | SVM(feat.) | SNOW [3] | CUP+SVM(feat.)

First classification 80.2% 82.7% 84.2% 86%

2.2 Query Generation

Limitations of the Current Approach of Query Generation

One of the most fundamental problem of question answering is that of finding
spaces where the distance between questions and sentences containing a cor-
rect answer is small and where the distance between questions and sentences
containing incorrect answer is large [4]. In our opinion, in the frequently used
query generation method, potentially useful information is often lost, thus re-
ducing the likelihood of generating a reliable query and making the problem
of finding a small distance between question and sentences that contain a cor-
rect answer, even more difficult. Current QA Systems often generate a query
by removing the functional words (prepositions, determiners, pronouns, con-
junctions and discourse particles) and other frequently used ones [1,5,13,15].
For example, for the question “What does CPR stand for?”, the query (CPR
stand) would be generated. Once submitted to a search engine, this query
retrieves a distorted set of snippets (search result, a title and some textual
string segments of the related web document) where the correct answer -
“cardiopulmonary resuscitation” occurs relatively infrequently. However, for
the same question a more reliable query (“CPR stands for”), can be formed
to retrieve a less distorted set of snippets, where answer candidate occurs
much more frequently. To generate such a query, the preposition (excluded
in the current method), and knowledge on how to optimally combine ques-
tion words to form an “exact phrase”, is required. In the current approach,
these means are not available. Moreover, the queries generated by the current
QA systems do not provide any information on where to expect an answer
candidate to appear, thus complicating the candidates extraction process.
Such information can be associated with the latter query (“CPR stands for”
<answer candidate>). Additional improvement of query reliability can be
achieved by extending it with a word or other non-letter characters, which
frequently connect a given query with a correct answer - Surface Text Pat-
tern (STP) [12]. For the question “When was Queen Victoria born?”, the
query (“Queen Victoria was born on”) can be generated by the addition of
the preposition “on”, which is frequently found with the answer, like in the
phrase “[..]Queen Victoria was born on 24 May 1819 [..]”.

Below we present a method that for a given question category and question

A Corpus-Based Approach to Question Answering 5

syntax, automatically generates a set of such queries, including their op-
tional extension with an STP. Such queries additionally provide information
on where to expect answer candidates to appear.

Query Pattern Generation Method

To reliably obtain an answer, the system needs to construct a query that
returns it in a relatively undistorted set of snippets. A query that is too pre-
cise does not generate a sufficient number of answer candidates to allow a
frequency-based selection of an answer or does not return any snippets at all.
On the other hand, too general a query is likely to produce a distorted set of
snippets, where a correct answer is rarely provided.

The idea of a Query Pattern Generation method [11] is to automatically find
an optimal combination of question and non-question words, which when
submitted to a search engine, retrieves as undistorted set of snippets as pos-
sible. To avoid the necessity to build and verify large numbers of permuta-
tions of words from a question, we use Question Syntactic Representation
(QSR), which reduces computational and extensive Internet usage require-
ments, while ensuring that several potentially important question word com-
binations are being verified. The QSR is created using POS tags [2], which
are later processed using the connection rules that allow linking specific com-
binations of tags such as: Determiner+Noun (/DT /NN = /NP) or Proper
Noun+Proper Noun (/NNP /NNP = /NP). A QSR of “When was Queen
Victoria born?” would thus be (/WBR/VBD1/NP1/VBN2/?). In the next
step a set of transformation and reduction rules is applied. Transformation
rules enable for example to change a verb tense. A question “When did French
revolutionaries storm the Bastille?” would be transformed to “When/WRB
French_revolutionaries/NP1 stormed/VBD1 the Bastille/NP2 ?/?”. The re-
duction rules exclude for example Wh-words and the question mark, which
were found to be redundant in generating a reliable query. To be able to use
an ”exact match” in a query, a pair of quotation marks is added to the QP el-
ements. For the above question, there are 5 QP elements formed (was/VBD1
Queen_Victoria/NP1 born/VBN2 “ 7). In the next step permutations of QP
elements are generated, and the ones that do not form a valid query (e.g.
does not have any noun phrase or the quotation marks do not embody any
word), are excluded. For our example question the script generated 38 valid
QP combinations like (“Queen Victoria was” born), (“Queen Victoria”) or
(Queen Victoria was born). These queries are then sent one by one to the
search engine. If available, the first set of 100 snippets is collected.

