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Abstract. The goal of modeling sentences is to accurately represent their mean-
ing for different tasks. A variety of deep learning architectures have been pro-
posed to model sentences, however, little is known about their comparative per-
formance on a common ground, across a variety of datasets, and on the same
level of optimization. In this paper, we provide such a novel comparison for two
popular architectures, Recursive Neural Tensor Networks (RNTNs) and Convo-
lutional Neural Networks (CNNs). Although RNTNs have shown to work well in
many cases, they require intensive manual labeling due to the vanishing gradient
problem. To enable an extensive comparison of the two architectures, this pa-
per employs two methods to automatically label the internal nodes: a rule-based
method and (this time as part of the RNTN method) a convolutional neural net-
work. This enables us to compare these RNTN models to a relatively simple CNN
architecture. Experiments conducted on a set of benchmark datasets demonstrate
that CNN outperforms the RNTNs based on automatic phrase labeling, whereas
the RNTN based on manual labeling outperforms the CNN. The results corrobo-
rate that CNNs already offer good predictive performance and, at the same time,
more research on RNTNs is needed to further exploit sentence structure.

1 Introduction

One aim of modeling sentences is to analyze and represent their semantic content for
classification purposes. Neural network-based sentence modeling approaches have been
increasingly considered for their significant advantages of removed requirements for
feature engineering, and preservation of the order of words and syntactic structures,
in contrast to the traditional bag-of-words model, where sentences are encoded as un-
ordered collections of words. These neural network approaches range from basic Neural
Bag-of-Words (NBoW), which ignores word ordering to more representative composi-
tional approaches such as Recursive Neural Networks (RecNNs) (e.g. [4]), Convolu-
tional Neural Networks (CNNs) (e.g. [6]), and Recurrent Neural Networks (RNNs)
models (e.g. [9]) or a combination of them.

RecNNs work by feeding an external parse tree to the network. They are a gen-
eralization of classic sequence modeling networks to tree structures and have shown
excellent abilities to model word combinations in a sentence. However, they depend on
well-performing parsers to provide the topological structure, which are not available for
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many languages or do not perform well in noisy domains. Further, they often require
labeling of all phrases in sentences to reduce the vanishing gradient problem [5]. Yet
RecNNs implicitly model the interaction among input words, whereas Recursive Neural
Tensor Networks (RNTNs) have been proposed to allow more explicit interactions [11].
On the other hand, CNNa are alternative models which apply one-dimensional con-
volution kernels in sequential order to extract local features. Each sentence is treated
individually as a bag of n-grams, and long-range dependency information spanning
multiple sliding windows is therefore lost. Another limitation of CNN models is their
requirement for the exact specification of their architecture and hyperparameters [12].

We conducted extensive experiments over a range of benchmark datasets to compare
the two network architectures: RNTNs and CNNs. Our goal is to provide an in-depth
analysis of how these models perform across different settings. Such a comparison is
missing in the literature, likely because recursive networks often require labor-intensive
manual labeling of phrases. Such annotations are unavailable for many benchmark
datasets. In the next section, we propose two methods to label the internal phrases auto-
matically. Later, we investigate whether there is an effect of using constituency parsing
instead of dependency parsing in the RNTN model. In this way, we aim to contribute
to a better understanding of the limitations of the two network models and provide a
foundation for their further improvement.

2 Method

Recursive Neural Tensor Network Architecture. RNTNs [11] are a generalization of
RecNNs where the interactions among input vectors are encoded in a single composi-
tion function (Figure 1a). Here, we propose two methods for the automatic labeling of
the phrases for RNTNs:

- Rule-based method: The RNTN model was first proposed for sentiment analysis
purposes. Hence, our first approach uses a rule-based method to determine the va-
lence of a phrase. We use four types of dictionaries: A dictionary of sentiments
carrying terms (from unigrams to phrases consisting of n-gram words) with a corre-
sponding sentiment score in the range of [−k,+k], a negation dictionary, a dictionary
of intensifier terms with a weight range of [1,+k], and a dictionary of diminishers
with a weight range of [−k,−1]. The analysis of a phrase is conducted from the end,
backward to the beginning: If any sentiment term is found, we update the sentiment
of the phrase from neutral to the value of the sentiment term in the dictionary. Then
we search backwards for an intensifier or diminisher term. We increase or decrease
the absolute value of the sentiment based on the weight of the intensifier/diminisher
term and if required we adjust the score to a pre-defined range.In the next step, we ad-
just the score for a negation term. If one is found and there is no intensifier/diminisher
before the sentiment term, the sentiment is reversed; otherwise if the phrase includes
both the negation term and an intensifier/diminisher, the sentiment is set to weak
negative. As an example, consider both “not very good” and “not very bad” terms,
where both sentiments are weak negative.

