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Abstract

Fostered by the constant advancement of digital technologies, both catalogs of music
distributors and personal music collections have grown to sizes that call for auto-
mated methods to manage them. In this context, music similarity estimation plays
an important role: It can be used to recommend music based on examples, to orga-
nize a collection into groups, or to generate well-sounding playlists. Content-based
methods are especially interesting in that they rely on sound only, not requiring
any metadata.

Most existing content-based music similarity estimation methods build on com-
plex hand-crafted feature extractors, which are difficult to engineer. As an alterna-
tive, unsupervised machine learning allows to learn features empirically from data.
Based on a review of existing approaches to music similarity estimation and related
tasks in three other domains of pattern recognition, we design a music similarity
estimation system based on unsupervisedly learned audio features.

In particular, we train a recently proposed generative model, the mean-covariance
Restricted Boltzmann Machine (mcRBM), on music spectrogram excerpts and em-
ploy it for feature extraction. In experiments on three public datasets, it clearly
outperforms classic MFCC-based methods, surpasses simple unsupervised feature
extraction using basic RBMs or k-Means and comes close to the state-of-the-art.
This shows that unsupervised feature extraction poses a viable alternative to engi-
neered features.

Zusammenfassung

Begiinstigt durch die stetige Weiterentwicklung digitaler Technologien haben sowohl
das Angebot der Musikhéndler als auch personliche Musiksammlungen inzwischen
Grofen erreicht, die ohne automatische Methoden kaum zu handhaben sind. Musik-
dhnlichkeitsmafle spielen in diesem Zusammenhang eine wichtige Rolle: Sie kénnen
dazu verwendet werden, Musik auf Basis von Beispielen zu empfehlen, eine Samm-
lung in Gruppen aufzuteilen, oder wohlklingende Wiedergabelisten zu generieren.
Inhaltsbasierte Methoden sind besonders interessant, da sie ausschliellich auf dem
Klang aufbauen und keine Metadaten bendétigen.

Die meisten existierenden inhaltsbasierten Musikdhnlichkeitsmafie basieren auf
komplizierten, von Hand erstellten Merkmalsextraktoren, die schwierig zu entwi-
ckeln sind. Eine Alternative bieten uniiberwachte maschinelle Lernmethoden, die
Merkmale empirisch aus Daten lernen kénnen. Ausgehend von einer Begutachtung
existierender Musikahnlichkeitsmafle sowie dazu verwandter Methoden aus drei an-
deren Gebieten der Mustererkennung entwickeln wir ein Musikdhnlichkeitsmaf} auf
Basis uniiberwacht gelernter Audiomerkmale.
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Insbesondere trainieren wir ein vor kurzem entwickeltes generatives Modell, die
mean-covariance Restricted Boltzmann Machine (mcRBM), auf Auschnitten aus
Musikspektrogrammen und setzen es zur Merkmalsextraktion ein. In Experimenten
auf drei frei verfiigharen Datensétzen ist es klassischen MFCC-basierten Ansétzen
klar iiberlegen, tibertrifft einfachere uniiberwachte Merkmalsextraktion mit gew6hn-
lichen RBMs oder k-Means und kommt nahe an den aktuellen Stand der Technik.
Das zeigt, dass uniiberwachte Merkmalsextraktion eine praktikable Alternative zu
von Hand entwickelten Features darstellt.
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1 Introduction

Nowadays, music gets produced and published at a higher rate than any individual
can listen to it: Estimates reach from a yearly “11,000 (nonclassical) major label
albums averaging some ten cuts per album” [Vog04, p.261] up to 97,751 albums
released in the United States in 2009, as reported by Nielsen SoundScan'.

In this chapter, we will explain that this creates a need for automatic music
recommendation systems, motivate how content-based music similarity estimation
would help in this context and point out further useful applications, briefly reason
why unsupervised machine learning methods are appealing for this task and finish
with an outline of the main parts of this thesis.

1.1 Content-based music similarity estimation — what for?

1.1.1 Automated music recommendation

According to the estimations given above, the corpus of available music is growing
at an extraordinary rate of possibly over five hours of newly released music per hour.
As a consequence, any music listener has to rely on filters to provide a selection
of music she or he likes. A listener looking for new music traditionally only had
limited influence on these filters, such as by choosing a radio station to listen to
or a shelve in a music store to look through, and was largely dependant on others’
choices, such as the station’s editorial’s decisions on the playlist, or the selection
and sorting of records by staff in the store.

Digital technologies have changed this situation in at least two respects: Digital
music distribution channels such as iTunes or Amazon can provide quick access to
millions of music pieces with low expenses, so they are less strictly filtered, and,
with the abandonment of physical records, they shifted granularity from albums to
single tracks, making it even harder for potential customers to make a choice. To fill
in this gap of missing filters, automatic music recommendation systems have arisen,
attempting to provide highly individually targeted access to the world’s music.

"http://www.billboard.biz/bbbiz/content_display/industry/news/
e3i4ad94ea6265fac02d4c813cOb6a93ca2
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1.1.2 Established music recommendation systems

An informal study among university students (aged 20 to 25, German or Austrian,
experienced Internet users, but not familiar with Music Information Retrieval, Sig-
nal Processing or Computer Science) resulted in a list of six Internet platforms that
are commonly associated with music recommendation. In the following, we will
briefly review how these systems work to show in which respect industry’s state-
of-the-art still falls short of satisfyingly solving the problem at hands. See [Sca09,
pp. 9-15] for an alternative and more extensive review of some of these services.

Amazon suggests albums or songs based on what has been purchased in the same
order or by the same customers as items one searched for or bought. This is a
form of collaborative filtering [HKBR99], which assumes that users who have
agreed in the past (in their purchase decisions) will also agree in the future
(by purchasing the same items).

Collaborative filtering generally suffers from two related problems: The cold-
start problem and the popularity bias. In this case, the former means that
albums that have not yet been purchased by anybody can never be suggested,
and the latter describes that for any given item, popular albums are more
likely to have been purchased in conjunction with it than unpopular ones, and
so have a better chance of being recommended. In consequence, collaborative
filtering is incapable of suggesting new music releases. An additional problem
specific to Amazon is that users may purchase items for somebody else (e.g.,
as a present), which will flaw the recommendations generated both for them
and for other users of allegedly the same taste.

Spotify, a music streaming service, bases its recommendations on its users’ listening
behavior, analyzing which artists are often played by the same listeners. While
this may potentially result in better suggestions than analyzing sparse data
such as record purchases, it is again subject to the cold-start problem and
popularity bias. Furthermore, Spotify only recommends related artists, which
is rather unspecific.

Genius is a function in Apple iTunes which generates playlists and song recom-
mendations by comparing music libraries, purchase histories and playlists of
all its users, possibly integrating external sources of information. Assuming
such external information does not play a major role, this system is based on
collaborative filtering and will suffer from its problems.

Last.fm combines information obtained from users’ listening behavior and user-
supplied tags (words or short expressions describing a song or artist). While
tags can help making recommendations transparent to users — e.g., a user lis-
tening to a love song may be suggested other tracks that have frequently been
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tagged as “slow” and “romantic” — they are easily manipulated by malicious
users, requiring counter measures [LFZ09], and are affected by the cold-start
problem and popularity bias.

Pandora, another music streaming service, recommends songs from its catalog
based on expert reviews of tracks with respect to a few hundred genre-specific
criteria. This allows very accurate suggestions of songs that sound similar to
what a user listens to, including sophisticated explanations for why a song
was suggested — e.g., a track may be recommended because it is in “major
key”, features “acoustic rhythm guitars”, “a subtle use of vocal harmony” and
exhibits “punk influences” 2. As it is based on analyzing the musical content
rather than collaborative filtering of users’ consumption or unrestricted tag
descriptions, it is not affected by the popularity bias. However, the expert
reviews incur high costs in terms of time and money: An annotation time of
45 minutes per track [Sca09, p.45] makes it infeasible to extend the catalog
at a rate that can keep up with new releases, limiting the selection of music
available to users similarly to the cold-start problem.

Shazam has often been named as well. While it analyzes the sound of music tracks,
the original Shazam service actually does not provide any recommendations,
but only finds the exact same track in its database to provide the user with
metadata such as the artist or title of the song. The audio features extracted
by the system (constellations of peaks in the spectrogram [Wan03]) are tai-
lored to solving this task under very noisy conditions, but not useful for finding
and recommending songs that sound similar rather than identical.

1.1.3 Use of content-based music similarity estimation
1.1.3.1 Large-scale recommendation

Despite these recommendation systems, only a small fraction of new albums attract
a wider audience: According to Nielsen SoundScan, only 2.1% of 2009’s releases sold
more than 5,000 copies, and 12 releases (0.01%) sold more than a million. Album
sales thus follow what is commonly known as a Power Law (or Pareto) distribution,
where very few items sell very well, while the other items remain in the Long Tail
and hardly sell at all [And06]. This means that either an overwhelming majority of
today’s music sounds bad, or a lot of good music still never gets found by interested
listeners (or a combination of both).

We assume that at least two factors contribute to the latter: Firstly, music
recommendation systems are not yet widespread enough to dominate album sale

2song description from http://www.pandora.com/music/song/shins/kissing+lipless
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statistics, and secondly, all common systems except for Pandora are based on col-
laborative filtering and are thus susceptible to popularity bias, which encourages a
Pareto distribution rather than giving users easy access to the Long Tail.

Revealing music pieces hidden in the Long Tail that suit the taste of a user seem-
ingly needs a recommendation system that is not based on collaborative filtering.
While Pandora is such a system, it requires costly experts and so can only handle a
limited catalog of music. Audio content-based music similarity estimation attempts
to automate the process of listening to music pieces and inferring information about
their musical style or structure using digital signal processing, statistics and ma-
chine learning. Recommendation systems based on these methods are — just like
human expert recommendations — not prone to popularity bias [CCO08], making
them a viable alternative for finding music that would otherwise pass by unnoticed.

Of course, audio content-based methods can also be combined with collabora-
tive filtering to form hybrid systems that leverage the “hive mind” [Kro05] while
alleviating the cold-start problem.

1.1.3.2 Small-scale recommendation

Digital technologies have not only changed the commercial distribution of music,
but also the collection and listening habits of users. Widespread music compres-
sion methods such as Mp3 or Ogg Vorbis foster mass transmission, storage and
transportation of music, allowing users to grow large private collections and carry
around hundreds of albums in their pockets. Interestingly, a Pareto distribution
arises in this scale as well: Analyzing over 5,600 iPod users’ listening behaviors,
[Lam06] found that of the average 3,542 songs in a collection, about 23% received
80% of plays, while 64% of the songs were not even played a single time. As it is
hard to imagine that users dislike more than half of the songs they chose to copy
to their portable music player, a reasonable conclusion is that private music collec-
tions nowadays are too large for people to manage manually. Content-based music
recommendation could help (re-)discovering forgotten music in the Long Tail.

1.1.3.3 Playlist generation

Closely connected to the previous issue, but also applicable on a larger scale is the
use of content-based similarity measures for automatic playlist generation. Given
a song to start from, choosing perceptually similar songs in a row will yield a
playlist with smooth transitions, in contrast to current music player’s common
shuffle function [Log02]. By also defining a target song, a system could generate
a playlist by finding a path in the similarity space connecting both given songs
[FSGWO08]. Another interesting application is creating a circular playlist of all
tracks in a collection with a Traveling Salesman Problem solver, allowing for easy
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access of its parts, grouped by similarity [PPWO05].

1.1.3.4 Scientific advancement

All preceding motivations focus on applications, but working on content-based mu-
sic similarity is just as interesting from a purely scientific perspective.

As we will elaborate in Chapter 3, many methods employed in music similarity
estimation are inspired by or borrowed from other fields of pattern recognition
working on speech, images or text documents. In a similar manner, advancements in
understanding and comparing music may prove to be useful for speech recognition,
object recognition in images or text document retrieval (cf. [Auc06, pp.51-52] on
“Cross-Fertilisation”).

Last, but not least, it is not yet fully understood how exactly humans perceive
music. Building a working system in a computer, possibly even using biologically-
inspired methods, could help building a reasonable model of how the human brain
processes music.

1.2 Unsupervised Machine Learning for Feature Extraction

1.2.1 Hand-Crafting vs. Machine Learning

The first step of every audio content-based music similarity estimation system con-
sists in extracting features from the audio signal (cf. Section 2.1). Most such feature
extractors have been manually designed for capturing a specific aspect of music its
developer deemed important, such as the instrumentation, pitch, key, or rhythm,
and then evaluated to find out how well they represented the intended aspect and
if it helped in finding similar music pieces.

Cambouropoulus terms this approach knowledge engineering [Cam98, p. 33]. The
alternative is empirical induction from a given set of music pieces, which can be
practically achieved by employing machine learning methods. Supervised machine
learning attempts to algorithmically find patterns in audio data that are suited best
for discriminating between or predicting high-level descriptions, such as the musical
key. This way features targeted towards specific goals can be found empirically,
ideally without designers needing to reason or guess how to extract them. However,
data usually still needs to be properly preprocessed for machine learning algorithms
to work, and most importantly, supervised machine learning needs ground truth
data (in this example, the musical key for a large number of music pieces) to learn
from.
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1.2.2 Unsupervised Feature Extraction

It has been conjectured that humans are capable of inferring structure from data
without any given ground truth to guide learning. For example, Fiser asserts that
“while many processes of human knowledge acquisition are goal-directed and also
rely on explicit external error-measures, the first step toward these more cognitive
types of memory formations is a dimension-reducing unsupervised learning process”
[Fis09]. Specifically focusing on perception learning, Abdallah concludes from a re-
view of related literature that the goals of perception include an “efficient represen-
tation of relevant information through a process of redundancy reduction” and “the
construction of statistical models of sensory data”. He points out that the latter
“can in principle be achieved by data-driven unsupervised learning” [Abd02, p. 30]
and in fact, unsupervised techniques have been shown to yield feature extractors
comparable to those found in most mammals’ primary visual cortex [0796, BS97]
and cochlea [Lew00]. Abdallah suggests to apply this to music, assuming “that
musical structure is inherent in musical data, and that any mental structures that
we use to process music are there in response to the structure of the data.” [Abd02,
p. 30]

Unsupervised machine learning thus seems to be an interesting alternative for
learning feature extractors. Even if Abdallah’s assumption should be wrong and
our musical understanding partly stems from congenital auditory abilities? formed
by evolution (which is supervised learning guided by natural selection), we assume
in this thesis that some relevant musical structure can be learned in an unsupervised
fashion. Compared to supervised methods, a possible disadvantage is that there
is little to no control about which features will emerge. But on the plus side, no
ground truth data is needed, just lots of music files which are relatively easy to
obtain, and designers do not need any domain knowledge, permitting the use on
any kind of music. And from a scientific perspective, unsupervisedly trained feature
extractors would not only give a model of how humans might perceive music, but
even show how they might learn to do so.

1.3 Thesis Qutline

In the following chapter, we will review a range of proposed content-based music
similarity measures from the literature to understand their general architecture and
design space, to introduce several common feature extractors and to learn from their
successes and failures.

Chapter 3 briefly explores three other domains of pattern recognition and in-
formation retrieval, analyzing similarities and differences to music processing and

3For example, infants have repeatedly been shown to remember and recognize melodies weeks
before their birth [GDBR*11].
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highlighting methods potentially useful for music similarity estimation.

Based on our insights from Chapters 2 and 3, we propose a new system for music
similarity estimation in Chapter 4. Its main component is a recent method for un-
supervised feature extraction, the mean-covariance Restricted Boltzmann Machine,
which has already proven useful for processing both images and speech, but has
never been applied to music. To achieve a certain level of self-containment, we fully
describe this component as well as any other methods used that we cannot assume
to be commonly known.

In Chapter 5, after establishing the methodology for evaluating music similarity
measures, we perform a range of experiments starting with a baseline system and
gradually changing it into our target system, closely evaluating the effects of each
step to show how each of our ideas contributes to the final result. We observe a
clear improvement over the baseline system. For two datasets of Western popular
and classical music, our results are closely behind a hand-crafted state-of-the-art
approach, on a third dataset of ballroom music our approach performs moderately
well in comparison to the best results reported in literature.

We will finish the thesis with a review of our achievements and an outlook on
future work in Chapter 6.






2 Existing Content-based Music
Similarity Measures

Although content-based music similarity estimation seems to only slowly find its
way into commercial applications (e.g., the first hi-fi system capable of automa-
tically creating playlists based on audio content rather than metadata has been
released in 2009), research in this area commenced at least as early as 1997 [Foo97]
and has since seen an ever-growing interest, as the increasing number and length
of publications of the yearly ISMIR! conference show [DBC09]. This provides us
with a vast body of literature to learn from.

This chapter will give a very selective review of particularly interesting attempts
at building music similarity measures, pointing out their advantages and drawbacks.
The first section describes the common architecture of most music similarity esti-
mation systems, the second section exemplarily analyzes a classic approach in great
detail to establish an understanding of the different parts, and the remainder of the
chapter deals with several successors and alternatives to this method. Even if most
of these are hand-crafted rather than machine learned, their study will help us in
building our own system.

2.1 General Scheme

The great majority of systems follow the same basic structure depicted in Figure 2.1,
which we will further describe below.

Representation of Songs Each music piece, a function of time to amplitude (or
to a tuple of amplitudes for multiple channels), is digitally represented as a finite
sequence of discrete samples (or tuples of samples) at a fixed sampling rate?. Typical
sampling rates range from 11 to 44 kHz, and each sample (of each channel) can
usually take one of 26 to 2% amplitude values. For convenience, we will disregard
the quantization of amplitudes and assume real-valued amplitudes in the interval
[—1,+1] instead. Unless noted otherwise, we will additionally restrict ourselves to

nternational Society for Music Information Retrieval
2Symbolic representations of music (such as scores, lyrics or MIDI data) and methods for their
comparison are not dealt with in this thesis.
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Sequence of
frames

transformation

Global song

model A

Sequence of
local features
’distance measure Distance A—B

Global song
.

Figure 2.1: The common architecture of most content-based music similarity esti-
mation systems. Ellipses denote data, blocks denote transformations.

aggregation

single-channel (mono) recordings, so each song can be regarded as a single discrete-
time finite-domain real-valued one-dimensional signal.