The reliability of a given query is calculated as a number of answers (the
multiple occurrences of an answer in one snippet is counted only once) to
the number of accessed snippets (a number between 1-100). The QPs with
the highest reliability level are selected and stored. For the example question
“When was Queen Victoria born?” and the answer “1819”, 24 QP that re-
turned at least one correct answer were found. Table 3 presents the results

6 Skowron, Araki

Table 3. Query Pattern Generation results

Position | Query Pattern Reliability level
for 100 snippets

1 “/NP1/VBD1/VBN2” “Queen Victoria was born” 50

2 “/NP1/VBD1” /VBN2 “Queen Victoria was” born 30

8 /NP1/VBD1/VBN2 Queen Victoria was born 27

Table 4. Query Pattern Generation results for STP extended QP

Method | Query Reliability level | No. of snippets
QPG “Queen Victoria was born in” 80 61
Current | Queen Victoria was born 27 100
QPG “BBC stands for” 11 100
Current | BBC is 2 100

for some of these QPs. We have found that the most reliable query found for
this question (position 1) is approximately 85% better than one generated
by a current QA System (position 8). Analysis of the results for the test set
of 50 questions has revealed that all the queries generated using our method
achieved a higher reliability level, compared to the current method. For the
test set, the improvement rate varied depending on the question, between

12%-89%, compared to the best query generated using current method.

In the same process, using all snippets containing a correct answer, the Sur-
face Text Patterns (STP) are extracted. The most frequent STP is joined
to QP. Such an extended QP is verified using the method described above.
If it is found to form a reliable query, it is added as an additional QP to
be stored along with a particular question category and QSR, in the Query
Pattern Repository. Table 4 presents the results of QPs extended with the
discovered STP, for two questions - “When was Queen Victoria born?” (1819)
and “What is BBC?” (British Broadcasting Corporation), compared to the
queries generated using a current method.

Next, we explain the Query Pattern Generation process using the example
question, “Who was the first man on the Moon?”. First, the script generates
a set of valid QP combinations and after verification, a QP “/NP1/IN1/NP2
/VBD1+” is found to form a reliable query, like in the phrase “[..]the first
man on the Moon was Neil Armstrong[..]” (note: the plus sign in the QP
shows the expected place of answer candidate occurrence). In this case there
are no additional characters between the QP and an answer, so an STP is
not created. However, for another QP “+/NP1/IN1/NP2”, the script finds in
the phrase “[..]Neil Armstrong, the first man on the Moon]..]” the STP “7”.
Thus, after a positive verification of the extended QP, the new record in the
QP Repository is formed in the following manner: QCat (HUM:individual),

A Corpus-Based Approach to Question Answering 7

QSR (/WP/VBD1/NP1/IN1/NP2/?), QP (+/NP1/IN1/NP2), (+,/NP1/IN1
/NP2).

2.3 Answer Candidate Extraction and Verification

We find the answer candidate extraction process, after query generation, to
be the second most significant problem area that exists in the QA Systems.
In the current method, judgment of whether a sentence/paragraph is a valid
answer candidate is based on the process of word matching between a ques-
tion and the sentence/paragraph [1,15]. This may result in returning answers
that do not have any semantic relation to a question. Furthermore, the set
length of an answer candidate sentence/paragraph/snippet [1,5,7,10,15] of-
ten makes it impossible to provide the user with an answer in a human-like
form. It also limits usability of such information for other systems that could
use it in their working processes. Our system uses information on where an
answer candidate is likely to appear (information included with every QP)
to extract phrases in the one sentence window (we found that such a scope
is suitable for the majority of the factual questions’ answers, which usually
consist of a word or a few words). However, it is not sufficient to reliably ver-
ify answer candidates and set a proper answer length. Our answer candidate
verification module uses the information acquired from the corpus of previ-
ously answered questions. Using this resource, the system is equipped with
knowledge about common elements, possible variations and other character-
istic features of answers from the same question category. Here we present
some examples of answers for a few question categories: NUM:date (1789;
5th November 1976; May 17-20, 2004), ENTY:animal (white tiger, giraffe,
mice), ABBR:abbreviation (CNN, LASER, ASEAN), HUM:title (actor, US
President, the former leader of the Trade Unions). Our method applied to
extract this knowledge includes examining the surface, syntactic and seman-
tic features of answers from a particular question category. Surface features
include: number of words, letter capitalization, non-letter characters, etc. A
syntactic feature is a POS tag assigned to a word, and a semantic feature is
a hyponym category assigned for nouns [9].