- CNN-based method: An alternative approach to labeling the phrases is to use a
pre-trained CNN model. We use the architecture proposed here (see below for the
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description) to train a model on the sentence level, and use the resulting model to
label the internal phrases for the RNTN. In this way, the RNTN can be applied to
domains other than sentiment classification as well. The CNN model receives the
complete sentences and their label as training data and will label the internal phrases
in the test phase.

Convolutional Neural Network Architecture. Deep convolutional neural networks have
led to a series of breakthrough results in image classification. Although recent evidence
shows that network depth is of crucial importance to obtain better results [3, 2], most
of the models in the sentiment analysis and sentence modeling literature use a simple
architecture, e.g. [6] uses a one-layer CNN. Inspired by the success of CNNs in image
classification, our goal is to expand the convolution and Max-Pooling layers in order to
achieve better performance by deepening the models and adding higher non-linearity
to the structure. However, deeper models are also more difficult to train [3]. To reduce
the computational complexity, we choose small filter sizes. In our experiments, we use
a simple CNN model that consists of six layers (Figure 1b): The first layer applies
1 × d filters on the word vectors, where d is the word vector dimension. The essence
of adding such a layer to the network is to derive more meaningful features from word
vectors for every single word before feeding them to the rest of the network. This helps
us achieving better performance since the original word vectors capture only sparse
information about the words’ labels. In contrast to our proposed layer, Kim uses a so-
called non-static approach to modify the word vectors through the training phase [6].

The second layer of our CNN model is again a convolution layer with the filters
of size 2 × d. The output of this layer is fed into a Max-Pooling layer with pooling
size and stride 2. The reason for applying such a Max-Pooling layer in the middle
layers of the network is to reduce the dimensionality and to speed up the training phase.
This layer does not have notable effect on the accuracy of the resulting model. Next,
on the fourth layer, convolving filters of size 2 × d with a padding size 1 are again
applied to the output of previous layer. Padding preserves the original input size. The
next layer applies Max-Pooling to the whole input at once. Using bigger pooling sizes
leads to better results [12]. Finally, the last layer is a fully connected SoftMax layer
which outputs the probability distribution over the labels.

3 Experiments

3.1 Experimental Settings

In our experiments, we use the pre-trained Glove [10] word vector models3: On the
SemEval-2016 dataset, we use Twitter specific word vectors. On other datasets, we use
the model trained on the web data from Common Crawl which contains a case-sensitive
vocabulary of size 2.2 million. Experiments show that RNTNs work best when the word
vector dimension is set between 25 and 35 [11]. Hence, in all the experiments, the size
of the word vector, the minibatch and the epochs were set to 25, 20 and 100, respec-
tively. We use f = tanh and a learning rate of 0.01 in all the RNTN models. In CNN

3 http://nlp.stanford.edu/projects/glove/
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Fig. 1: (a) An example of an RNTN architecture with word vector dimension of size 4 for senti-
ment classification of a given input sequence, which is parsed by a constituency parser. V and W
are the tensor matrix and the recursive weight matrix, respectively. (b) Our proposed 6-layered
CNN architecture. d is the dimension of the word vector.

models, the number of filters in the convolutional layers are set to 100, 200 and 300,
respectively; and the maximum length of the sentences is 32. For shorter sentences,
they are padded with zero vectors. In RNTN models which use constituency parsers,
we use the Stanford parser [7]. For those models which use dependency parsers, we
use the Tweebo parser [8] – a dependency parser specifically developed for Twitter data
– for the SemEval-2016 dataset and on the rest of the datasets, we use the Stanford
neural network dependency parser [1]. In rule-based methods, we use a dictionary of
sentiments consisting of 6, 360 entries with a maximum 2-grams words and a sentiment
range of [−3,+3], a negation dictionary consisting of 28 entries, a dictionary of inten-
sifier terms consisting of 47 words with a weight range of [1, 3], and a dictionary of
diminishers consisting of 26 entries with a weight range of [−3,−1].