Local Feature Extraction Rather than handling a whole music piece at once (e.g.
a 4-million-dimensional real-valued vector for a 3-minute mono track in 22 kHz),
systems first divide a song into smaller, usually fixed-size, possibly overlapping parts
often termed frames, which are then transformed separately or in small groups of
neighboring elements to obtain a sequence of local features.

While this segmentation is necessary for some feature transformations either to
reduce the variability of input data and yield useful features or plainly to reach
computational feasibility, an even better justification for performing local feature
extraction is that humans (whose sense for music we try to capture) also process
music in short excerpts — as songs are signals in time, nobody can perceive a com-

plete music piece at once3.

Building a Global Song Model Although a song could be readily described by its
sequence of local features, this is impractical: Local features are typically on the
order of 10! to 102 floating point values, at a frame rate of up to 50 Hz, which makes
the sequence of features not much smaller or even larger as the original audio signal.
However, much of this information is redundant (think of reused sound fragments or
long-term repetitions) or not relevant for similarity computations (such as the exact
order of all features, or their exact values). It is therefore useful to abstract from

30f course this does not mean that computers could not profit from being able to process a whole
song at once, but it shows that this ability is not necessary for understanding music the way
humans do.
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2.2 Classic Approach: GMMs of MFCCs

the actual sequence of local features by building a more compact global model of
the song, which captures relevant aspects of the sequence and discards unnecessary
details. A simple example would be taking the average of all local features, but more
sophisticated statistical models will be presented and discussed in the following
sections.

Comparing Global Models To finally estimate the similarity of two music pieces,
their global models have to be compared. Depending on the type of the model,
many different distance measures are applicable, the use of which always has to be
evaluated in conjunction with the chosen type of global model and the local features
it is based on. The calculated distance between two global models usually cannot
be interpreted by itself, but can subsequently be compared to other distances to
permit conclusions of the form “Song A is more similar to Song B than to Song
C”, “Songs X, Y, Z are this collection’s most similar songs to Song A”, or even to
produce a low-dimensional visualization of a collection of songs representing their
respective distances.

2.2 Classic Approach: GMMs of MFCCs

One of the best-known approaches is the one of Aucouturier and Pachet [AP02b].
While it is not the first attempt at modelling music similarity, it is one of the most-
cited. Furthermore, it is a very instructive example, allowing us to learn a lot about
the parts that make up a music similarity estimation system.

Aucouturier and Pachet position their approach as a method for estimating timbre
similarity. Timbre can be defined as “that attribute of auditory sensation whereby
a listener can judge that two sounds are dissimilar using any criterion other than
pitch, loudness and duration” [PD76]. While this excludes the pitch, melody or
rhythm, it captures important musical qualities such as the instrumentation and
singing, and a timbre component plays a fundamental role in state-of-the-art meth-
ods for estimating general music similarity [ADPO7].

2.2.1 Local Features: Mel-Frequency Cepstral Coefficients

Originally based on an idea for analyzing time series data for echoes [BHT63|, Mel-
Frequency Cepstral Coefficients (MFCCs) were recognized to be useful features for
speech recognition [DM80] and are now a standard feature in this field [RJ93].
Usage of MFCCs for Music Similarity Estimation has been pioneered by [Foo97],
but only [Log00] claims to perform the first systematic evaluation of whether as-
sumptions behind MFCCs actually apply to music (we will review her results in
Section 2.2.4.1). Since then, MFCCs have become an established audio feature in
the MIR community.

11



2 Existing Content-based Music Similarity Measures

In the following, we will describe the computation steps of MFCCs along with

their motivation for speech recognition and an attempt at interpreting what they
do to a polyphonic music signal. A formal definition of MFCCs will be given in
Section 4.2 (p.48), more details on their justification can be found in [RJ93].

Segmentation into frames: First, short sequences of samples called frames are ex-

tracted from the signal, typically on a scale of tens of milliseconds and with
50% overlap. The goal is to work on excerpts that are short enough to be
assumed stationary signals, i.e., signals for which the statistics do not change
over time. Practically, the most important aspect is for the excerpts to have
a more or less constant frequency distribution over time, as time information
within the excerpt will be lost in a later step.

Hamming windowing: Fach frame is multiplied with a Hamming window to min-

imize spectral leakage of energy into neighboring frequency bins in the next
step. This is standard practice in computing a Short-Time Fourier Transform
(STFT); for further details please see [Har87].

Discrete Fourier Transform: A DFT is applied to each frame, to obtain the distri-

bution of energy into frequencies (along with their phases). Regarding speech
as a convolution of a speaker-dependent glottal excitation signal with an (ide-
ally) speaker-independent vocal tract response (the source-filter model), the
DFT turns a speech signal into a product of the speaker-dependent part (the
voice) and speaker-independent part (the articulated phone) [RS78]. To a
certain extent, the DFT might also separate the pitch of a note from the
instrument it is played with.

Magnitude spectrum: Phase information is discarded by taking the absolute value

of each (complex-valued) frequency bin. While the original assumption of the
human ear’s general insensitivity to relative phases of components of com-
plex tones [Ohm43] has been proven wrong, the ear is “phase deaf” under
some circumstances (see [Moo02] for a review of results), indicating that the
magnitude may be more important than the phase.

Mel scaling: Frequencies are mapped to a perceptual pitch scale, the so-called Mel
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scale. Human’s perception of pitch has been found to be linear in frequency
up to about 1000 Hz, above which pitch perception is logarithmic [SVN37],
i.e., multiplications of frequency by a constant factor are perceived as linear
pitch increments (for example, octaves in music appear linearly-spaced but
are actually doublings of frequency). This reduces the frequency resolution
at higher frequencies, which are less relevant for speech recognition. For
music, it results in a fixed spacing pattern of harmonics (and linearly spaced
Western scale notes), which might be useful for transposition-independent
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features. Mel scaling is also used for dimensionality reduction: the frequency
bins of the magnitude spectrum (usually between 256 and 1024) are mapped
to relatively few mel bands (e.g., 40), justified by the fact that the human ear
only distinguishes few so-called critical bands as well [FZ07, p. 159].

The log function is applied to the mel magnitudes.* This can be motivated
from two perspectives: Firstly, loudness perception of humans is logarith-
mic, and secondly, the logarithm transforms the product of the two parts of
speech (the source and the filter, see above) into an addition which is easier
to separate apart.

Discrete Cosine Transform: A discrete cosine transform is applied to each frame

of mel log magnitudes, of which the highest coefficients are discarded (e.g.,
keeping the first 20). Again, this can be justified in different ways: Seen
as a Fourier Transform for real signals, the DCT finds periodicities in the
log-magnitude spectrum (the result is referred to as the signal’s cepstrum, an
anagram of “spectrum” coined in [BHT63]) such as harmonics, which were
emphasized by the log function. As these will tend to occur in relatively small
offsets in the spectrum, omitting the higher DCT components will discard
them. For speech, this tends to remove the speaker-dependent part of the
signal [RS78], and at least for monophonic music, it yields a certain level of
pitch-independency [JCEJ09]. Keeping only the first DCT components can
also be regarded as determining the coarse spectral envelope of the signal.
Interestingly, the DCT basis functions also resemble the first PCA components
of spectra of audio signals [Log00], so the DCT achieves an approximate
decorrelation of the cepstral frames, and dropping the highest components
compresses the data.

In summary, MFCCs describe the spectral envelope of short frames of a signal.
The algorithm leaves a lot of hyperparameters to be chosen: frame length, frame
rate (amount of overlap), minimum and maximum frequency to be considered when
mapping to mel bands, number of mel bands, number of DCT coefficients to keep,
and whether to keep the first coefficient (the DC offset representing the total energy
of a frame). Different authors have come to different implementations [SPLS06],
and Aucouturier and Pachet [AF04] try to find an optimal setting for their setup
in a large set of grid search experiments (one of their results being that the optimal
number of coeflicients lies between 11 and 29, leading many subsequent authors to
use 20 coefficients in reference to [AF04]).

4In some early publications, the logarithm was applied before mapping the spectrum to the
mel scale [Foo97] [Log00, p.2]. This gives slightly different results, and in our preliminary
experiments it had a negative impact on similarity estimations, if any. More recent publications
apply the steps in the order presented here [SPLS06, Poh10, Sey10].

13
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2.2.2 Global Model: Gaussian Mixture Model

To represent a song, Aucouturier and Pachet approximate the statistical distribu-
tion of its MFCC vectors with a Gaussian Mixture Model (GMM). A GMM is a
weighted sum of K Gaussian distributions. Sampling this generative model can be
understood as picking one of the Gaussians from a multinomial distribution with
probabilities 7r, then picking a sample from this Gaussian. The probability density
function is

K
p(®|0) =) m - N(|pk, Zn), (2.1)
k=1

where

N(z|p, X) = #e—%(w—u)jﬂﬁ‘l(m—u) (2.2)

y 2m)4Z]

is the d-dimensional multivariate Gaussian probability distribution function with
mean g and covariance 3.

The parameters 0 = (m, g1, ... Bk, 21 - .. LK), that is, the prior probabilities 7
and the parameters of the Gaussians, are adapted to maximize the model’s like-
lihood under the data of a song via an Fzxpectation Mazimization algorithm (see
[Bis06, Sec. 9.2.2]). This can be seen as modeling the density of the data in the
feature space, or as clustering the data, completely discarding the original order of
MFCC vectors in the song. The goal is to obtain compact representations of songs
to compare against each other.

While not stated in [AP02b] and [AF04], side notes in [AP02a, Sec. 2.4.1] and
[Auc06, p.230] indicate that the Gaussian components were restricted to diagonal
covariance matrices, which reduces both computational costs and memory needs.
The number of components K was initially chosen to be 3 in [AP02b], but the grid
search experiments of [AF04] showed better performance for K = 50.

2.2.3 Distance Measure: Kullback-Leibler Divergence

The GMMs of two songs being two probability distributions, an obvious idea is to
compare them using the Kullback-Leibler divergence, which measures the degree
to which two probability distributions match. For distributions P and @ over a
continuous random variable X, it is defined as

KL(P|Q) = /_O:Op(a:) log zggdw, (2.3)

where p and ¢ are the respective probability density functions defining P and Q.
While this is not a metric distance measure, it is at least nonnegative, fulfills
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2.2 Classic Approach: GMMs of MFCCs
KL(P||Q) =0« P = (Q and can be easily symmetrized as
1 1
KLy(P,Q) = JKL(PIQ) + ;K L(QIP), (24)

making it a useful indicator for the similarity of two song models.

Unfortunately, no closed form for the Kullback-Leibler divergence of two GMMs
exists. However, we can perform a Monte-Carlo approximation, replacing the inte-
gral over p(x) by an average over a set of samples Xp from P:

/OO p(x) log p(w)da: R~ |)§P| Z loglﬂ (2.5)

—o00 q() vex, A(T)

Substituting (2.5) into (2.3) and the result into (2.4), we obtain an approximation
of the symmetric Kullback-Leibler divergence as

2. KLy(P,Q)~ 3 log (i+21 %

x€Xp wEX
= Y logp(x)+ > logg(x)— > logg(z)— > logp(x)
xeXp mEXQ zeXp mGXQ

(2.6)

where p and ¢ are the two models’ probability densities according to Equation 2.1.
(The same derivation can be found in [Auc06, pp.36-38], albeit starting from a
wrong definition of the Kullback-Leibler divergence.)

Comparing two GMMs P and @ thus reduces to sampling from both models and
computing a number of log likelihoods. The higher the number of samples, the
more accurate the approximation of the divergence, at the expense of computation
time. In the experiments of [AF04], Aucouturier and Pachet see an improvement in
timbre similarity estimations by increasing the sample size up to 1000, above which
results do not notably improve. For further experiments, they still chose a sample
size of 2000, which they also used in [AP02b].

2.2.4 Shortcomings of this Method

While Aucouturier and Pachet achieve good results in retrieval experiments on a
database of 350 music titles manually split into clusters of similar timbre [AF04],
there are a number of theoretical and practical issues with their approach. Not
questioning the general architecture (Section 2.1), we will again discuss the local
feature extraction, global modeling and comparison method separately.
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2.2.4.1 MFCCs

The use of MFCCs in the MIR community was promoted by [Log00], who showed
that (a) the logarithmic mel scale performs not worse than a linear scale on a
speech /music discrimination task and (b) the first few PCA components of frames of
music bear some visual resemblance to the first components of a DCT. Both results
do not indicate whether MFCCs are suited well for music similarity estimations,
and there are several reasons to doubt that this is the case. In particular, many of
the justifications for the computational steps are only valid for speech.

Cepstrum: Regarding the original signal as a convolution of an excitation signal

with a filter response, the cepstrum (the spectrum of the log magnitude spec-
trum) helps separating the two parts, as explained above. The underlying
source-filter model applies to speech and possibly some music instruments,
but does not carry over to the case of polyphonic music. Even for single
instruments, it has been shown that MFCCs fail to separate pitch from in-
strument class [Sey10, pp. 102-103]. It is therefore unclear if the cepstrum is
useful for modeling timbre, or music in general.

Magnitude spectrum: MFCCs discard the phase spectrum of the frames, so play-

ing a frame backwards will not change the features assigned to it [Auc06,
p. 109]. For stationary signals, or sufficiently short frames extracted from mu-
sic, this reflects the hearing capabilities of humans (e.g., even a sawtooth wave
sounds identical when reversed), but for longer frames including a change in
pitch or loudness this invariance is unjustifiable (except when asserting that
such reversed music frames never occur in real data).

Log magnitudes: Taking the log of the magnitude spectrum mimics the loudness

perception of humans. However, it prevents the easy separation of a linear
combination of multiple sources (such as the different instruments in a poly-
phonic recording), which could be a disadvantage for modeling music.

Discrete Cosine Transform for decorrelation: One of the arguments for applying
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a DCT as the last computation step is that it approximates the Karhunen-
Loéve Transform (KLT) or PCA for music signals, which optimally decor-
relates the data. Logan [Log00] did not systematically verify this, but only
visually compared a plot of the first few PCA components estimated from
100 Beatles songs to the first basis functions of the DCT. To the best of our
knowledge, later publications did not examine this matter any closer, neither
theoretically nor empirically. A possible reason is that MFCCs appear to
work well, and at least in early publications, the low computational costs of a
DCT in comparison to training and applying a PCA were essential for being
able to conduct large-scale experiments at all.
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Earlier theoretical results [HP76, SGP195, BYR06] show that as the frame
size tends to oo, the KLT/PCA indeed approximates the DCT if the covari-
ance between components decays exponentially with their distance (i.e., the
covariance matrix is a special form of Toeplitz matrix® with entries of the form
Ci; = pli=3l for some constant p). If and how well spectral frames of music
tracks satisfy these conditions can only be evaluated empirically, however.

As decorrelation of spectral frames is an important step in our proposed music
similarity estimation system as well, we will perform a set of experiments
to better understand if the DCT really is a good choice for decorrelation
and, more importantly, how this choice affects music similarity estimation
performance (Section 5.3, p.92).

2.2.4.2 GMMs

In representing a song with a GMM approximating the distribution of frame-wise
low-level features such as MFCCs, one makes at least two questionable assumptions:

1. Audio frames within a song are exchangeable, i.e., their order does not matter,
and they are statistically independent (Bag of Frames, cf. [ADP07]). The
latter assumption is already violated by the mere fact that frames overlap
in time, and the former assumption results in any permutation of frames to
be assigned the same global representation. Combined with the invariance of
MFCCs to the reversal of frames (Section 2.2.4.1), playing a song backwards
does not change its global descriptor.

2. The most statistically significant frames of a song are the most relevant
[Auc06, p.1]. A song representation will be influenced the most by frames
that occur often in the song and thus need to be modeled well by the GMM to
achieve a high likelihood, while exceptional frames will be largely ignored in
the model. It is not clear if this reflects which frames human listeners perceive
as being relevant to the sound of a music piece — possibly, exceptional frames
are just the ones that strike out to a listener and should be modeled better,
or statistical significance is not related to perceptual relevance at all.

Some of the approaches discussed in Section 2.3 attempt to weaken these assump-
tions. Regarding the assumption of exchangeability, authors have tried to include
temporal information at the feature extraction stage (by including the first-order
and second-order derivatives of frame-wise features, or by calculating local features
over blocks of multiple consecutive frames) or in the global models (by modeling
statistics over segments of data rather than frame-wise features, or by explicitly

5A Toeplitz matrix is a matrix with entries A;; depending only on i — j, i.e., a matrix with
constant diagonals.
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2 Existing Content-based Music Similarity Measures

modeling dynamics, e.g., with a Hidden Markov Model). To counter the second as-
sumption, some authors employ methods for finding and modeling only supposedly
interesting frames, such as frames around note onsets.

2.2.4.3 KL Divergence

As explained in Section 2.2.3, two GMMSs are compared by a Monte-Carlo approx-
imation of their Kullback-Leibler divergence. This poses several problems:

1. Calculating the approximation involves sampling a large set of points from
both models, as well as computing the log likelihood for each point under both
models. Each such likelihood computation requires evaluating the probabil-
ity distribution functions of all Gaussian components of the mixture model,
which, in the case of full-covariance Gaussians, involves a matrix inversion.
Even if some intermediate results are cached and reused, calculating the dis-
tances needed to answer a query such as “Which are this collection’s most
similar songs to Song X?” is computationally very expensive, as we will see
in Chapter 5.

2. The KL divergence is not a metric, prohibiting the use of metric-based index
structures such as M-Trees [CPZ97] or MVP-Trees [BO99] to speed up nearest
neighbor queries.

3. Gaussian-based models compared by KL divergence have been found to be
prone of producing so-called hubs: songs that are close neighbors to a large
fraction of songs in a collection, despite not being perceptually similar to
most of these songs. The existence of hubs in music similarity measures has
originally been reported in [AF04], and has since been the subject of sev-
eral publications [Ber06, AP08], also outside of the MIR community [RNI10].
While the hub problem is not limited to Gaussian-based models, some other
models seem to be less severely affected [HBCOS].

As we will see in the next section, researchers have found ways to alleviate all three
problems by simplifying the model, employing specially adapted indexing meth-
ods and post-processing the distance space, respectively, or to avoid the problems
altogether by using different global models and distance measures.