Using these features, the script automatically generates a set of answer can-
didate verification rules in the form of regular expressions, used to exclude
candidates that are not related to a particular question category, or more
specifically, do not resemble any answer from the same category found in
the corpus so far. Using these regular expressions, a proper answer length
can also be discovered. For example, for the question category HUM:title,
the proper scope of the answer can be determined from the following phrase:
“[..)Bill Clinton, the former US president has visited[..]”, using the syntac-
tic features and knowing that there were no verbs found in the answers in
this category. For the question category ENTY:animal in the phrase: “[..]the
cheetah is the fastest animal on land[..]”, the usage of the semantic feature,

8 Skowron, Araki

a hyponym category “animal” for the noun cheetah, leads to the extraction
of a legitimate answer candidate.

3 Conclusion and Future Work

Efficient acquisition and usage of knowledge from a large collection of text
documents, like that of the Internet, requires the appropriate tools. We be-
lieve that our approach contributes to the improvement of the current QA
Systems by addressing some of the flaws inherent in them. The Query Pattern
Generation method demonstrates that the system can automatically acquire
knowledge on how to optimally form a query for a given question category
and question syntax. Using this method, a system also obtains information
on where an answer candidate is likely to occur and what words or non-letter
characters frequently connect it to a given query, even if these elements, were
not present in the question. The results of the preliminary tests are promis-
ing, showing a significant improvement over the currently used method. The
corpus-based answer candidate verification provides an effective tool to ex-
clude answer candidates that do not belong to a given question category.
Furthermore, by analyzing answers from the same question category, the sys-
tem is able to some extent, to mimic human-like answers, thus allowing easier
access to information for users, as well as computer systems, which can ef-
fectively use it in their working processes.

The usage of a corpus for question answering reveals potential that should
be further explored and applied to improve the performance of QA Systems.
The methods presented above provide such improvement while fulfilling the
short time processing requirement. Our future work includes extensive system
testing and evaluation of the proposed methods to determine their individual
contribution to the overall performance of the system.

References

1. Abney S., Collins M., Singhal A. (2000) Answer Extraction. In Proceedings of
the 6th ANLP Conference, 296-301

2. Brill E. (1995) Transformation-Based Error Driven Learning and Natural Lan-
guage Processing: A Case Study in Part of Speech Tagging. Computational Lin-
guistics 21(4), 543-566

3. Cortes C., Vapnik V. (1995) Support-Vector Network, Machine Learning 20,
1-25

4. Echihabi A., Marcu D. (2003) A Noisy-Channel Approach to Question Answer-
ing, Proceedings of the 41st Annual Meeting of the Association for Computa-
tional Linguistics, 16-23

5. Hovy E., Gerber L., Hermajakob U., Junk M., Lin C. (2000) Question Answering
in Webclopedia. Ninth Text REtrieval Conference (TREC-9), 655-664

6. Joachims T. (1999) Advances in Kernel Methods: Support Vector Learning,
chapter Making large-Scale SVM Learning Practical. Chap. 11. MIT-Press

A Corpus-Based Approach to Question Answering 9

7. Kwok C., Etzioni O., Weld D.S. (2001) Scaling Question Answering to the Web.
In the Proceedings of the 10th World Wide Web Conference (WWW2001), 150-
161

8. Li X., Roth D. (2002) Learning Question Classifiers. In Proceedings of the 19th
International Conference on Computational Linguistics (COLING’02), 556-562

9. Miller G. (1995) WordNet: a lexical database for English. Communications of
the ACM 38(11), 39-41

10. Radev D., Fan W., Qi H., Wu H., Grewal A. (2002) Probabilistic Question
Answering on the Web. Proceedings of the 11th World Wide Web Conference

11. Skowron M., Araki K. (2003) Basic Idea of Corpus-Supported Approach to
Question Answering. Convention Record of the Hokkaido Chapters of the IEEE,
298-299

12. Soubbotin M.M., Soubbotin S.M. (2002) Patterns of Potential Answer Expres-
sions as Clues to the Right Answer. In Proceedings of the 10th Text retrieval
Conference (TREC10), 175-182

13. Zhang D., Lee W.S. (2003) A Web-based Question Answering System. Pro-
ceedings of the SMA Annual Symposium

14. Zhang D., Lee W.S. (2003) Question Classification using Support Vector Ma-
chines. Proceedings of the 26th ACM SIGIR

15. Zheng Z. (2002) AnswerBus Question Answering System. Proceeding of HLT
Conference 2002, 24-27