3.2 Task 1: Sentiment Analysis

In the first task, we compare the models on a set of commonly used sentiment analysis
benchmark datasets: The Movie Review (MR) dataset4 that has positive or negative
class, each contains 5331 instances. As the MR dataset does not have a separate test
set, we use 10-fold cross-validation in the experiments. An extended version of the MR
dataset relabeled by Socher et al. [11] in the Stanford Sentiment Treebank (SST-5)5

has five fine-grained labels: negative, somewhat negative, neutral, somewhat positive
and positive. SST-5 contains 8544 training sentences, 1101 validation sentences and

4 https://www.cs.cornell.edu/people/pabo/movie-review-data/
5 http://nlp.stanford.edu/sentiment/Data
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Table 1: Performance comparison on all datasets. Accuracy and F-measure are averaged over all
the classes. n/a indicates non-defined cases as one of the classes was misclassified completely
resulting in an undefined value. If an experiment was not applicable, the cell is left with a dash.
Dataset RNTN CNN CNN Rule-based

Constituency parser Dependency parser (Kim model)
Rule CNN Manual Rule CNN

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1
MR 0.63 0.63 0.70 0.70 - - 0.50 0.50 0.49 0.49 0.71 0.71 0.71 0.71 0.64 0.64
SemEval-2016 0.53 0.45 0.52 0.51 - - 0.52 0.45 0.50 0.49 0.56 0.56 0.60 0.57 0.53 0.52
SST-5 0.30 0.28 0.34 0.21 0.41 0.32 0.30 0.29 0.30 n/a 0.37 0.26 0.39 0.32 0.31 0.29
TREC - - 0.72 n/a - - - - 0.33 n/a 0.86 0.86 0.54 0.57 - -
Subj - - 0.76 0.76 - - - - 0.42 0.42 0.89 0.89 0.88 0.88 - -

(a) Rule-based vs. CNN-based RNTN
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Fig. 2: (a) Heatmap of difference of rule-based RNTN and CNN-based RNTN confusion matrices
on the SST-5 phrase set. The numbers are the percentage of normalized differences based on the
total number of phrases for each label. (b) Heatmap of difference of the manually labeled RNTN
and the CNN model confusion matrices on the SST-5 test set. The numbers in each cell indicate
the percentage of normalized differences based on the total number of sentences for each label.

2210 test set. The SemEval-20166 dataset is a set of tweets labeled as either of the
three negative, neutral and positive labels. It has 12, 644 training tweets, 3001 validation
tweets and 20, 632 test instances.

- Comparison of automatic labeling methods: We first use the manually labeled
SST-5 dataset to test the effectiveness of our automatic labeling methods. We extract
all the possible phrases of the whole dataset with respect to their parse trees and use
our rule-based method to label them. In the next step we train the CNN model on
the set of training instances and use the resulting model to label the phrases. The
accuracy of the rule-based and the CNN labeling methods are 69% and 40%, re-
spectively. As we see, the overall accuracy of the CNN-based model is significantly
lower than that of the rule-based method. To have a better understanding of the clas-
sification performance, we look into their confusion matrices. We subtract the corre-
sponding elements of the CNN-based confusion matrix from that of the rule-based
variant and normalize them by dividing by the total number of phrases for each label

(i.e. confi,j
rule−confi,j

cnn

totali
where i and j are the actual and predicted labels, respectively).

6 http://alt.qcri.org/semeval2016/task4/
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Figure 2a illustrates the resulting heatmap. Red color indicates cases where more
phrases are predicted by the rule-based method than by the CNN-based method while
the blue color indicates the opposite case. We observe that the CNN is a better model
to correctly classify somewhat positive (1) and somewhat negative (−1) classes than
the rule-based method. In turn, the rule-based method is superior in the classification
of the neutral (0) and negative (−2) classes. To have a better interpretation of the
numbers in the heatmap, it is beneficial to look at the distribution of labels in the
whole population: 2.6%, 11.3%, 67.7%, 14.3% and 4.1% for −2 to +2 labels.

- Constituency parser vs. dependency parser: The output of a dependency parser is
a Directed Acyclic Graph (DAG). However, RNTNs accept a binary-branching parse
tree as an input. Therefore, we have binarized the output of dependency parser by
starting from the word which does not point to any other word as its parent, and
recursively binarize its children list by adding empty nodes when necessary. While
analyzing the effect of using a dependency parser instead of a constituency parser in
RNTNs (Table 1), a significant loss of performance is visible in some datasets (e.g.
MR). This is particularly noticeable when the labeling method is CNN (e.g. 70% to
49% in MR). The reason for this could be the difference of the word order resulting
from a dependency parser compared to the n-gram features extracted by the CNN.

- RNTN vs. CNN: Table 1 shows a detailed comparison of the RNTN automatic la-
beled variants to the CNN model and the rule-based method. We have reported the
average accuracy and F-measure over all classes. With the same settings of parame-
ters, we see a better performance of the CNN model on the MR and SemEval-2016
datasets. The largest performance (in terms of F-measure) improvement can be ob-
served on the SemEval-2016 dataset, 0.51 to 0.56, for the best performing RNTN
and CNN approaches. The possible reasons may be related to the enormously large
number of parameters that have to be optimized in the tensor and the effects of the
applied automatic labeling of phrases used on the RNTN. Therefore, a future research
direction could try to reduce this space and find a better initialization.