2.3 Advancements and Alternatives

In this section, we will discuss several other approaches reported in literature, some
of which are based on Aucouturier and Pachet’s method described above, and some
of which are independent or even predate [AP02b]. Our goal is not to give an
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extensive review of research on content-based music similarity estimation, but to
give an impression of the design space, focusing on ways to tackle the problems
discussed in Section 2.2.4. This will help us in designing a system which performs
better than and avoids the shortcomings of Aucouturier and Pachet’s approach.

Although publications typically describe and evaluate a complete system consist-
ing of a feature extractor, global model and comparison method, the local feature
extraction and global modeling stages are typically independent and could be re-
combined at will. We will therefore consider these parts separately, which also
easily allows us to include approaches for feature extraction that have only been
used for classification tasks rather than similarity estimation. As many methods
are based on the same local features as Aucouturier and Pachet’s (i.e., MFCCs),
we will start reviewing variations of the global models along with their distance
functions, then continue with alternative frame-wise local features (which MFCCs
are an example for) and finish with long-term local features.

2.3.1 Global Models and Distance Functions

Clustering Predating [AP02b], Logan and Salomon [L.S01] designed a music sim-
ilarity measure which clusters each song’s MFCCs by k-Means, then builds a song
model from the mean, covariance and weight of each cluster and compares those
models by the Earth Mover’s Distance (EMD). In their experiments, about half of
the songs recommended by the system for a given query were rated as good matches
by two users. Conceptually, this method is very similar to the KL Divergence of
GMMs, and similarly computationally expensive.

Single Gaussian Mandel and Ellis [ME05] simplified Aucouturier and Pachet’s ap-
proach by modeling the feature distribution of a song with a single full-covariance
Gaussian instead of a diagonal-covariance GMM. This reduces the time needed to
fit the model to a song’s feature vectors and enables comparison of song models
with a closed-form expression of the KL divergence, making the similarity measure
several orders of magnitude faster [Pam06, p.36]. Surprisingly, this simplifica-
tion does not have a negative impact on the music similarity measure [Pam06,
p. 66][LS06][HBCO08], making the “Single Gaussian of MFCCs” a popular baseline
method to compare other approaches against.

Vector Space As an even simpler global model, a state-of-the-art method by Sey-
erlehner et al. [SWP10] represents songs just by the median or other percentiles
of their local features (which are far more complex than MFCCs, though, see Sec-
tion 2.3.3). In contrast to Gaussian-based approaches, this yields a vector space
representation which can be compared by any vector distance measure such as the
Euclidean or Manhattan distance. This is not only much faster than computing
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or approximating KL divergences, but enables the use of both metric-based in-
dexes (Section 2.2.4.3) and position-based indexes such as KD-trees [Ben75| for
fast nearest-neighbor searches.

Vector Quantization Histograms The first published content-based music simi-
larity measure [Foo97] represents each song by a histogram over its MFCC vectors.
For this to work, the multidimensional real-valued local features have to be dis-
cretized. One way to do so is to create a global codebook of prototypical features,
then replace each feature of a song by the index (the codeword) of the most simi-
lar prototype in the codebook. This approach is called Vector Quantization (VQ)
[LBG80].5 Afterwards, the sequence of codewords can easily be histogrammed,
resulting in a vector space representation. In [Foo97], the codebook is built in a
supervised way, partitioning the feature space such that MFCCs of different artists
tend to be assigned different codewords. Comparing histograms of codewords for
each song by cosine distance (Section 4.6.1.2) yields a similarity measure which is
good in finding songs of the same artist.

Later works implemented variations of this approach and compared it to other
methods. Aucouturier [Auc06, pp.206-212] experiments with up to 500-element
MFCC codebooks built both by unsupervised K-Means clustering and a supervised
method. In timbre similarity estimation, both methods perform significantly worse
than Aucouturier and Pachet’s GMM-based system, with the supervised codebook
outperforming the unsupervisedly built one. [VP05] and [LS06] build MFCC code-
books with a 16 x 16 Self Organizing Map (SOM). While [VP05] do not compare
their approach to other systems, [LS06] report worse performance than the “Sin-
gle Gaussian of MFCCs” method in k-NN genre classification experiments on three
datasets. [HBCO08] compute up to 50-element codebooks by k-Means, normalize his-
tograms to unit £; norm and treat them as multinomial distributions, compared by
KL divergence (cf. Section 4.6.1.3). In contrast to other authors, they include delta
features along with the MFCCs (cf. Section 2.3.3), and normalize the data to unit
standard deviation in each dimension before clustering. With this approach, they
outperform GMM- and Single-Gaussian-based song models in genre-based retrieval
tasks on a small dataset (121 songs of 7 genres).

To reduce computational load and ensure that all songs get a fair chance of con-
tributing to the codebook, [SWKO08] build the codebook in two steps (referred to
as Multi-Level VQ): First the MFCCs of each song are clustered separately, then
the cluster centroids of all songs are collected and clustered again. Additionally,
the authors restrict clustering to so-called “event vectors” extracted at automati-

5This can also be seen as a part of the feature extraction and transformation rather than the
global modeling step. However, as it is independent of the type of local feature used, we decided
to discuss it along with other global models.
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cally estimated note onsets. This measure performs similar to the “Single Gaussian
of MFCCs” in k-NN genre classification (3180 songs, 19 genres), but produces far
fewer hubs. [MLG™11] also build a codebook in two steps, but using GMMs to
find the most significant frames per song and k-Means only for global clustering.
MFCCs are combined with a small set of further frame-wise features (Section 2.3.2).
For comparison, they also create a codebook by randomly sampling local feature
vectors from songs. Interestingly, this random codebook performs best both in sim-
ilarity estimation (evaluated via k-NN genre classification) and classification. Like
[SWKO8], the authors of [MLG"11] observe that histogram-based models produce
fewer hubs than Gaussian models.

Spectral Histograms Another way to discretize and histogram local features is
by binning. [PDWO03] calculate a histogram directly on a song’s log-frequency log-
magnitude spectrogram, with a fixed quantization of 20 frequency bands and 50
loudness levels, accumulated over the song. However, this model performs con-
siderably worse than Aucouturier’s GMM [Auc06, p.206]. [XZ08] use a similar
histogram, quantizing frequencies into 12 semitones and separately accumulating
over 8 subsequences of the songs. They report their model to perform well in cover
detection and genre classification, albeit on much too small datasets to draw any
meaningful conclusion (14 and 12 songs, respectively).

HDP As a variation on the GMM and VQ models, [HBCO8] train a Hierarchical
Dirichlet Process (HDP) on all local features (frame-wise MFCCs plus their deltas)
of a database. This can be seen as a GMM with indefinitely many Gaussian com-
ponents, of which only a finite subset is used to explain the training data. A song
can then be represented by calculating the posterior distribution over the Gaussian
mixture weights given the song’s local features, which yields a representation that
is conceptually similar to a normalized VQ histogram, but defines a Dirichlet dis-
tribution rather than a multinomial. Comparing the Dirichlet distributions of two
songs by the KL divergence, the authors obtain a fast similarity measure that out-
performs Gaussian-based models and produces fewer hubs (on the small 121-piece
genre-retrieval dataset mentioned above).

Dynamic Modeling In order to include information on the time course of a mu-
sic piece rather than completely discarding the order of local features (cf. Sec-
tion 2.2.4.2), several authors have tried to employ sequential data models. Most
prominently, Hidden Markov Models (HMMs) with GMM observations have been
used to model sequences of local features. For similarity estimations, these models
can be compared by the Monte-Carlo approximation of the KL divergence described
above (Equation 2.6), replacing the unordered sets of samples with sequences. Re-
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sults, however, have been disappointing: [Auc06, pp.202-204] see no improvement
in timbre similarity estimation over a static GMM. Similarly, in [SZ05], (genre-
wide) HMMs perform worse than a static SVM in genre classification, and a type
of recurrent neural networks called Elman networks gives even worse results. Upon
closer examination, [FPWO05] find that HMMSs actually provide a better song model
than GMMs in terms of the likelihood, but fail to improve similarity estimations
(evaluated via k-NN genre classification). This suggests that HMMs do success-
fully model dynamic aspects of the songs, but none of these aspects are relevant for
discriminating music.

In Section 2.3.3, we will discuss approaches to capture temporal aspects directly
at the feature extraction stage instead.

Feature Selection One of the implicit assumptions of all statistical models of local
features is that the most statistically significant features are the most important
(Section 2.2.4.2). To weaken this assumption, several authors have tried to include
only a subset of a song’s local features in the global model.” Both [SWKO8] and
[Sca08] restrict the global model to local features centered at likely note onsets, as
determined by an onset detection function. While the main motivation in [SWKO8]
was to reduce computational costs, [Sca08] hoped to achieve some translation invari-
ance. None of the authors compared their method to an implementation without
onset filter, but [SWKO08| noted that their models tended to only model percussion,
which possibly degraded similarity estimates of their system. [SPWS09] instead fil-
ter out and discard low-energy frames, having found that they contribute much to
the similarity estimate in the “Single Gaussian of MFCCs” approach although the
silent parts of songs are arguably not the most perceptually relevant. By discard-
ing between 50% and 70% of the lowest-energy MFCCs, k-NN genre classification
accuracy improves from about 19% to 22% (on a dataset of 3180 songs and 19
genres).

Distance Transformations Some attempts have been made to improve a similar-
ity measure by post-processing the calculated distances. [PSST09] and [SWP10]
calculate a full distance matrix between all songs of a collection, then normalize
each distance with respect to the mean and standard deviation of distances in the
complete row and column (Distance Space Normalization). This changes the near-
est neighbor ranks, often improving k-NN genre classification results [PSST09, p. 5],
[SWP10, Table 1]. Building on this idea, [SFSW11] model the distribution of neigh-
bor distances to each song as a Gaussian, then interpret the Gaussian’s cumulative

"Here, “feature selection” refers to filtering the sequence of local features in time, rather than
trying to find a combination of different kinds of features that is suited best for a particular
task.
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density function as a mapping from distances to negated probabilities of being a
close neighbor. Combining these neighbor probabilities (Mutual Prozimity), they
obtain an affinity matrix with more symmetric neighborhood relations, which re-
duces the number of hubs and improves k-NN genre classification. See [SFSW11]
for references to further approaches.

With a different goal in mind, Schnitzer et al. [SFW09, SFW11] explore a way to
map Gaussian-based song models to low-dimensional vectors such that Euclidean
distances in the vector space closely resemble the KL divergences of the original
models. This allows to use fast indexing methods even for the non-metric Gaussian-
based similarity measures.

Metric Learning [SWWO08] experiment with four methods to map song models
to low-dimensional vectors such that their Fuclidean distances approximate known
similarities between music pieces. Binary similarity ground truth for learning and
evaluating the mapping was obtained from song metadata (“same album” or “same
artist”) or by mining the web (“posted in the same music blog”). k-NN classification
results on separate test data show that their new global models (the low-dimensional
vectors) significantly outperform the original models in classification accuracy.
[MEDLO09] propose a different way to learn a metric: They train a classifier on
pairs of global models to learn binary similarity ground truth. The global models
are single Gaussians of MFCCs and autocorrelation coefficients and two song-level
features (all concatenated into a single vector), the classifier is a Multi-Layer Per-
ceptron (MLP) pre-trained as a Stacked Denoising Autoencoder (SdA), and the
similarity ground truth is obtained from playlists of commercial radio stations.
The classifier successfully learns to distinguish probable from improbable playlist
transitions, and its predictions can be used as a measure of song similarity.

Semantic Models Some authors report improved results with a semantic model
built on top of a feature-based song model. Such a model can be built by supervis-
edly training a tag predictor on song models, e.g., a set of binary classifiers each of
which outputs the probability that a human would label a given song with a partic-
ular tag. Ground truth is obtained by asking a sufficiently large group of humans
to label a collection of songs (either in a controlled experiment, or in public web
services such as last.fm described on p.2). Each tag usually consists of one or few
descriptive words, such as “hard rock”, “fast”, or “work out”, and the set of pos-
sible tags is restricted either beforehand or afterwards by regarding a limited-size
vocabulary only. The collection of tags for a song carries semantically meaningful
descriptions in terms of genre, mood, instrumentation, singing or preferred listening
contexts. The idea of semantic models is to learn how humans describe songs in
terms of tags, then generate hopefully good descriptions for previously unseen songs

23



2 Existing Content-based Music Similarity Measures

based solely on their audio content. The predicted tag probabilities (or tag affini-
ties) for a song form a high-dimensional vector which can be used as a higher-level
vector space song model — put differently, the tag predictor maps an audio-based
model into a new “tag feature space” in which songs can be compared to each
other. [BCTLO7] and [Sey10], to name but two examples, report better similarity
estimates with such models, compared to purely feature-based models. However,
training the tag predictors requires a large collection of high-quality ground truth.

2.3.2 Short-term Local Features

As an alternative or supplement to MFCCs, a wealth of other short-term features
has been suggested, each trying to capture a specific aspect of the spectrum on a
time scale of one to three frames.

Spectral Shape The spectral centroid, spread, skewness, kurtosis, slope and roll-
off give different scalar descriptions of aspects of the spectral envelope, calculated
on each mel-spectral frame (see e.g., [Pee04, Sec. 6], [TCO02]). Variations of the
spectral flatness [Pee04, Sec. 9] and spectral contrast [JLZ1T02, ASH09] measure
the noisiness or tonality of frames by regarding the difference between valleys and
peaks in the spectrum. More music-specific features aim to find the fundamental
frequency [DR93] or the notes present in a frame (“chroma” features [SGHS08]).

Dynamics Features such as the spectral flux [Pee04, Sec. 6.2] or delta and dou-
ble delta (acceleration) features [Fur86] aim to capture some of the dynamics of a
signal. While the former is defined directly for spectra, delta features just com-
pute the difference of consecutive frame-wise features (and acceleration features
compute the difference of consecutive deltas) and are applicable to any kind of
local feature. This simple extension helps a lot in speech recognition [Fur86] and
mitigates the exchangeability assumption in Bag-of-Frames models for music (see
Section 2.2.4.2).%

Learned Features As an alternative to such hand-crafted features, some attempts
have been made to learn short-term features, but only in classification tasks.’
[HWEO09] train a Deep Belief Net (DBN, see Section 4.4.3 on p.75) on a set of
MFCCs and other short-term spectral features described above, then fine-tune it to
classify frame-wise features into instruments, with comparable results to an SVM

8 Actually, frames plus delta frames are a representation of bigrams, and if there are no duplicate
frames in a music piece, a set of bigrams already suffices to reconstruct the complete original
sequence.

9S0 learning could just as well be seen as a part of the classifier, not the feature extraction, but
it is still an interesting approach to consider.
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and MLP classifier. [HE10] instead train a DBN directly on spectral frames (i.e.,
the high-dimensional frame-wise DFT result), then extensively fine-tune the net-
work as a genre classifier. Removing the DBN’s classification layer, they use the
network as a frame-wise feature extractor, and train an RBF-kernel SVM to classify
the features into the genres they have previously been tuned for. Classifying songs
with a winner-takes-all scheme, they show that their tuned local features outper-
form MFCCs in separating said genres (when mapped to an infinite-dimensional
feature space by the RBF kernel). However, it is unclear whether these specialized
features would be useful for a general genre-independent music similarity measure.

2.3.3 Long-term Local Features

Several features have been designed to capture more long-term information than
the frame-wise spectral energy distribution (and its frame-wise deltas).

ZCR One of the most primitive long-term feature is the Zero-Crossing Rate (ZCR).
It is calculated directly in the time domain and gives the number of sign changes
between consecutive samples per time unit (i.e., the number of times the signal
crosses the zero amplitude line). While fast to compute, it is difficult to interpret —
it is dependent on the frequency (higher frequencies have a higher ZCR), but can
also be regarded as a measure of noisiness.

Texture Windows Other features build on frame-wise features. For example, a
simple way to include more long-term information in local features is to form so-
called Texture Windows: Frame-wise features such as MFCCs are aggregated over
windows of one or a few seconds, and each window is represented by simple statis-
tics such as the mean and variance of its frame-wise features. These statistics form
new higher-dimensional long-term local features. [Auc06, pp.201-202] do not find
any improvement in their timbre similarity estimates with this approach. However,
[TC02] and [WC04] obtain a significant improvement in genre classification accuracy
when compared to directly modeling frame-wise features. As a variation, [WCO05]
compute statistics over onset-aligned windows rather than fixed-size windows, fur-
ther improving results. [SZ05], however, neither see a significant improvement nor
degradation with beat-aligned windows.

Block-wise Features A more explicit way to locally model dynamics is by process-
ing blocks of consecutive frames, i.e., excerpts of a sequence of short-term features.
In contrast to texture windows, the order of short-term features within a window is
kept, allowing to infer information about the time envelope of a note, the rhythm,
or note transitions. Even a simple concatenation of a couple of short-term fea-
tures yields long-term local features that can help in classifying music into genres
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[SZ05]. More advanced features are obtained from further processing such blocks
of short-term features.

Using mel-spectral frames as short-term features (i.e., MFCCs without applying
the DCT), blocks of features are equivalent to spectrogram excerpts with log-scaled
frequency and magnitude. Many state-of-the-art features are based on this repre-
sentation. Fluctuation Patterns (FPs) [PRMO02][Pam06, pp. 36-42] aim to capture
rhythmic aspects of a song. Their key idea is to apply an FFT to each frequency
band of 3- to 6-second blocks, thus determining regular modulations of loudness
over time (separately for each frequency band). Only modulations of 0-10 Hz are
regarded, corresponding to 0—600 beats per minute (bpm). Results are weighted
according to a perceptual model, attenuating very slow modulations, peaks in the
pattern are emphasized with a gradient filter, and the final pattern is smoothed with
a Gaussian filter both with respect to modulation frequencies (periodicities) and
frequency bands, to enable a more fuzzy comparison of patterns. [SWP10] scale the
periodicities of fluctuation patterns logarithmically, such that a change in tempo
results in a linear shift along the periodicity axis of the patterns. The filter bank
used for the rescaling step also induces a loss of precision, such that the patterns
become invariant to minor changes in tempo. [PSST09] do the same, but apply
an onset filter before computing the modulation strengths (resulting in Onset Pat-
terns). The onsets are determined on a high-resolution cent scale rather than the
usual coarse mel scale, then reduced to a low-resolution critical band representation,
aiming to reliably detect note onsets only semitones apart without increasing the
dimensionality of the final pattern. Several higher-level features are derived from
fluctuation patterns: [PamO06, pp.57-45] suggests to compute the center of grav-
ity, the focus (whether modulations are concentrated in a few periodicity-frequency
bins or widely spread over the pattern) and various ratios of energy in specific
ranges of periodicity and frequency. [PSST09] apply a 2D DCT to the patterns and
keep a limited range of Onset Coefficients in both dimensions. The suitability of
fluctuation patterns for modeling rhythms has been demonstrated on a dataset of
ballroom music, in which they significantly outperformed MFCCs in terms of k-NN
genre classification [PSST09].

[SWP10] propose a range of additional features based on log-frequency log-
magnitude spectrogram excerpts. The Spectral Pattern takes short blocks of 10
frames and sorts the 10 time steps of each frequency band by value. The Delta Spec-
tral Pattern does the same on 25-frame blocks of a spectrogram with emphasized
onsets (by calculating differences and half-wave rectifying the result). The Corre-
lation Pattern measures the correlation between frequencies in 256-frame blocks,
and the Spectral Contrast Pattern calculates the frame-wise spectral contrast men-
tioned in Section 2.3.2, then sorts the values of each frequency band in blocks of 40
frames. The calculations, block lengths and the number of frequency bands have
been carefully tuned for each of these features.

26



2.3 Advancements and Alternatives

[PKSW10] apply two hand-designed image filters to a cent-scaled spectrogram
which emphasize horizontal and vertical patterns, respectively, i.e., continuous tones
and short attacks. Calculating the means over the two filtered spectrograms and
dividing the “attack” mean by the sum of the two means yields a scalar feature
dubbed the H2A ratio. Low values indicate a dominance of harmonic parts, high
values indicate strong percussion. This can be calculated as a global feature for
sorting songs [PKSW10], or on a local level like other features [PSST09].

Learned Features Like for short-term features, attempts have been made at learn-
ing features rather than hand-crafting them. [Abd02] shows that applying Inde-
pendent Component Analysis (ICA) to short music waveform excerpts yields com-
ponents similar to Fourier basis functions, and that sparse coding of harpsichord
music spectrograms could reveal notes. [HBCO09] train a shift-invariant HDP on
spectrograms and yield decompositions of songs into musically meaningful compo-
nents such as drum sounds and vocals, as well as transcriptions of songs in terms of
these components. However, such complex song descriptions are not directly usable
for similarity estimation. Lee et al. [LLPN09] train convolutional DBNs on spec-
trograms (compressed on the frequency axis via PCA), yielding 10-frame features
that surpass MFCCs in 5-way genre and 4-way artist classification on 3-second
song snippets (not stating the classification method used). However, it is unclear
whether the features are useful for similarity estimation as well, and it is possible
they outperform MFCCs simply because they integrate information over multi-
ple frames. [PKSWO06] apply ICA to PCA-compressed mel-sone music spectrogram
excerpts and compare the components’ activation histograms for music pieces to es-
timate their musical similarity. However, in 1-NN genre classification this approach
proves inferior to Aucouturier and Pachet’s method. [PBK09] unsupervisedly ex-
tract features from a high-dimensional cortical representation of music pieces using
Locality-Preserving Non-negative Tensor Factorization (LPNTF). They then train
a supervised sparsity-based classifier on these features and surpass state-of-the-art
results on two genre classification datasets. However, it is unclear if this is because
of the features or because of the classifier.

2.3.4 Combined Features

State-of-the-art systems combine short-term features with long-term features, yield-
ing a similarity measure that regards both timbral and rhythmic aspects. Combin-
ing different features has been shown both to improve similarity estimates and to
reduce hubness [FSGP10].

Pampalk’s G1C [Pam06] combines the “Single Gaussian of MFCCs” with Fluctu-
ation Patterns (and two higher-level features derived from the patterns, the Gravity
and Bass). Distances are computed separately with KL divergence and Euclidean
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distance, respectively, then linearly combined with hand-tuned weights. This mea-
sure won the MIREX 2006 music similarity and retrieval task.!?

Pohle’s RTBOF'! [Poh10, PSST09], winner of the MIREX 2009 music similar-
ity and retrieval task, augments MFCCs with Spectral Contrast, Harmonicness
and Attackness features, modeled as a full-covariance Gaussian for each song and
compared by the Jensen-Shannon divergence (see Section 4.6.1.4, p.83). This tim-
bre component is combined with onset coefficients, which are modeled as a second
Gaussian per song and also compared by Jensen-Shannon divergence. The timbre
and rhythm distance matrices for a collection are separately normalized with DSN
(Section 2.3.1, p.19) and added up to form the final distance matrix.

Seyerlehner’s BLS (Block-Level Similarity) approach [Sey10, SWP10] separately
computes distance matrices for the Spectral Pattern, Delta Spectral Pattern, Vari-
ance Delta Spectral Pattern, Fluctuation Pattern, Correlation Pattern and Spectral
Contrast Pattern (each aggregated to a global model via different percentiles, then
compared by Manhattan distance), normalizes the distance matrices with DSN|,
linearly combines them with weights optimized on a genre classification dataset,
and renormalizes the final distance matrix again with DSN. On the dataset it has
been optimized for, BLS beats RTBOF; on five other datasets it performs similarly
or inferior to RTBOF. Combining BLS with RTBOF (again by applying DSN to
the separate distance matrices, adding them and applying DSN to the result) yields
a similarity measure surpassing both BLS and RTBOF in k-NN genre classification
on six datasets [SWP10].

2.4 Conclusions

From the preceding discussion of existing content-based music similarity estimation
systems, we can draw several insights useful for building our own system, aiming
to compete with the state-of-the-art:

1. First of all, the general architecture of a local feature extraction, global mod-
eling and comparison stage is well-tested and does not call for a change.

2. Machine learning has been employed at all stages, but not often for feature ex-
traction. In particular, unsupervised learning methods for feature extraction
are almost unexplored in the context of music similarity estimation.

OMIREX (Music Information Retrieval Evaluation eXchange) is a yearly contest held in con-
junction with the International Society for Music Information Retrieval Conference (ISMIR).
The audio similarity and retrieval task evaluates music similarity measures via human listening
tests. See http://www.music-ir.org/mirex/ for more information.

"«Rhythm-Timbre Bag of Frames” (RTBOF) is the name given to it in [SWP10]; Pohle termed
it the “unified” algorithm.
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2.4 Conclusions

3. Capturing the temporal evolution of music pieces with sophisticated dynamic
models of local features (HMMs, Recurrent Neural Networks) does not seem
to work well. Block-wise local features constitute a much better way for
modeling dynamics, significantly surpassing simple frame-wise features.

4. The best-performing methods are based on block-wise features defined as elab-
orate transformations of log-frequency log-magnitude spectrogram excerpts.
These features have been hand-crafted over the course of several doctoral dis-
sertations [Pam06, Poh10, Sey10], sometimes optimized to a specific dataset,
and include several elusive design decisions and parameter choices. It would
be desirable to find more effective, more efficient or better justifiable features.
The prevalent basis of log-frequency log-magnitude spectrogram excerpts may
be a good starting point for this.

5. State-of-the-art systems combine rhythmic and timbral features, which gives
better results than either type of feature alone. To be competitive, any system
probably needs to capture both short-term and long-term aspects of songs.

6. Choosing a type of local feature (or a combination of features) and extracting
it at a steady rate throughout a song is easy and works reasonably well.
Attempts at restricting feature extraction to points of interest in a song, such
as detected note onsets, do not yield a consistent improvement.

7. Vector space song models have a range of advantages over Gaussian-based
models: Distances are faster to compute, easier to index (for even faster
nearest neighbor retrieval) and less prone to hubs.

We will consider these insights in the design of our system in Chapter 4. Before,
we will briefly compare the task of music similarity estimation to similar tasks in
other domains that have been explored better, in order to learn about methods
that could be worthwhile to adopt into our system.
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3 Inspiration from other Domains of
Pattern Recognition and Information
Retrieval

In this chapter, we will take a look at three other fields also dealing with the
problems of extracting features, modeling documents or finding similarities: Text
Retrieval, Computer Vision and Speech Processing. We will review some of the
methods employed and relate the three domains to the music domain to point out
arguments for adopting particular methods, to show how this would be possible,
but also to give reasons for why this may fail.!

This examination is by no means exhaustive, as it is not intended to form the
central contribution of our thesis. It may be worthwhile to explore the relations
of the domains more in-depth to reveal further methods that could be employed
in the context of Music Information Retrieval. Ultimately, however, only empirical
investigations can show whether a method works or not.

3.1 Text Retrieval Systems

Firstly, we will regard the field of Text Retrieval. As we will see later, it has
already inspired several methods for Computer Vision, although at the first glance,
text does not seem to have much in common with images. Here, we will introduce
the methods in their original context, then reason how to apply them to music.
Before, we will briefly describe the purposes of Text Retrieval systems.

Purposes

One of the main areas in Text Retrieval research considers the task of document
retrieval: Given a collection of text documents and a textual query, which docu-
ments are relevant to the query? Popular use cases are search engines for a library
or the world wide web. The query may consist of a couple of words (search terms)
entered by a user, or a complete document a user wants to find similar documents
to.

!The strategy of borrowing methods from other domains has been described by Aucouturier as a
design pattern termed “Cross-Fertilisation” [Auc06, pp. 51-52].
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Another important problem is document classification: Given a document and a
number of classes, which class does the document belong to? Possible use cases are
spam detection in emails (classifying emails as “spam” or “ham”) or categorizing
scientific articles into topics.

Methods

A big challenge in document retrieval is to make a system fast enough for interactive
use — consider a web search engine that has to answer requests for the best matches
to a query in a database of up to a trillion documents within seconds. However,
here we are mostly interested in how documents can be matched to a query or
another document at all, and how documents can be categorized. Both problems
require some abstract model of a document, as simply comparing or categorizing
documents character by character will not turn up anything useful.

The first system for document classification [Mar61] worked as follows: Each
document in a corpus of training items (260 abstracts of scientific articles in in-
formatics that had been manually grouped into 32 categories, with each document
assigned to up to 3 categories) was separated into words by trivially splitting the
text at spaces and punctuation. The most frequent logical type words (e.g., “the”,
“of”) and nonlogical type words (e.g., “computer”, “data”) of the corpus were re-
garded as uninformative and the least frequent words were considered to be too
inefficient to use (as they only occurred in few documents). The remaining words
were manually reduced to a vocabulary of 90 “clue words” that seemed highly in-
dicative of a category. A corpus of test items (145 scientific abstracts manually
grouped into the same set of 32 categories) was processed by testing each docu-
ment for the occurrence of clue words, then computing the posterior probabilities
that a document belongs to a particular class C;, given its clue words Wy,... W,.
The posterior probability of a class was computed by multiplying the prior proba-
bility of the class with the likelihoods of the class under each occurring clue word,
using Bayes’ rule: P(C;|Wh,...W,) o< P(Cj) - P(W1|Cj) - ... P(W,|C}), where the
priors and likelihoods were estimated from the training data by simple counting.
This naively assumes that each word in a document independently contributes to
the probability that the document belongs to a particular class, not regarding the
order or co-occurrence of words in a document; it is consequently termed a Naive
Bayes classifier [Lew98]. Despite these simplifications, for 33 of the 66 items that
contained at least two clue words and were manually assigned to only one category,
the predicted category was the correct one.

Many of the ideas introduced in [Mar61] are still in use today. Both document
classification and retrieval systems mostly follow the same basic structure: A docu-
ment is separated into words, matched against a fixed vocabulary, and represented
by a vector denoting the number of occurrences of each vocabulary word in the
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document. This is commonly referred to as a Bag of Words (BoW) representation,
as it disregards the order of words in a document, imaginable as pouring all the
words into a bag. This representation can be used to train a classifier on or for
directly matching documents against other documents or textual queries.

Over time, improvements have been proposed on all levels (see [Seb02] for a
review):

Stemming: Prior to filtering the words with a fixed vocabulary, the words of a
document can be mapped to some nominal form, e.g., from plural to singular,
or from conjugated verb forms to infinitive. This stemming removes irrelevant
variations (in a BoW model, grammatical suffixes do not carry any useful
information, but only increase the size of the vocabulary).

Term weighting: Instead of binarily distinguishing important from unimportant
words, different term weighting schemes have been proposed [SB88], auto-
matically judging the importance of each word of a vocabulary based on
their occurrence in documents, then weighting words in query matching or
classification. Omne of the most popular schemes for document retrieval is
TF/IDF: The term frequency (TF), i.e., the number of times a word occurs
in a document in proportion to the document length, is weighted by the in-
verse document frequency (IDF), given as the logarithm of the inverse of the
proportion of documents in a corpus containing the term. The intuition is
that a word which occurs in almost all the documents is less important (at
least in a discriminative sense) than a word occurring in a small fraction of
the corpus only.

Topic modeling: The BoW model assumes the occurrences of words in a document
to be statistically independent. However, words are in fact often correlated —
for example, the word “milk” will often co-occur with “butter”, but seldom
with “asteroid”.? More severely, some different words even mean the same
(synonymy), such as “buy” and “purchase”. To respect this, Latent Semantic
Indexing (LSI) [DDL*90] maps document count vectors (the BoW represen-
tation) from the original word space to a lower-dimensional space of implicit
meta-terms, or topics, by a linear transformation learned from a corpus. The
mapping is learned in an unsupervised way, just regarding the correlations be-
tween words, similar to PCA (more concretely, it performs a Singular Value
Decomposition on the term-document occurrence matrix).

More recent methods define and learn a generative model of documents. Prob-
abilistic Latent Semantic Indexing (pLSI) [Hof99] models documents as mix-
tures of topics (i.e., multinomial distributions), and topics as mixtures of

2Despite when speaking of the “milky way”; see the entry about word sense disambiguation.
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words. To generate a word of a document, it picks a topic from the document-
specific mixture of topics, then picks a word from a topic-specific mixture of
words. The word mixtures for each topic are shared globally, and can be
related to the word-to-topic mapping of LSI. The topic mixtures for each
document are estimated from the data, in conjunction with learning the top-
ics. The topic mixtures then serve as compact document representations.

While this gives a generative model for all documents of a corpus, it cannot
generate new documents, because their topic mixture is unknown. Latent
Dirichlet Allocation (LDA) [BNJ03] solves this by placing a prior on the
topic mixture for documents, which is a Dirichlet (the conjugate prior of a
multinomial) chosen to be symmetric (with no preference for any topic) and
with a@ < 0 (favoring sparse mixtures of topics, i.e., only few active topics
per document). Additionally, a Dirichlet prior is placed on the word mixture
for topics, smoothing the distributions estimated from a training corpus. In
this model, a new document is generated by picking a topic mixture from the
Dirichlet, then proceeding as for pLSA. The sparseness enforced by the priors
leads to more useful topics and consequently better document representations.

As a further extension, the Hierarchical Dirichlet Process (HDP) [TJBBOG6]
infers the number of topics from the data, instead of requiring the number to
be given in advance.

As an alternative to modeling documents as mixtures of topics, Salakhutdi-
nov and Hinton [SHO9b] model documents with two-layer undirected graph-
ical models called Restricted Boltzmann Machines (RBMs, see Section 4.4.1,
p.61). One of the layers models word occurrences in a document with a special
architecture termed Replicated Softmax, and the second layer consists of la-
tent binary units indicating the topics of the document. The latent units form
a Product of Ezxperts [Hin02] which multiply and renormalize their predictions
on words. This conjunctive coding produces much sharper probability distri-
butions over words than the disjunctive coding of mixture models [HS11], and
the latent representations of documents outperform LDA representations in
document retrieval [SHO9b].

Semantic hashing: Extending the idea of modeling documents with RBMs, Salak-
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hutdinov and Hinton [SH09¢, HS11] train a stack of three RBMs on word count
vectors to form a deep generative model with a small top layer and fine-tune
the resulting four-layer network as a deep autoencoder (in which the former
top layer forms an information bottleneck). The small layer now produces
binary codes for documents such that similar documents are assigned close
code words (in terms of Hamming distance). Using very short codes (e.g., 20
bits), this allows indexing all documents by their code, and quickly retrieving
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similar documents to a query by simply accessing all codes in a Hamming ball
around the code of the query document, without any search.

Word sense disambiguation: The approaches above assume that each entry in a
document’s word count vector refers to a specific word with a specific meaning.
However, if these words are directly extracted from a text by splitting it at
word boundaries, this assumption does not hold: In most languages, there
are groups of words called homographs that share the same spelling, but have
different meanings. For example, “train” can refer to a vehicle or the act
of teaching; “bank” can refer to a credit institution, the side of a river, a
filter bank, and more. Word sense disambiguation techniques try to infer the
meaning of a word by its context (see [Nav09] for a survey). Without word
sense disambiguation, topic models will always regard the average meaning of
a word — for words with a seldom used second meaning (such as “bass”, which
refers to low sound frequencies far more often than to a species of fish), this
produces reasonable results in most instances, but for other words, it may
well reduce performance.

n-gram models: The topic models discussed above model the words of a document
independently. To incorporate at least the immediate local context, words
can be modeled in pairs or triplets; more generally, in n-grams (n-tuples of
consecutive words). [Wal06] extends LDA by a bigram topic model, yielding
better generative/predictive performance and better topics, which may be
useful in categorization and retrieval tasks.

Adoption

Regarding songs as documents, the basic architecture of text retrieval systems
shows a clear resemblance to content-based music similarity estimation systems
(Section 2.1, p.9): Documents are split into short entities, which are first processed
separately, then aggregated into a more compact global model (abstracting from
the order of local entities) for classification or comparison purposes. However, it is
not immediately clear how to reasonably relate music pieces to text documents in
order to apply text retrieval methods to music.

Let us consider a very straightforward mapping first: Words, the local entities
of documents, could be assumed to be equivalent to frames, the prevalent segmen-
tation of music signals. Stemming may be regarded as the equivalent to vector
quantization of frames (or frame-wise features), which also maps slightly different
variations of local entities to a common form. However, vector quantization also
enforces a fixed-size vocabulary — in text retrieval, filtering for a set of “clue words”
constitutes a separate step. Creating a BoW model as a word count vector can
be directly adopted to a vector-quantized sequence of audio frames, resulting in a
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“Bag of Frames” (BoF) model. This equivalence has already been pointed out by
[RHGOS], who refer to their vector-quantized frame-wise chroma features as “audio
words”.