- Effect of automatic labeling on RNTN performance: Table 1 also presents the
performance of the manually labeled RNTN on the SST-5 dataset. As we can see, au-
tomatic labeling results in a significant degradation of performance on SST-5. Com-
paring the results with the CNN model shows that the manually labeled RNTN out-
performs the CNN architecture in terms of overall accuracy and F-measure. To have a
closer look into the confusion matrix of both methods, we generate a heatmap similar
to Figure 2a, this time subtracting the CNN confusion matrix elements from that of
RNTN method (i.e. confi,j

rntn−confi,j
cnn

totali
). Blue color indicates more prediction of sen-

tences by the CNN model than by the RNTN while the red color indicates the reverse
case. Figure 2b indicates that the RNTN has a tendency to classify more instances
into neutral (0) and positive (2) labels and it is better at correct prediction of some-
what negative (−1), neutral and positive labels while the CNN is better at classifying
negative (−2) and somewhat positive (1) labels. Here, the distribution of sentences
over labels is closer to the uniform distribution: 12.6%, 28.6%, 17.6%, 23.1% and
18.1% for −2 to +2 labels. Unfortunately, currently there is no other dataset that is
manually labeled at the phrase level. A future direction includes further evaluation of
the impact of the phrase labeling accuracy on various datasets.
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3.3 Task 2: Sentence Categorization

We test this task on two datasets: The TREC7 question dataset, where the goal is to
classify a question into six coarse-grained question types (whether a question is about an
entity, a person, a location, numeric information, abstract concepts or an abbreviation),
and the Subj8 dataset, where the goal is to classify a sentence as being objective or
subjective. The TREC dataset has 5452 training instances and 500 test sentences. The
Subj dataset contains 10, 000 sentences in total but it does not have a separate test set,
therefore we use 10-fold cross-validation. The results are reported in the bottom section
of Table 1. In these experiments only CNN-based methods are applicable. We observe
that the CNN model outperforms RNTN versions, and dependecy parsing drastically
reduces the performance of the RNTN.

3.4 Comparison of CNN architectures

In the next experiment, we compare our proposed deep CNN architecture to a one layer
CNN to find out the cases where the deep structure is beneficial. The one layer CNN
architecture [6] has several parallel filters of different sizes and a max-pooling layer. In
our experiments, we have used 100 filters of size 3, 4, and 5. Classification results (see
next to last column of Table 1) indicate that the performance of the one layer architec-
ture is comparable to the proposed deep architecture on the MR dataset and that it per-
forms better on the rest of sentiment datasets. The performance of Kim’s architecture on
the SST-5 dataset is comparable to the RNTN based on manual labeling. These results
highlight the importance of keyphrase recognition in sentiment tasks, where applying
larger filters is more beneficial than having several layers of small filters. However, on
the other sentence categorization datasets, i.e. TREC and Subj, the proposed deep CNN
outperforms the flat architecture.

4 Conclusions

In this paper we studied two well-known deep architectures, CNNs and enhanced ver-
sions of RNTNs, in the context of sentence modeling. In order to avoid the labor-
intensive task of manually labeling the internal phrases for recursive networks, we
proposed two methods to automatically label them for training and tuning phases: a
rule-based method which is specifically used for sentiment prediction and a CNN based
method for general purposes. Considering this part of study, the evaluation results on
the SST-5 dataset indicate that the CNN method has a tendency to assign a positive or
negative polarity to the phrases while the rule-based method classifies many of them as
neutral. Based on the presented automatic labeling methods of internal nodes, we con-
ducted an in-depth study of the RNTN model and compared the model to a relatively
simple deep CNN architecture. Experimental results conducted on an extensive set of
standard benchmark datasets demonstrate that the proposed CNN model outperforms

7 http://cogcomp.cs.illinois.edu/Data/QA/QC/
8 https://www.cs.cornell.edu/people/pabo/movie-review-data/
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the RNTN variants with automatic phrase labeling, whereas the RNTN with manual la-
beling (if available) outperforms the CNN. However, in that case, a one layer CNN with
several filters of different sizes is comparable to the manually labeled RNTN. These re-
sults demonstrate that the syntactic structure of a sentence will help in the classification
performance when it is possible to accurately label the internal nodes of a parse tree,
otherwise CNN is more successful at representing the meaning of the sentence with
respect to the task. The findings show that there is still room for improvement of RNTN
variants in terms of determining tensor functions in a more informed manner.
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