For once accepting this equivalence, we can easily apply text retrieval methods
to songs. N-grams would be equivalent to blocks of frames, which are already
used in several music similarity measures. Word sense disambiguation could be a
more intelligent way to incorporate context information and eliminate ambiguities
in the interpretation of single frames. Term weighting can be applied to BoF
models exactly as for BoW models, possibly solving the problem of distinguishing
important from unimportant frames. In fact, [Foo97] already suggests to weight
vector quantized features by their inverse entropy (which would devaluate features
that occur nearly uniformly), and [RHGO8] use TF/IDF weighting on their “audio
words”. Topic models could form useful representations of songs, and [HBCO§]
successfully applied HDPs in a music similarity estimation context, albeit modeling
topics as Gaussian distributions of MFCCs rather than multinomials over discrete
word-like features. Semantic hashing may be a suitable way to implement fast
similarity queries on large databases, but require a large database to train on in
the first place.

However, it is doubtful whether audio frames are a proper counterpart to words
in text. In contrast to words, frames are very short and always have the same
length — a “Bag of Frames” may thus be more equivalent to a “Bag of Syllables”
than to a “Bag of Words”, and shuffling around syllables in a text would obviously
destroy most clues about its meaning or topic. Syntactically, words in text can
be found via blanks and punctuation. The equivalent in music may be bar lines,
although again this would force all words to be of the same length, and lead to
an extraordinarily large vocabulary. Regarding pauses as blanks may be tempting,
but pauses are scarce at least in popular music. Semantically, there is no consensus
on a definition of words, but “perhaps a word is the smallest unit of language that
can be used by itself” [BS81]. With this loose definition, words in music could be
notes. However, unlike words, notes in music overlap, suggesting the need for source
separation to properly divide a song into words (separating critical bands could be
seen as a half-hearted attempt at this). Apart from that, single notes arguably do
not carry as much information as single words — occurrence of the word “soccer”
probably limits the possible topics of a document much more than a ¢’ played on a
piano tells about the genre of a song.

All in all, although we pointed out a way to apply text retrieval methods to
music via vector quantization of local features, it is not clear whether this is a good
way and what might be a better one. However, the discussion of computer vision
systems will show that text retrieval methods have been successfully applied to
images in a similar way, encouraging their use on music.
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3.2 Computer Vision Systems

We will now examine the field of Computer Vision. We will first describe the prob-
lems it aims to solve, comparing them to tasks in Music Information Retrieval, then
review the basic methods it employs, and finally see how these could be adopted.

Purposes

Computer Vision research works on methods for extracting information from im-
ages. For our purposes, it suffices to regard two broad categories of problems:

Object recognition: Given an image, which objects are present and where? This
includes a whole range of more specific tasks:

e Classifying images of single objects (e.g., cars, dogs, airplanes ...)
e Classifying images of scenes (e.g., beach, wood, city ...)
e Character recognition (printed or hand-written)

e Multiple object detection (e.g., finding cars, humans or faces in surveil-
lance images or videos)

e Face recognition (identification of persons from an image of their face)

Image retrieval: Given a collection of images and a query, which images match the
query?

e For a textual query, this requires generating a description of each image
the query can be matched against (this description does not need to be
textual, but it needs to be relatable to the query).

e If the query is an image, this involves some sort of comparison of the
query image to the images in the collection.

Object recognition mainly deals with classification problems at different levels of
difficulty, from a low number of classes (recognizing scenes or digits) to a high
number (face recognition) and from low intra-class variability (printed character
recognition) to high variability (object classification). As with any classification
task, difficulties arise either in capturing the inter-class differences (e.g., distin-
guishing cats from dogs, or even different kinds of cats), or in ignoring intra-class
variability (e.g., different lighting conditions and orientations in face recognition).
Multiple object detection plays a special role in that the number and position of
objects is not known beforehand. Image retrieval, on the other hand, could ei-
ther build on object recognition or, when querying by image, on image similarity
estimation.
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Relating these problems to Music Information Retrieval and regarding songs as
the equivalent to images (we will scrutinize this equivalence further below), we find
the following:

e Scene recognition in images is roughly equivalent to genre classification in
music: Both deal with documents that have a rich local structure, but can
usually be assigned to one of a limited set of global classes. Local structure can
be unspecific (clouds, drums) or highly indicative of a class (trees, distorted
guitar). In both problems, classes may be blended (trees on a beach, Country
Soul), and classes can be further divided into sub-classes.

e Multiple object detection is roughly equivalent to music transcription: Both
aim to decompose a complex document into a set of known entities and their
locations. Both need to be invariant to certain transformations of these enti-
ties (lighting conditions, mastering), but extract others (pose, accentuation),
and both need to cope with intra-class variability (car shapes, instrument
manufacturers).

e Image retrieval by images is strongly related to music similarity estimation:
As stated above, implementing query-by-image retrieval on an image collec-
tion requires a comparison of images, which poses the same problems as a
comparison of songs, if we regard images and songs to be equivalent.

Methods

Most methods start by constructing a global model for each image, which is sub-
sequently classified or compared against other models. This model should capture
aspects relevant to the task, but be invariant to unimportant details (which may in-
clude the lighting conditions, scale, or orientation, for example). The global model
can be built from global image features or by aggregation of local features. Here
we can only give a superficial overview of different features and global descriptors;
please see [DJLWOS, pp. 17-24] for a more extensive review.

Global features include descriptions of shape (determined from an automatic
segmentation of the image), color, or texture, used for scene recognition (the “gist”
of a scene [OT06]), single object recognition or texture classification. Local features
may either be densely sampled from the image (i.e., on a regular grid) or sparsely,
at interest points (e.g., corners). FEach local feature describes properties of the
image neighborhood, such as the local image gradient. This description can be
made invariant to rotations (e.g., by normalizing it with respect to the largest local
gradient direction) and scale (by computing the properties not only in the original
image, but also in rescaled versions of it); a popular example being the Scale-
invariant feature transform (SIFT) [Low04]. The global model abstracts from the
exact locations and values of local features, e.g., by histogramming.
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An approach especially interesting for us has been inspired by Text Retrieval.
[ZRZ02] propose a general framework which regards images as documents composed
of keyblocks, in analogy to text composed of keywords. First, small quadratic
patches are extracted from an image on a regular grid, transforming the image into
a 2-dimensional array of possibly overlapping blocks. Optionally a low-level feature
is computed for each patch, otherwise the raw pixel data is used. Each patch (i.e.,
the feature vector or pixel data) is replaced by the index of the closest keyblock
in a dictionary previously obtained by clustering a training set of patches. The
image can now be regarded as a 2-dimensional array of “visual words”. Different
global models can be built from this document-like representation: A histogram
model states the number of occurrences of each code word, analogous to the “Bag
of Words” model in Text Retrieval. The relative term frequency (normalized by
image size) or inverse image frequency (the equivalent of the inverse document
frequency, see p.33) can be easily derived from this as well as a boolean model
which simply binarizes the term frequencies with a given threshold. To include
context information, [ZRZ02] also suggest to adopt n-gram models by capturing co-
occurrences of different spatial configurations of bi- or tri-blocks. In image retrieval
experiments on three databases, their method outperforms two approaches based
on global color features.

Similar architectures are still popular both for image retrieval and classification,
with several improvements:

Dictionary learning and Soft words: Alternatives have been proposed both to ob-
taining a dictionary of visual words with k-means, and to computing code-
words for local features by hard assignment to the closest keyblock. For exam-
ple, [JT05] claim to obtain a more informative dictionary with a radius-based
clustering method, and [vGGVS08] improve performance in scene and object
classification with soft assignments of features to codewords (via Gaussian
kernels). In a recent study, Coates et al. [CN11] decouple dictionary learn-
ing from image encoding, evaluating different combinations of clustering and
sparse coding methods on three object classification datasets. They conclude
that a sparse encoding, i.e., image representations each using only a small
subset of the dictionary, performs best, almost independently of the chosen
codewords.

Pooling: The “Bag of Visual Words” (BoVW) is completely invariant to trans-
lations of local features, which may be insufficient to distinguish particular
images from each other (e.g., a blue feature in the top half of an image proba-
bly is sky, while in the bottom half it may be a lake instead). As a compromise
between the global BoVW and the full 2-dimensional array of local features,
the global model may be constructed by pooling the local features in a fixed
partitioning of the image, such as a 2x2 grid. Depending on the type of local
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feature, the pooling operation could be histogramming, computing the mean,
minimum or maximum of each section (see [BPL10] for a thorough analysis
and references).

Spatial pyramids: To avoid having to find the best pooling resolution for a task,

it has been suggested to model images as a Spatial Pyramid [LSPO06]: the
global BoVW histogram is augmented with local histograms at increasingly
fine subdivisions of the image. This technique captures the spatial alignment
of local features with different levels of accuracy, allowing to model, say, a
face as a particular arrangement of two eyes, a nose and a mouth rather than
a mere collection of these parts, without restricting the positions too much.

Topic modeling: Just like in text retrieval, generative models have shown promis-

ing results for image classification. The topic models pL.SI and LDA have
been directly adopted from text retrieval and applied as generative models
for BoOVW vectors in object and scene classification [SRET05, FFP05].

Generative image models: Additionally, generative models have also been em-
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ployed to directly model image pixel data, most prominently methods based
on Restricted Boltzmann Machines (RBMs, see Section 4.4.1, p.61). RBMs
are two-layer neural networks with a visible layer of neurons modeling the
input, and a hidden layer of neurons forming a latent representation. After
training an RBM unsupervisedly on a set of training data, the latent repre-
sentation conditioned on an input vector forms a higher-level description of
the input. A trained RBM can thus be used as a feature extractor. RBMs can
easily be stacked to form a Deep Belief Net (DBN) extracting even higher-level
features (see Section 4.4.3, p.75).

Both RBMs and DBNs have successfully been used to model local image
patches [Kri09, CLN10] and complete small images (e.g., in digit recognition
[HOT06, BLPLO7], but also for modeling scaled-down scene images [KH11}),
developing feature detectors adapted to the input data. Ranzato et al. re-
cently proposed two extensions of RBMs with even better capabilities for
modeling natural images: the mcRBM [RH10] and mPoT [RMHI10], pro-
ducing state-of-the-art results on public object recognition datasets [RH10,
RSMH11].

As a compromise between modeling local patches and modeling complete im-
ages, Convolutional RBMs [DB08, NRM09] employ weight-sharing to model
a grid of local patches of an image, then use max-pooling to create a more
compact higher-level image description. With a generative formulation of the
max-pooling operation, [LGRN09] learn a hierarchy of feature detectors from
fine-scaled parts to larger-scale objects.
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Learning invariance: Especially in the context of digit recognition, an easy method
to make a classifier more robust to intra-class variability is to extend the train-
ing set with synthetically transformed training images, keeping the original
labels [LBBH98, p. 14]. Transformations may include translations, small ro-
tations, elastic deformations or task-specific manipulations such as varying
the line thickness for hand-written digits.

An interesting alternative is to train a model to represent transformations
independently from the image content [HKW11], allowing classifiers to use
information on, say, exact locations only when needed. Such models are
referred to as being transformation equivariant.

Semantic hashing: Based on the idea of modeling images with RBMs, [KH11] train
a deep DBN on small images and fine-tune it as an autoencoder to produce
compact binary codes. These codes can be used as semantic hashes to quickly
retrieve similar images from a large database, just as it has be done for doc-
uments (p. 34).

Adoption

Again, the architecture of image retrieval systems we focused on is very similar to
content-based music similarity estimation systems (Section 2.1, p.9), if we regard
songs as an equivalent to images: Images are divided into smaller parts (or down-
sampled to a small size), which are processed separately and combined into a global
model. And again, to apply any of the methods, we need to find a way to relate
songs to images.

A straightforward link is that images are 2-dimensional signals, while music pieces
are 1-dimensional signals. General local features could therefore be computed on
signal excerpts, the 1-dimensional equivalent to image patches. However, audio
signals are very different from images: While image signals are spatially smooth
(i.e., neighboring pixels correlate), audio signals rapidly vary spatially. Thus, it is
doubtful whether image features apply well to raw audio signals.

Alternatively, the 1-dimensional audio signal can be transformed into a 2-di-
mensional signal by calculating a spectrogram via a Short-time Fourier Transform
(STFT) — this adds a new dimension (frequency) at the cost of time resolution; the
proportion of time to frequency resolution being determined by the frame size. As
audio signals change frequencies rather slowly, the spectrogram representation is
spatially smooth along the time axis, resembling images much better than the raw
signals. Local features can then be computed on spectrogram excerpts, i.e., blocks
of consecutive frames. Any feature applicable to image patches can be directly
employed on spectrogram blocks, and any global image model can be used on these
local image-like features.
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Several authors already suggested to treat spectrogram excerpts as image patches
and adopt image processing methods. [DSNO1] extract features from spectro-
grams with oriented Difference of Gaussian filters at different scales, but do not
achieve convincing results on a small three-way genre classification dataset. [Abd02,
pp. 114-115] employs sparse coding to short spectrogram excerpts of harpsichord
music, yielding features that detect onsets of different notes. The author did not
perform music retrieval experiments with these features, though. [CEKO05] use
Haar-like feature extractors inspired from object detection on spectrograms to dis-
criminate speech from music, and [PKSW10] applies simple horizontal and vertical
edge detectors to spectrograms to measure the amount of harmonic and percussive
elements. As mentioned in Section 2.3.3 (p.27), [PKSWO06] applies ICA to spectro-
gram blocks to extract local features, then builds global models by histogramming
the component activations and compares histograms to estimate music similarity,
performing worse than Aucouturier and Pachet’s method (Section 2.2, p.11). Un-
like the other attempts, [YS09] extract blocks that do not cover the full frequency
range, but are limited in both time and frequency. In a log-frequency spectrogram,
this makes features invariant both to time shifts and transposition. The authors
produce a dictionary of blocks by random sampling from spectrograms of instru-
ment sounds, then create representations of unseen spectrograms by computing
the distances between the spectrogram and the dictionary at each valid location,
min-pooling the results. With a k-NN classifier, they achieve satisfactory results in
distinguishing solo instruments.

To the best of our knowledge, neither vector quantization nor generative mod-
els have been applied to spectrogram patches of music, except for a small-scale
classification experiment with Convolutional Deep Belief Networks ([LLPN09], see
Section 2.3.3, p.27). Also pooling or spatial pyramids have not been employed,
although they could provide a good model: In music, global arrangement should
be less important than local arrangement (for two songs to be similar, it will be
unimportant whether a guitar solo takes place before a bass solo or the other way
round). While a BoW of large-scale local features might reflect this, possibly some
hierarchy would work better.

It is not clear whether spectrogram patches form a good base for methods de-
signed for image retrieval, though. While images pixels are locally correlated in
all directions, spectrograms are only smooth in time; correlations in frequency are
influenced by harmonics (also see Section 5.3, p.92). Moreover, the two dimensions
in a spectrogram have two very different meanings: one denotes time, the other
denotes frequency. In images, on the other hand, both dimensions are spatial. As
a consequence, flipped, rotated or rescaled images are often still interpretable, pos-
sibly not even changing their meaning (such as a picture showing a soccer ball, or
a pen on a desk seen from above), while a rotated spectrogram would not resemble
any usual sound at all. This can also be seen as an advantage: To model music,
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we do not need to consider rotation- or scaled-invariant features such as SIFT. A
third difference is that many physical objects are opaque, such that overlapping
objects in an image occlude each other, and, ideally, relevant objects occlude the
background. In spectrograms, overlapping acoustic events add up instead, possibly
rendering many object recognition methods inapplicable to music.

3.3 Speech Processing Systems

Finally, we take a brief look at the field of Speech Processing. Again, we will
first compare the problems it targets to problems in Music Information Retrieval,
describe commonly employed solutions and see what we can learn for our task.

Purposes

Speech processing aims at extracting information from speech signals. We will
regard three exemplary problems:

Speech recognition: The main area of research in this field deals with transforming
an audio signal of human speech into a textual sequence of words. Often, the
task is simplified by limiting the vocabulary or targetting a specific speaker.

Speaker recognition: Another problem is to identify the speaker by her or his voice,
useful for identity verification or monitoring.

Source separation: The Cocktail Party Problem is the problem of separating out
a single voice from a recording of many people speaking simultaneously. This
is an easy task for humans, who can follow a conversation in a crowded room
(e.g., at a cocktail party).

The first two problems are classification problems: Speaker recognition identifies
one of a known set of speakers from a speech signal, speech recognition classifies
short excerpts into phones. The third problem is a source separation problem,
aiming to reconstruct the components of a mixed signal.

Insights from speaker recognition might be applicable for instrument recognition,
artist identification, or to estimate singing voice similarities, and speech recognition
could be similar to finding melodies in music (if we relate phones to notes), but
both deal with a single voice recording, which is very different to polyphonic mu-
sic. Solving the cocktail party problem could help to separate a polyphonic music
signal into a set of “solo parts”, enabling the application of methods for analyzing
monophonic music. However, speech of different speakers at a cocktail party is
uncorrelated (except that people within a conversation tend not to speak simulta-
neously and share a common topic), while simultaneously playing instruments in a
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song usually respect a common rhythm and their pitches combine into particular
harmonies — put differently, when separating and recombining the sources of two
cocktail parties, it will still sound like a cocktail party, whereas doing the same for
two music pieces will generally yield something unmusical (or at least not resemble
any popular music).

Methods

Speech recognition is based on modeling sequences of local features. Among the
most popular local features are MFCCs, which we described in Section 2.2.1 (p. 11).
A sequence of local features is then mapped to a probable sequence of words in
multiple stages: Short sequences of features are mapped to phones (the acoustic
equivalent to phonemes), sequences of phones are mapped to words and sequences
of words are mapped to sentences. These stages influence each other not only in
a bottom-up, but also in a top-down manner: A good language model can predict
probable words from the sentence formed so far, which in turn makes it easier to
predict the next phone given acoustic features.

The prevalent base for these stages are Hidden Markov Models (HMMs). For each
phone, a separate HMM of a few states is trained to model typical short sequences
of local features [JR91]. These phone-specific HMMs can then be concatenated
to form word HMMSs, which can again be concatenated to phrase HMMs. The
HMM'’s emission probabilities, i.e., the probability distribution over local acoustic
features given a hidden state within a phone HMM, are often chosen to be diagonal-
covariance GMMs. These have to capture the acoustic intra-class variability of
local features. To reduce this variability, phone-specific HMMs can be formed for
each biphone or triphone instead — as phones sound differently depending on the
preceding and following phones, including this context eliminates a major source of
intra-class variability (at the cost of a much larger number of first stage models).

To be tractable, HMMs make a strong simplifying assumption: given a sequence
of hidden states, the observable local features are treated as conditionally indepen-
dent. To still include temporal dependencies between local features, the features
are often augmented with delta and double delta features [Fur86] (simply joining a
few consecutive features instead would not help, as the diagonal-covariance GMMs
could not model their dependency either). Several alternatives have been suggested
to include longer contexts: [Rob94] replaces the phone-level HMMs with Recurrent
Neural Networks (RNNs) accumulating information from all the past features to
estimate the probability of each phone. [Her03] designed a higher-level feature ex-
tractor called TRAP-TANDEM which derives information from much longer con-
texts than MFCCs, after supervised training of its components. [MDHO09] trained
a DBN on blocks of 11 consecutive MFCCs augmented with delta and double delta
coefficients, fine-tuned it to classify phones and surpassed the previous state-of-the-
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art on a public phone recognition dataset. [JH11] outperform this method with a
DBN trained on pooled features extracted by an RBM from raw signal excerpts.
[DRMH10] train an mcRBM on blocks of 15 consecutive mel-spectral frames (i.e.,
MFCCs before applying the DCT), then train a usual DBN on the mcRBM’s latent
representations as a phone classifier (not backpropagating through the mcRBM in
the supervised fine-tuning phase). As mcRBMs explicitly model the individual
covariance structure of each input example, they naturally capture dependencies
between frames without the need for delta features. This approach surpasses [JH11],
defining the current state-of-the-art in speaker-independent speech recognition.

The problem of speaker recognition is related to, but different from speech recog-
nition. On the surface, both deal with classifying speech recordings. However, at
least speaker-independent speech recognition needs to be invariant to differences
between speakers, while speaker recognition aims at capturing just those. Curi-
ously, many speaker recognition systems still adopt MFCCs as local features, and
GMMs as a “Bag of Features” model [Beill].

Source separation is relatively easy if there are at least as many sensors as sound
sources (see [Mit04]). The problem becomes much more challenging if many sound
sources are mixed into a stereo or mono recording (underdetermined source sep-
aration). The most basic instantiation of the problem (the case of instantaneous
mizing) assumes that N source signals S are linearly mixed into M < N channels
X by a mixture matrix A (which defines the mixing coefficients for each recording
channel): X = AS. The task is to infer A and S from the observed mixture X. To
solve it, the space of solutions has to be restricted by making further assumptions,
leading to different methods: Independent Component Analysis (ICA) assumes the
sources to be independent and non-Gaussian, Sparse Component Analysis (SCA)
assumes the sources to be sparse, and Nonnegative Matriz Factorization (NMF)
assumes X, A and S to be nonnegative. Which method is to be preferred depends
on the data. ICA has been used on raw signals in [LLGS99] to separate three hu-
man speakers in stereo recordings. SCA is not suited well for application to signals
in the time domain, because such signals are not sparse. However, it is possible
to preprocess the sources with a linear transformation that results in sparser data,
such as a Fourier Transform. Applying SCA to spectrograms, [BZ01] reconstruct
the sources from stereo mixes of four voices, five songs or six flutes with some suc-
cess (especially for the songs, notable cross-talk remains). NMF is usually applied
to magnitude or power spectrograms, which are nonnegative by definition [SO06].

Adoption

Just as Text Retrieval, Computer Vision and Music Similarity Estimation systems,
speech recognition builds on global models of local features. Speaker recognition
does not seem to add anything, but source separation could be useful as an inter-
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mediate step in processing music.

Local features used in speech processing can be directly applied to music, as
both fields handle audio data. And in fact, MFCCs have been adopted to mu-
sic similarity estimation from the very beginning [Foo97]. [Sca08] also applied a
variation of genre-tuned TRAP-TANDEM features to genre classification, outper-
forming MFCCs. The prevalent global speech model, the HMM, has also already
been employed for modelling music, without satisfying results (see Section 2.3.1,
p.21). However, it has only been attempted to directly model complete songs —
learning and concatenating separate HMMs for some musical equivalent to phones
and words might improve performance. Generative models for local features have
not been adopted for music similarity estimation, though. The mcRBM approach
is especially interesting: It applies a particularly powerful generative model from
computer vision to audio data, treating spectrogram excerpts as the equivalent to
image patches, and it achieves state-of-the-art results in speech recognition.

Several attempts have been made to apply source separation techniques to mu-
sic, adding domain-specific restrictions on the extracted sources to improve perfor-
mance: [VK02] assume signals to be harmonic, [VirQ7] assumes continuity in time,
and [Bur08] incorporates instrument timbre models. Source separation has not been
employed for music similarity estimation, but an experiment in genre classification
did not yield significant improvements [LLT05].

3.4 Conclusions

While this exploration revealed a lot of methods possibly useful for content-based
music similarity estimation, we will restrict this thesis to a single idea and leave
others open for our future work. In all three domains, unsupervisedly trained
generative models show encouraging results. In particular, the recently proposed
mean-covariance Restricted Boltzmann Machine (mcRBM) achieves state-of-the-art
performance in object recognition and phone recognition, modeling image patches
or spectrogram excerpts, respectively. Given that it has successfully been used
to model speech, an application of mcRBMs to music seems straightforward and
promising.
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4 Proposed New Method

Drawing from ideas and methods mentioned in Chapters 2 and 3, we propose a
system for music similarity estimation that is trained on large amounts of unlabeled
data to learn features for describing music excerpts, then uses these features to
model and compare music pieces. We will first give an overview of the system,
highlighting connections to previous chapters, then discuss each stage in detail.

4.1 The Big Picture

Like existing music similarity estimation systems described in Chapter 2, our system
extracts local features from music pieces, aggregates them to global models and
compares these global models to estimate the similarity of songs. Figure 4.1 details
our system’s computation steps.

The local feature extraction stage transforms the audio signal of a music piece
into a mel-frequency log-amplitude spectrogram and extracts short excerpts from it.
The same type of spectrogram is also used for computing MFCCs (see Section 2.2.1,
p.11) and thus well-justified, and processing blocks of multiple consecutive frames
has been shown to be an effective way of capturing the temporal evolution of music
signals, as we learned in Chapter 2. Specifically, these mel-spectral blocks are similar
to what Pampalk et al. [PRM02, Pam06], Pohle et al. [PSST09, Poh10] and Seyer-
lehner et al. [SWP10, Sey10] base their hand-crafted features on, and what Pohle
et al. [PKSWO06] and Abdallah [Abd02] use for unsupervised learning on music by
ICA.

Instead of directly aggregating these low-level local features into a global model,
an abstraction stage priorly creates a higher-level description of each block. For
this, the blocks are preprocessed, decorrelating and compressing the data, and then
transformed into binary feature vectors by a mean-covariance Restricted Boltzmann
Machine (mcRBM) [RH10], optionally followed by one or more layers of Bernoulli-
Bernoulli RBMs. Unlike the low-level feature extraction stage, neither prepro-
cessing nor the mcRBM’s and RBM’s feature transformations are hand-crafted:
Instead, they are previously adapted to their task by unsupervised training on a
large number of mel-spectral blocks extracted from music pieces. This setup for
the feature extraction and abstraction chain closely follows Dahl’s application of
mcRBMs to speech recognition [DRMH10], but uses longer blocks so it is capable
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measure

Figure 4.1: Block diagram for the proposed music similarity estimation system. El-
lipses denote data, blocks denote transformations, tiled blocks represent
alternatives.

of capturing musical features that are on a much larger time scale than phones,
such as rhythms.

To assess the benefit of using an mcRBM for feature abstraction over more basic
models, we compare it to a cheap drop-in replacement for unsupervised feature
learning: k-Means clustering. Despite its simplicity, k-Means has lately been shown
to outperform both sparse RBMs and mcRBMs on an image classification task
[CLN10], making it an interesting benchmark candidate. It has also been applied
to music feature extraction with both positive and negative results, but only in a
frame-wise manner (see Section 2.3.1). Here, we apply it to the same blocks the
mcRBM is trained on.

The system then builds a global model from the sequence of high-level local
features extracted from a music piece. Instead of fitting a Gaussian as in [MEOQ5],
[Pam06] or [PSST09], we compute a histogram of features. Like a Gaussian model,
this discards the order of features, but it results in a vector space model similar to
the bag-of-words model commonly used for text documents [Lew98]|, which enables
the use of any document retrieval techniques such as term weighting schemes, and
permits computationally cheaper distance measures than those used for comparing
Gaussian distributions.

4.2 Local Feature Extraction

In the first stage, the system extracts short mel-spectral frames from the audio
signal. Both the computation steps and the chosen hyperparameters are adopted
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4.2 Local Feature Extraction

from MFCCs and can be justified as in Section 2.2.1 (p.11). In the following, we
will describe the computation in detail.

First, the signal is segmented into a sequence of (possibly overlapping) short
frames. Formally, we obtain the mth frame x,, from a signal (s, s2,...,sy) as

S((m—1)h+1)

S((m— _
v — (( .1)h+2)’ m e 1, M], M:{NZJ+1,

S((m—=1)h+1)

where [ and h are the frame length and hop size in samples, respectively. In the
MIR literature, MFCCs have been reported to be calculated on frames as short as
20 ms [RMT10] and as long as 100 ms [MEDL09], typically with 50% overlap. For
our system, we chose a frame length of 64 ms and a frame hop size of 32 ms, which
falls into that range, but has not been optimized in our experiments.!

Fach frame is multiplied with a Hanning window and mapped to the frequency
domain using a Discrete Fourier Transform, yielding

where w is the Hanning window given as
cos(2m(z — 1
w; = 0.5 (1— (())) i)
-1
and D is the I-point DF'T given as
27/—1(i—1)(j—1)
Dj=e T, ijell,l].

The phases of these spectral frames are discarded by taking the absolute values,
the frequency bins are multiplied with a mel filter bank to mimic humans’ cochlear
pitch perception, and the log function is applied to the resulting filter activations
to imitate humans’ perception of loudness. Formally, we have

zm = log(M |y,,|),

where log(-) and |-| denote the element-wise logarithm and absolute, respectively.
The mel filter bank M is a collection of triangular filters given as

0 if £(j) < pli — 1)
F@=pli=1) | . £ p(i
o P e p(i—1) < f(j) < p(i) .
My = ¢ V) e L ieLd)je L),
p—pirD e L PE) S fU) <pl+1)
0 i p(i +1) < ()

We chose it such that frames were comprised of exactly 1024 samples in our first experiments,
because frame lengths of powers of two allow computing the DFT via the Fast Fourier Trans-
form. In these experiments we worked with music sampled at 16 kHz, hence a frame length of
64 ms. For later experiments, we kept this length of 64 ms independently of the sample rate.
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where f(j) = (;(:i; is the frequency of the jth DFT bin at a sampling rate of  in
Hz, d < [ is the number of mel filters, and p(i — 1), p(i), p(i + 1) are the lowest,
peak, and highest frequency of the ith mel filter in Hz, respectively. Adjacent filters
overlap such that each filter’s peak coincides with the next filter’s lower and the
previous filter’s upper limit, and each filter is scaled to unity energy (see Figure 4.2).
The filters are spaced linearly on the mel scale such that the lower limit of the first
filter equals a given frequency p(0) = fiuin, and the upper limit of the dth filter
equals p(d + 1) = finae. Computing the remaining peak frequencies is done by
mapping p(0) and p(d + 1) to the mel scale as

P(i) = 1127log (1 + ];(og) . ie{0,d+1},

regularly spacing the other peaks on the mel scale as
P(i)

then mapping them back to Hertz frequencies as

i
Cd+1

(P(d+1)-P(0), ic[1d]

P(i)

p(i) = 700 (ell(27 - ) . ie[l,d.

We use two different mel filter banks in our experiments: d = 40 log-spaced
triangular filters from f;, = 130Hz to fiee = 6854 Hz, and 70 filters from 50
to 6854 Hz (both depicted in Figure 4.2). The first corresponds to the default
setting of yaafe [MEF110], an audio feature extraction software targetted at music
information retrieval, the latter has been manually tuned in an informal listening
test to provide a clear reconstruction of a short music excerpt featuring drums
and an acoustic guitar, by increasing the frequency resolution and including deeper
bass frequencies. We did not increase the upper frequency limit because at least
for MFCCs, this may make the features sensitive to MP3 compression [SPLS06].

The sequence of mel-spectral frames (z,,) is then transformed into a sequence of
overlapping blocks (b,) by joining fixed numbers of consecutive frames, similarly to
how we initially formed frames from a sequence of samples:

M — L
bo _ [z((o—l)H+1) Z((o—l)H-i—?) - z((o—l)H—&-L)} , 0¢€ [17 0]7 O = \‘ 1% J‘l‘].a

where L and H are the block length and hop size in frames, respectively. [DRMH10)]
used a block length of 15 frames (a hop size does not apply to their setting), but as
their system was targetted at speech recognition, this choice is not necessarily suited
well for our task. In our experiments, in addition to a block length of 15 frames, we
thus tried larger lengths of 39 and 75 frames to enable the system to capture long-
term musical features. While 75 frames (corresponding to about 2.5s of audio) are
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Figure 4.2: Two alternative mel filter banks we use for mapping the linear-frequency
magnitude spectra onto a mel-frequency scale. Each triangular filter
corresponds to a single mel band. The filters are equidistant on the mel
scale, resulting in log-spaced peak frequencies, and are each scaled to
an energy of unity. The second filter bank obtains a higher frequency
resolution and captures deeper bass frequencies.

still shorter than what is used for hand-crafted rhythmic features (e.g., fluctuation
patterns [PRMO02] are computed on excerpts of 6s), our computational resources
were insufficient for easily processing larger blocks. Additionally, we experimented
with shorter blocks of 9 frames, which were the shortest blocks yielding interesting
features. We set the hop size to the smallest possible value of 1 frame to prevent
any aliasing effects (cf. [CLN10, p. 7]). We did not try larger hop sizes as we do not
expect a positive effect on the similarity estimation quality, only on computational
efficiency, which is merely a secondary goal.

In summary, we obtain the mth mel-spectral frame z,, from a signal (s1, s2,...,sy)
as

S((m—1)h+1)
Zm = log (M ’D diag(w) H(mmn) D,

S((m—1)h+1)
then form mel-spectral blocks b, as

boZ[z((oq)Hﬂ) Z((o-1)H+2) - Z((of1)H+L)}-

As depicted in Figure 4.3, this can also be interpreted as computing a mel-scaled
spectrogram and extracting patches at different positions in time, drawing an anal-
ogy to feature extraction schemes from the field of Computer Vision. Note that the
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Figure 4.3: The local feature extraction process interpreted as computing a spec-

trogram, mapping it to the mel scale and extracting patches. The audio
signal (a), here a 6-seconds guitar solo accompanied by bass and drums,
is transformed to a spectrogram (b). The guitar solo becomes visible
as two dim curves, the bass as horizontal stripes at the bottom, and
percussion as regularly spaced vertical stripes. Using the mel filterbank
of Figure 4.2a, frequencies are mapped to mel pitches (c). Note that
the harmonics of the guitar are now spaced uniformly, as the mel scale
is logarithmic in frequency, and that frequencies below 130 Hz are not
included. Applying a log function yields the mel-scaled log spectro-
gram (d), which emphasizes fine low-volume structures. At each valid
position, a mel-spectral block is cut out of this spectrogram (e).



4.3 Preprocessing

computation steps for z,, are the same steps as performed in computing MFCCs
(see Section 2.2.1, p.11), just omitting the final Discrete Cosine Transform. As we
will decorrelate blocks of consecutive frames anyway, an invertible linear transform
such as the DCT would not have any effect at this point. Computing the frame-
wise DCT and dropping the highest components, as is commonly done for MFCCs
as an approximation to PCA compression, would be similarly unhelpful as we are
compressing blocks of frames later.?

4.3 Preprocessing

The mel-spectral blocks described in the previous section are highly correlated: In
addition to correlations inherent in music, the overlapping of mel-spectral frames
induces correlations in time, and the overlapping of triangular filters in the mel filter
bank induces correlations in frequency. While mcRBMs can deal with correlated
data, training converges faster on whitened inputs [RKH10], and whitening also sig-
nificantly improves results with k-Means features (as we will see in Section 5.4.3.3;
also cf. [CLN10]).

Apart from that, the blocks are high-dimensional, with up to 2730 (39 frames of
70 mel bands) and 3000 (75 frames of 40 mel bands) dimensions. Given the high
correlation between feature dimensions, we can compress the mel-spectral blocks
to lower-dimensional vectors without losing much information, thus reducing the
computational effort for the feature abstraction stage.

Both whitening and compression can be accomplished with computationally
cheap linear transformations learned from the data. In particular, we experimented
with the PCA and ZCA transformations, which we will motivate and describe in
the following.

4.3.1 Whitening

Whitened data is decorrelated and has zero mean and unit variance in each dimen-
sion, so the covariance matrix is the identity matrix. Any data can be whitened,
or sphered, by an affine transformation adapted to the data.

Assume we have extracted a set of ¢ mel-spectral blocks from music pieces we
use as training data. We reshape each block into an Ld-dimensional row vector
(L denotes the block length, d the number of mel bands) and stack these vectors
into a t x Ld-dimensional matrix X of training data. We will now find an affine
transformation for whitening the training data, which we can subsequently apply
to any similarly distributed data.

2 Actually, compressing the frames by DCT in this way before compressing the blocks would even
lead to a suboptimal compression scheme in terms of the mean squared error (MSE) of the
reconstruction, because the DCT is only an approximation of the optimal PCA transform.
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To mean-center the data, we simply subtract the population mean:
_ _ 1t
Y =X — X, where XUZEZ:IXM

Additionally, we need to rotate and scale the mean-centered training data Y such
that the transformed data Z has a covariance matrix equal to the identity matrix:

1
A
t—1
Expressing the transformation as a matrix multiplication
Z=YW,
we thus need to find a matrix W such that

1
ﬁWTYTYW =1
WWIYTYw = (t - 1)W
WWIYTy = (t - 1)I
wwT =@t -1)(YTYy)™". (4.1)

Many such whitening matrices are possible. By imposing additional constraints on
W, we can derive different whitening transforms holding special properties [BS97].

4.3.1.1 Principal Component Analysis
If we restrict the columns of W to be orthogonal, that is
WWT = diag(s) (4.2)

for some Ld-dimensional vector s, the solution is obtained from the eigendecompo-
sition of the covariance matrix of the training data: Being real and symmetric, the
covariance matrix can be decomposed as

1
mYTY = E diag(\)ET, (4.3)

where the columns of E form an orthonormal set of eigenvectors and A is the vector
of corresponding eigenvalues. Substituting (4.3) into (4.1), we can solve for W':

WW’ = (E diag(\) E”) !
WW7T = Ediag(\) ' E” (4.4)
WWT = E (diag(\) "2 diag(\) 2" ) BT
WWT = (Ediag(A) %) (Ediag(\)#)
W = Ediag(\) 2. (4.5)

o4



4.3 Preprocessing

Using the orthogonality of E we can verify that W fulfills (4.2) with s = A. Note
that computing diag()\)fé just requires to separately take each element of A to the
power of —%.

This solution is related to the Principal Component Analysis (PCA): It rotates the
(mean-centered) input data to the space of its principal components, decorrelating
it, then divides each component by the square root of its variance, whitening the
data. To understand the latter, note that the variance of the data Y projected
onto a column e;; of E is directly given by the corresponding eigenvalue A; in A,
as we can infer from the eigenvalue equation by using e?}e;j =1

Ty T .ole .
1 (e:jY Ye:j> = \jee.; = Aj.

4.3.1.2 Zero-phase Component Analysis
Constraining W to be symmetric, that is
w=w"
wwl =w?, (4.6)

we obtain a different solution. Substituting (4.6) into (4.4) and solving for W, we
get

W? = Ediag(\) ' ET

N|=

W = (Ediag(\) ' E")
W = Ediag(\) 2 E”. (4.7)

This whitening matrix can be interpreted as rotating the (mean-centered) input
data to the space of its principal components, dividing each component by its
standard deviation, then rotating the data back to its original space [Kri09]. It is
known as the Zero-phase Component Analysis [BS97], and we will shortly see why.

4.3.1.3 Discussion

PCA is a well-known data preprocessing step used in many fields of computing. It
has been chosen as a preprocessor for mean-covariance RBMs [RH10, DRMH10]
and has been shown to strongly relate to k-Means clustering [DH04]. ZCA, on the
other hand, has recently become popular for decorrelating image patches especially
in unsupervised settings similar to ours: ZCA whitened image data has successfully
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been fed to Restricted Boltzmann Machines [CLN10], Deep Belief Nets [Kri09],
covariance RBMs [RKH10], Sparse Autoencoders [CN11] and k-Means based vector
quantizers [CLN10, CN11]. Literature does not indicate which of the two methods
is suited better for our problem, so to make an informed decision on the whitening
method to use in our setup, we will set PCA in contrast to ZCA, analyzing their
common properties and their differences.

Let us first consider the two-dimensional case to get a better understanding of
the transformations employed by PCA and ZCA. Figure 4.4a shows a set of two-
dimensional correlated Gaussian® observations X. By subtracting the mean, we
remove first-order statistics from the data, obtaining the set of mean-centered ob-
servations Y (Figure 4.4b). Note that any rotated, scaled or reflected set AY
remains mean-centered. From the eigendecomposition of the covariance matrix we
obtain the two principal components of Y, shown as arrows. Each arrow is scaled
by the standard deviation of the data in direction of the principal component, i.e.,
by the square root of the respective eigenvalue. Principal Component Analysis
rotates the data such that the principal components become aligned with the co-
ordinate axes, which decorrelates the data. PCA whitening additionally scales the
data to unit variance, sphering it (Figure 4.4c). Note that any further rotation
or reflection of the data (i.e., multiplication by an orthogonal matrix E) retains
this spheric property. ZCA employs the specific rotation which reverses the initial
rotation of PCA, returning the data to its original orientation (Figure 4.4d). Alter-
natively, ZCA can be thought of sphering the data by scaling it along its principal
components, without rotating it at all.

As was already evident from the formulae, the two transformations are equivalent
except for a rotation of the sphered data. However, we can make two interesting
observations:

1. The unwhitened data (Figure 4.4b) has a principal component of high vari-
ance (white arrow) and another one of lower variance (gray arrow). After
whitening, these components become indistinguishable using only second-
order statistics (as perfectly illustrated by our Gaussian example, which does
not have any higher-order statistical moments, resulting in Figures 4.4c and
4.4d looking virtually the same safe for the gray tones). With PCA whiten-
ing, however, they can be trivially distinguished in the new coordinate system,
which may facilitate learning in case the principal components capture rele-
vant structure in the data. Additionally, this will prove useful for compression.

2. The ZCA transform keeps the orientation of the data unchanged: If dimension
x denoted the value of the first pixel of a gray-tone image, it will still be

3Gaussian distributions are of course a special case, as any whitening transformation results
in the multivariate standard normal distribution, but it illustrates two key insights without
distracting by the shape of the distribution.
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-3 -2 -1 0 1 2 3

(c) PCA whitened observations (d) ZCA whitened observations

Figure 4.4: Scatter plots contrasting PCA to ZCA whitening. The observations
(a), here a set of 2-dimensional data points (shades of gray merely serve
as visual cues), are mean-centered (b) and the principal components,
denoted by arrows scaled by the standard deviation of the data in the
respective direction, are estimated from the samples. Both transfor-
mations scale the data to unit variance in direction of the principal
components, thereby sphering it. PCA (c) rotates the data to align
the principal components with the coordinate axes, allowing to com-
press data by projection onto a subset of the axes. ZCA (d) keeps the
orientation, allowing to interpret each dimension as before.
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Figure 4.5: PCA and ZCA whitening filters and dewhitening filters (or bases) for
mel-spectral blocks, as well as whitened data (cf. Figure 4.3e).

associated with this particular pixel after the whitening step. Not changing
the interpretation of dimensions could be useful in case of heterogeneous data
such as multimodal signals. As we will see in the following, it also manifests
itself in the transformation matrices.

Having formed a basic understanding of the two transformations, let us now see
how they apply to our task of decorrelating mel-spectral blocks. Recalling that the
transformed data is computed as Z = YW, the columns of W can be regarded
as a set of filters applied to the data, in which the activation of a single filter w.;
for a data point y;. is given by their dot product y,; w.;. Reshaping the filters to
d x L-dimensional matrices allows us to directly visualize their effect on mel-spectral
blocks.

Figure 4.5 visualizes a subset of the filters learned from a million blocks extracted
from music signals. We can immediately see a striking difference between PCA and
ZCA whitening: The former yields global filters, the latter yields localized filters of
only small support. This matches our second observation above: ZCA whitening
keeps each spectrogram bin at its position, decorrelating it from the other bins,
while PCA transforms the data to a very different coordinate system. The PCA
dewhitening filters (Figure 4.5b) are just scaled versions of the whitening filters (due
to the constraint on the columns of W being orthogonal); the ZCA dewhitening
filters (Figure 4.5e) reintroduce the correlations removed by the whitening filters.
Note how they spread widely both horizontally and vertically, indicating strong
correlations in time and frequency, and note the horizontal artifacts especially in
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the last two filters shown, resembling harmonics — both is not found in ZCA filters
learned on natural images, cf. [BS97, Kri09]. Another interesting observation is that
the ZCA filters are almost symmetrical* and almost convolutional, which could be
utilized for computational optimizations. This symmetricity of the filters lead to
the name Zero-phase Component Analysis (considering the spectrum of the filters).

Looking at the whitened data, however, seems to counter our insights: Neither
the PCA nor the ZCA whitened data (Figures 4.5¢ and 4.5f, respectively) resemble
the original inputs (Figure 4.3d). While this was expected for PCA, it needs further
explanation for ZCA. As the whitening step scales each principal component to unit
variance, components of small eigenvalues are strongly amplified, and due to the
nature of the input data, these components have a high spatial frequency such as
the last two filters in Figure 4.5a (compare their scaling to the other filters shown).
Furthermore, the filters remove horizontal and vertical correlations. As a result,
the visible structure in the spectrogram, such as the guitar and percussion, becomes
invisible, while fine structures are magnified and look like noise. This would not
happen for smoother input such as the linear-magnitude spectrogram (Figure 4.3c)
or most natural images [Kri09].

In summary, our investigation does not uncover a clear advantage of one of the
methods over the other. On the contrary: As the only difference is a rotation of
the data, at least for k-Means both methods will yield the same results (because
k-Means is invariant to orthogonal transformations [DHO04, p. 5]). For other feature
abstractors, we will try both PCA and ZCA in our experiments. Nevertheless, the
insights of this analysis will prove useful in the following section.

4.3.2 Compression

In addition to decorrelating and whitening the data, we want to reduce the dimen-
sionality of the data especially for mel-spectral blocks of high frequency resolution
or many frames. The obvious way to compress data is by redundancy reduction,
another one is by removing irrelevant information (we include lossy compression
in this discussion). As correlations are indicating (linear) redundancies, analyzing
correlations in the data is a possible first step to compressing it, and we already
do this for whitening the data. In fact, we can combine whitening and compression
into a single step.

Examining Figure 4.4b again, Principal Component Analysis finds the direction
of highest variance in the data, and the orthogonal direction. Imagine the special
case of a dataset having zero variance in the latter direction: the dataset would lie
on a one-dimensional linear manifold embedded in a two-dimensional space, and

4Note that this is not implied by the symmetricity constraint on W — the constraint means that
the first filter determines the first component (here, the bottom left pixel) of all other filters,
but it still allows individual filters to be asymmetric.
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could be losslessly compressed to one dimension by projection onto the direction
of highest variance (i.e., by regarding only the x coordinates of the samples in Fig-
ure 4.4c, as all y coordinates would be zero). If a dataset does not have components
of zero variance, but variances close to zero, we can imagine that we would not lose
much information by discarding these components — and in fact, applying PCA to a
dataset and dropping the components of lowest eigenvalues yields a linear transfor-
mation to a lower-dimensional space which is optimal in terms of the mean squared
error of the reconstruction [Pea0Ol]. Formally, for a given target dimensionality m,
a minimum solution to

1 t
Z Z ||yz - (yzU) UT||27
=1

where ¢t is the size of the training dataset and y,. is the ith mean-centered training
data point, is obtained by setting U to the transformation matrix formed from the
columns of the PCA whitening matrix that correspond to the m largest eigenvalues.

However, the components of lowest variance are not necessarily irrelevant, that is,
the reconstruction error may not always be a meaningful measure for the informa-
tion lost in compressing the data. To better understand what kind of information
would be lost in our case, let us examine Figure 4.5 again. We sorted the filters
in order of decreasing eigenvalues, so performing PCA compression in addition to
whitening would be accomplished by simply discarding output dimensions starting
with the top right pixel in Figure 4.5¢. As the corresponding filters have a high
spatial frequency (similar to the two rightmost filters of Figure 4.5a), such a com-
pressing scheme would be similar to applying a low-pass filter to the data. This
is often regarded as a form of noise filtering, which is, however, only true for data
in which noise is associated with high frequencies. In our experiments we will see
whether it helps or hurts the performance of our music similarity measure.

Accepting the reconstruction error as a measure of information loss, the number
of dimensions to discard can be chosen by defining the acceptable error. This can
be trivially accomplished by setting a threshold on the discarded variance, given
by the sum of eigenvalues of dropped principal components. In fact, this is exactly
equal to the reconstruction error [Bis06, p. 565]:

t
Z lys. = (. U)UT|* = Z Ay

i=m+1

w\»—l

where L - d is the dimension of the mel-spectral blocks, and X is the vector of
eigenvalues in decreasing order. In our experiments, we will set the threshold in
relation to the total variance of the input data, a common setting being to retain
99% of the original variance.

Note that this method of compressing the data only applies to PCA whitening.
While we can also drop principal components (columns of E) in the construction
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of the ZCA whitening transform, this would only project the data onto a lower-
dimensional linear manifold embedded in the original feature space. For exper-
iments on high-dimensional mel-spectral blocks we will thus restrict ourselves to
PCA whitening, additionally using ZCA whitening as a comparative method only
when no dimensionality reduction is needed.

4.4 Feature Abstraction

The core of our system is a data-driven feature abstraction stage obtaining useful
high-level descriptions of local features. In particular, we train a mean-covariance
Restricted Boltzmann machine (mcRBM) unsupervisedly as a generative model on
a large unlabeled training set of mel-spectral blocks, then use its latent representa-
tions as high-level features describing any input data.

As mcRBMs are a sophisticated type of Restricted Boltzmann Machines (RBMs),
we will introduce the basic binary RBM before proceeding to mcRBMs. RBMs can
also be trained on the latent representations of another RBM, further abstracting
the features. The resulting stack of RBMs forms a Deep Belief Net (DBN), which
we will briefly describe as well. For all these models we will present their basic idea,
explain the maths (with derivations for the binary RBM in the Appendix) and give
several intuitions on how and why they work.

In addition, we experimented with k-Means clustering as an alternative way of
generating feature descriptions in an unsupervised manner. We used an algorithm
that proceeds data in mini-batches to allow clustering large datasets, and combined
it with a seeding technique known as k-means++, both of which will be described
at the end of this section.

4.4.1 Restricted Boltzmann Machines (RBMs)

4.4.1.1 Basics

A Restricted Boltzmann Machine (RBM) [Smo86] is an undirected graphical model
(or Markov Random Field) of two types of units: visible units representing observ-

h hidden units
w weight
matrix

v visible units

Figure 4.6: A Restricted Boltzmann Machine (RBM)
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able data, and hidden units representing latent variables. The model is restricted
to a bipartite graph such that the visible units form a layer that is fully connected
to a layer of hidden units, with no intra-layer connections (Figure 4.6).

An RBM specifies a joint probability density p(v, h|@) of visible and hidden unit
states v and h, where 6 denotes the model parameters (such as the matrix of
connection weights between units, W).5 It is an energy-based model [LCH*06]
that expresses the probability density in terms of an energy function E(v,h,0) as
a Boltzmann distribution

e—E(,h,0)
= 4.
where
2(0) =Y e Faf) (4.9)
u,g

is the normalizing partition function.

Training an RBM means finding parameters 6 such that the marginal distribution
of the visibles, defined by p(v|0), approximates the observed distribution of training
data, which is equivalent to maximizing the likelihood of the model under the
training data. Training is unsupervised, that is, it requires only a set of unlabeled
data points to learn from.

Once an RBM is trained, the states of the hidden units conditioned on a data
vector, distributed according to p(h|v, @), can be interpreted as features extracted
from the data. As there are no intra-layer connections in the model, the hidden
units are conditionally independent given a data vector, so their states can be
inferred efficiently and in parallel. This is beneficial when using an RBM as a
feature extractor.

Different types of RBMs can be defined by choosing the energy function appro-
priately. In this section, we will only consider the most basic type of RBMs, which
has binary (Bernoulli-distributed) visible and hidden units (when conditioned on
the respective opposite layer of units). We will first take a deeper look at the
mathematics, then give different interpretations for what the model represents and
how it is trained. More advanced types of RBMs, including the mean-covariance
Restricted Boltzmann Machine, will be introduced in Section 4.4.2.

4.4.1.2 Mathematics

We will now give a more detailed presentation of the mathematics behind Restricted
Boltzmann Machines. Most of this thesis can be understood from the higher-

®Depending on the type of RBM, v and h can be samples of continuous or discrete random
variables, so p(v, h|@) may be a probability density function or a probability mass function. To
simplify the description, we will use the term “density” throughout.

51n the continuous case, sums over configurations u or g become integrals.
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level intuitions in Section 4.4.1.3, but for technical details an understanding of the
mathematical background is required.

Model The most basic type of RBMs is guided by the following energy function:
Ey(v, h,0) Zle”h > wvia;— Y hyb;
i J

= —vTWh —vl'a—h'b, (4.10)

where the model parameters @ = (W, a, b) comprise the connection weights, visible
and hidden bias terms, respectively, and v and h are binary states of the visible
and hidden units.

The energy function induces a probability density p(v, h|@) over joint configura-
tions of v and h according to Equation 4.8. From this density we can derive several
other densities discussed in the following.

The marginal probability density of the visibles,

—E(v,g,0)

26)

is the density of observable data as estimated by the model; i.e., it defines the
distribution to sample from if using the RBM as a generative model.

Alternatively, the generative model may be defined via an implicit prior over

the hiddens and the conditional probability of the visibles given the hiddens (see
Section 4.4.3). The implicit prior is the marginal density of the hiddens:

Z e~ E(u,h,0)
Z(0)
The conditional probabilities depend on the chosen energy function. For the

function defined in Equation 4.10, we obtain the following probability distributions
(see Appendix A for the derivation):

p(v|0) = Zp (v,9]0) = (4.11)

p(h|@) = Zp (u,h|6) = (4.12)

P(hy, = 1[v,0) = o (b + Zka) (4.13)
P(vg = 1h,0) = o (ax + > Wiih) (4.14)
Here, o denotes the logistic sigmoid function j
ol@) = ; +1€_$.

Equations 4.13 and 4.14 define the probability that a given unit takes its “on

state. This probability is referred to as the activation of a unit. The first equa-
tion is needed when using an RBM as a feature extractor, and both conditional
probabilities are also needed during training.
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Training The goal of training an RBM is to find parameters 8 such that it is likely
to generate training data, and unlikely to generate vectors that do not resemble the
training data. More formally, this objective can be defined in two ways:

e Minimizing the Kullback-Leibler divergence between the observed distribution
of the training data and the model distribution p(v|@), or

e Maximizing the likelihood of the model under the training data.

Both objectives are actually equivalent [vdMO09, p. 3]; here, we focus on the max-
imum likelihood formulation. Given a set T’ of training data and assuming the
samples are i.i.d., the likelihood is given as

[] p(vl6), (4.15)
veT
from which we can derive the gradient of the log likelihood w.r.t. a single weight
Wij (see Appendix A for the derivation), averaged over the training samples:

0
oWij ]T\ Z log p(v[0) = 7| Z(w(h h\z;e) (vihy) o(0.h]6) (4.16)

= <Uihj>data o <Uihj>m0del (417)

Here, ( - ). denotes expectation with respect to the distribution defined by the
probability density given in the subscript. The first term is the correlation of the
unit states v; and h; when the visible units are clamped to the training data and
the hidden units are sampled from p(h|v, 8), and the second term is the correlation
when all unit states are freely sampled from the model density p(v, h|6@). We can
derive similar gradients for the bias terms:

0 1
8az \T| Z log p(v]6) = (Vi) gaa = (Vi)rmoder (4.18)
ab \T| Z 1og p(v]0) = (75) a0 = (Pi)moder (4.19)

As the likelihood function is highly nonconvex, we cannot just set the gradients
to zero and solve for the parameters. Instead, we start with random parameters
and perform gradient ascent according to the update rules

Wij = VVU + nw<<vihj>data - <vihj>m0del)
a; < a; + n“(<vi>data B <vi>model)

bj — bj + m’(<hj>data o <hj>m0del>’

where 1, nq and 7, are the learning rates for the different parameters.
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4.4 Feature Abstraction

Figure 4.7: Performing blocked Gibbs sampling to sample from the model distri-
bution: Starting from a random visible vector v, all the hidden states
and visible states are sampled in turn until convergence. For clarity,
incoming weights are drawn for a single unit per layer only.

However, there is still a caveat. We can easily compute the first expectation, the
positive phase, from the first term in Equation 4.16 using Equation 4.13, that is, we
compute the activation of the hidden units at each training data vector, multiply
with the respective visible states and take the average.” But computing the second
expectation, the megative phase, is intractable for reasonably sized models, as it
involves evaluating the energy function at all possible configurations of unit states.
Instead we employ a Monte-Carlo simulation, that is, we draw a limited number of
samples from the underlying distribution and average over these samples to estimate
the expectation.

Obtaining an unbiased sample of the distribution defined by p(v, h|@) can be
achieved by a Markov chain Monte Carlo (MCMC) algorithm known as Gibbs sam-
pling. It makes use of the fact that while the joint distribution of v and h is hard
to compute or sample from, the conditional distributions defined by p(h|v,0) and
p(v|h, 0) are easy to sample according to Equations 4.13 and 4.14. Instead of sam-
pling v and h simultaneously, Gibbs sampling starts from a random visible vector
v and then samples h and v in turns. Note that due to the bipartite nature of
the model, we can sample all hidden unit states in parallel, then sample all visible
states in parallel (blocked Gibbs sampling). This process is depicted in Figure 4.7.
Each round of updates (sampling h, then sampling v) constitutes a transition in a
Markov chain starting at the random visible vector. When running this chain to
convergence, we are sampling from the joint distribution of v and h, obtaining the
so-called negative particles needed for the negative phase.

While tractable, running a Gibbs sampler to convergence is still computationally
expensive. Hinton [Hin02] proposed a much faster training method for RBMs that
does not follow the maximum likelihood gradient, but approximates the gradient
of another objective called Contrastive Divergence. Instead of starting the Gibbs

"In a sense, this is just a sampled expectation, because the training examples are only samples
from the underlying data distribution (which is usually unknown for real-world problems).
However, it is an exact expectation with respect to the observed distribution of training data.
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sampler at a random visible vector, it starts at a training example — this way, the
Markov chain starts closer to its equilibrium distribution (after we started training
the model) [BD09]. In addition, it does not wait for the Gibbs sampler to converge,
but only runs it for k steps (CD-k). In practice, even k = 1 works well (CD-
1). Effectively, this replaces ( - )model in Equations 4.17-4.19 by ( - )reconstruction- A
related idea, Persistent Contrastive Divergence [Tie08], also runs the Gibbs sampler
for k steps only to obtain negative particles, but instead of restarting it after each
update of the model parameters 8, the sampler continues to run with these new
parameters. We will explain the intuitions behind CD and PCD in Section 4.4.1.3.
In practice, the Gibbs sampler for CD and PCD uses the unit activations instead
of sampling their binary states, to reduce sampling noise in the learning signal.
Only the first sample of the hidden units driven by the training data must be bi-
nary, in order to create an information bottleneck for the reconstruction [Hinl0].
Implementations also rely on standard machine learning practices: Instead of cal-
culating the gradient averaged over the whole set of training data, it is calculated
on mini-batches of around 100 samples (this can be seen as a compromise between
online learning and batch learning), the connection weights W are regularized, and
the update rules for each parameter 6,, are augmented with a momentum term

o) 047 + A0V + a0 - 0172),

where AH%? is the CD or PCD learning signal for parameter 6,, of the model 108
Details will be given in Chapter 5.

4.4.1.3 Interpretations

Model The RBM is a generative model for data vectors — it learns an estimate of
the underlying probability density of a set of training data, and it allows to draw
new samples from this distribution. Intuitively, if a model can generate data, it has
captured all its structure (as opposed to a discriminatively trained model, which
only captures the parts that are relevant for a given classification task).

What makes the model useful for us is its set of hidden units. The weights
represent pairwise correlations between visible units and hidden units, such that
an activation pattern of visible units corresponds to a likely activation pattern
of hidden units and vice versa. When used to generate data, the hidden units’
connection weights (columns of W) form basis functions (or templates) that are
weighted and summed in the log domain, i.e., the hidden units’ predictions for
the binary state of the visible units are effectively multiplied to form the overall
prediction of the model (a Product of Ezperts [Hin02] as opposed to a Mixture
Model). As the model has been trained to generate data from a given distribution
well, as many configurations of hidden units as possible will correspond to probable
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data vectors,® so the basis functions will capture typical configuration patterns of
sets of visible units, i.e., typical features (rather than just determining the value of
a single visible unit).

When used as a feature extractor, the network can be seen as a feed-forward
network with logistic units, in which the input weights to each hidden unit (again,
columns of W) form a filter applied to the data vectors, and the filter activations
are squashed by a logistic sigmoid function (binary sampling of the hidden states is
not used in this case). Again, the filters will react to typical features found in the
training data, so the hidden unit activations indicate the presence of such features,
forming a possibly useful higher-level description of a data vector.

Training To maximize the likelihood of the model under the training data (i.e.,
the probability that the model generated the training data), the model parameters
0 have to be adjusted such that training examples are assigned a high probability
and other data points in the input space are assigned a low probability. Most
importantly, we have to lower the probability of data that is assigned a very high
probability by the model despite not resembling the training data. Equivalently,
to minimize the Kullback-Leibler divergence between the observed distribution of
training data and the learned distribution of the model, we have to shift probability
mass from the data the model “believes in” (i.e., the data it generates) to the
training examples. As can be seen from Equation 4.8, this is equivalent to lowering
the energy for observed data, and raising the energy for “fantasized” data.

Seen abstractly, training by maximum-likelihood achieves this in the following
way: We tell the model that the training data is correct (i.e., we lower the energy
for training data), then ask the model to generate some own examples and tell the
model it is wrong (i.e., we raise the energy for generated data), without even looking
at these examples. When the model starts generating good examples only, the two
learning signals (lowered and raised energy) cancel out, and training converges.

Contrastive Divergence (CD) works a bit differently. Observing that we can
generate data from the model by repeatedly sampling the hidden and visible units
until convergence (Gibbs sampling, Figure 4.7), and our goal is to make the model
generate data resembling the training examples, CD tries to adapt the transitions
in the sampling chain such that it is already in its equilibrium distribution when
starting from training data. By initializing the Gibbs sampler at a training vector
and performing k sampling steps (CD-k) or even just a single step (CD-1), we can
observe in which direction it tends to deviate and adapt the weights to stop it from

8 Actually, this is not always desired, as this may lead to very unspecific features. Forcing only
small sets of active hidden units to represent data vectors can be achieved by specifying a
sparsity target during training [NH09], encouraging each hidden unit to describe a large set of
visible units.
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deviating. Adapting the weights is equivalent to raising the energy for the data the
Gibbs sampler produced after k steps (or one step).

A potential problem is that CD only changes the energy surface close to the
training data. As illustrated in Figure 4.8b, it forms ravines around the training
data [RBLOS8, p.2], but does not explore modes far away from the training data,
possibly leaving data points assigned a high probability despite being dissimilar to
all training examples. Persistent Contrastive Divergence (PCD) avoids this by not
resetting the Gibbs sampler to the training data after each update, i.e., the “fantasy
particles” generated by the sampler can wander across the whole energy surface,
finding modes far away from the training data (Figure 4.8c). Although PCD also
runs very few sampling steps per update only, the particles can quickly explore a
large area of the data space: With each update, the energy surface is raised at the
data points they settled for, so the next sampling step will push them away.” PCD
can thus build a better density model than CD. However, CD ensures that the
k-step or one-step reconstructions of training points are accurate, i.e., the hidden
unit activations convey all information needed to reconstruct training examples.
This may be more important for feature extraction than learning a good density
estimation for the data [Hinl0, p.15]. In our experiments, we will thus try both
variants.

4.4.2 Mean-Covariance Restricted Boltzmann Machines (mcRBMs)
4.4.2.1 Basics

In the preceding section, we considered a basic type of RBM with binary visible and
hidden states. To model real-valued data, we could map each input dimension to
the range from 0 to 1 and treat the remapped values as probabilities of the visible
units taking their “on” state [BLPLO7, p.4]. A better way is changing the energy
function to allow the model to directly generate the kind of data it is trained on.

A popular variant is the Gaussian-Bernoulli RBM, which changes the energy
function to replace the logistic visible units by linear units with independent Gaus-
sian noise, while the hidden units remain binary. As it is difficult to learn the noise
variance for each unit [Kri09], it is often fixed to unity [Sal09, Hin10], so p(v|h, @)
becomes Gaussian with identity covariance. As only the means of these Gaussians
are dependent on the hidden unit states, we will refer to this model as an mRBM
(Figure 4.9a).

While an mRBM can model real-valued inputs, independent Gaussian noise does
not yield a good generative model for most real-world data. To incorporate pairwise

9In practice, PCD needs a smaller learning rate than CD so the particles can keep up with the
ever-changing model and are not kicked around chaotically. Learning is not slower than for
CD, though, as the negative particles are further away from the positive particles (the training
examples), inducing larger differences in the statistics used for learning.
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E(v,h)

"
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(a) Energy surface of an untrained model

training sample training sample

CD-1 reconstructions CD-1 reconstructions

v, h
(b) Energy surface after a CD training step

training sample training sample

PCD-1 fantasy particles PCD-1 fantasy particles

v, h
(c) Energy surface after a PCD training step

Figure 4.8: Starting from an untrained model (a), Contrastive Divergence (b) low-
ers the energy of training data and raises the energy of reconstructions
by the model, which are close to the training samples. Persistent Con-
trastive Divergence (c) finds and raises low-energy regions possibly far

from the training data.
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Figure 4.9: Diagrams of the two parts of a mean-covariance RBM.

dependencies of visible units gated by hidden units, a third-order RBM can be
defined, with weights Wj ;) connecting a hidden unit hj, to a pair of visible units
v, vj. This results in an impractically large weight tensor W, but by factorizing and
tying these weights [MH10, RKH10], parameters can be reduced to a filter matrix
C connecting the input twice to a set of factors and a pooling matrix P mapping
factors to hidden units (Figure 4.9b). In this model, termed c¢RBM, visible units
are conditionally Gaussian given the hiddens, with a covariance matrix depending
on the hidden unit states. However, it can only generate Gaussian inputs of zero
mean.

For general Gaussian-distributed inputs, the mRBM and cRBM can be combined
by simply adding their respective energy functions. The resulting mcRBM [RH10]
has two types of hidden units: mean units h™, and covariance units h¢. The
conditional distribution of the visible units p(v|h™, h¢, ) becomes the product of
the Gaussian distributions of the mRBM and cRBM, which is a Gaussian with
mean and covariance both gated by the hidden units.

Just as for binary RBMs, we will first give a more elaborate explanation of the
mathematics, then analyze the model on a higher level.

4.4.2.2 Mathematics

Before considering the mcRBM as a whole, we will investigate its two parts: the

mRBM and cRBM.

mRBM The Gaussian-Bernoulli RBM is guided by the energy function

. )2
E(v,h™,0) == %Wijh;'n - (UZQU;ZZ) - > hl'b;,
t J

iwj o i

where 8 = (W, a, b, o) includes a standard deviation for each visible unit’s Gaus-
sian noise. Setting all standard deviations to unity, we can drop these model pa-
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rameters and obtain the simpler energy function of the mRBM:

Fp(0, h™,6) = = S widVyht? = 3 0 (v — ag)? — 3 A,

.3 i J

1
= v TWh™ — 5(1} —a)l(v—a) - bTA™ (4.20)

From the joint probability density of visible and hidden states (Equation 4.8),
we can derive the conditional probability density of the hidden units as in Equa-
tion 4.13, and the conditional probability density of the visibles as

p(v|h™,0) = N(v|la+ Wh™,I), (4.21)

where N (x|p,X) denotes the multivariate Gaussian probability density function
(Equation 2.2, p.14) with mean p and covariance matrix ¥ (see [Kri09, p. 13| for
the derivation). An mRBM can be trained the same way as a bRBM, sampling the
visible units according to (4.21) instead of (4.14). In practice, just as for bRBMs,
noise in the learning signal is reduced by using the expected values of the visible
units (here, the means of the Gaussians) instead of sampling. The learning rate is
set orders of magnitude smaller than for bRBMs [Hinl0, p. 12].

cRBM As explained above, the cRBM is a third-order Boltzmann Machine which
models pair-wise dependencies of visible units gated by hidden units. This requires
an energy function which defines potentials over sets of three variables (two visible
units and one hidden unit). The simplest such function,

E(v7h’70) = - Zvivjhkm/ijk’7 (422)
1,9,k

does not scale well to high-dimensional models, with the number of connection
weights being quadratic in the number of visible units. Memisevic and Hinton
[MH10] propose to replace the large weight tensor by a sum of three-way outer
products termed factors:
Wijk =Y BirCis Py
f

This factorization makes use of the fact that for real-world data, the pair-wise
dependencies of input components often have a regular structure which can be
approximated with fewer parameters than a full Wj;;, tensor. As B and C' are both
connected to the same set of visible units, Ranzato et al. [RKH10] further reduce
the number of parameters by enforcing B = C|, resulting in

Wijik = CifCjsPey. (4.23)
f
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Thus, each factor is connected twice to the visible units via a set of filters C' and
once to the hidden units via a pooling matrix P (see Figure 4.9b). Substituting
(4.23) into (4.22) and adding hidden unit bias terms ¢, the energy function becomes

E.(v,h 0) = Z(sz ,f><Zijjf><§hiPkf) —;hiw@

= —(fl;T(,*)Qszc —c'he, (4.24)
yielding conditionally binary hidden units with activation probabilities
p(h§ =1[v,0) = o(c+ (v"C)*P)") (4.25)
and conditionally Gaussian visible units
p(v|h€,0) = N (v]0, %), (4.26)
where
: c T -1
= (C diag(PR)CT) . (4.27)

In principle, training could be performed as for the bBRBM and mRBM discussed
above. However, we cannot do blocked Gibbs sampling of the visibles, because they
are no longer independent given the hidden unit states (i.e., p(v|h,0) no longer
factorizes). We could sample the visibles from their Gaussian distribution given
n (4.26), but this requires a large matrix inversion in (4.27), which would render
the training procedure impractically slow. A more efficient way of sampling nega-
tive particles is offered by the Hybrid Monte Carlo algorithm (HMC). It simulates
particles rolling on the surface of the free energy function

F(v, —log Z e Elvg0

which only depends on the visible units and the model parameters, obtained by
summing over (or integrating out) the corresponding hidden unit states. Note how
the free energy is connected to the likelihood of the model:

Z e—E(v.g,0) e—F(v,0)
Zuge E(u,g,8) Zu e—F(u)

Clearly, visible states of lower free energy are more probable under the model.
Instead of performing alternate blocked Gibbs sampling steps of the hiddens and
visibles, initialized at the data points (Contrastive Divergence) or the previous
negative samples (Persistent Contrastive Divergence), HMC starts from the same
initialization and lets the samples roll towards local minima of the free energy
function. Just like Gibbs sampling, this yields samples that are closer to the model
distribution than the starting points, which is enough for training to work. For
more details on HMC and a closed form of the free energy function for cRBMs,
please see [RKH10].

p(v]|@) = Zp v,g|0) =
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mcRBM Adding the energy functions of the mRBM and cRBM yields the energy
function of the mcRBM,

Epme(v, K™, h€,0) = E, (v, h™,0™) + E.(v, h¢, 0°), (4.28)

where 8 = (W,C, P,a,b,c) are the parameters of the mcRBM, combined from
the mRBM parameters 8™ = (W, a,b) and the cRBM parameters 8¢ = (C, P, c).
The conditional probability densities of the two types of hidden units — the mean
units h™ and the covariance units h® — are the same as for the separate mRBM
and cRBM models, given in Equations 4.13 and 4.25, respectively. The conditional
density of the visible units is the product of the two models’ Gaussian distributions,
which is again a Gaussian:

p(v|h™, he,0) = N (v|S(a + Wh™), %) (4.29)

3 is the covariance matrix of the cRBM defined as in Equation 4.27. Note that
the mean of this Gaussian depends both on the state of the hidden mean units and
covariance units.

Like cRBMs, mcRBMs can be trained efficiently using CD or PCD, generating
negative particles with HMC on the free energy. In practice, there are a few sub-
tleties to be considered: It has proven useful to make the covariance part of the
model invariant to the scale of the input, by normalizing the training vectors and
the filters in C' to unit 2 norm. For the filters, this constraint is enforced during
training, for the inputs, it is included in the energy function E.. This normaliza-
tion results in a non-Gaussian conditional density of visible units p(v|h™, h€,0),
but does not adversely affect inference or training via HMC [RH10]. In addition,
the pooling matrix P is constrained to be negative, as positive entries could result
in extremely low free energies for extreme visible states [RKH10, p. 3].19 For more
robust training, P is initialized to be sparse (e.g., to the negative identity matrix
if the number of factors equals the number of hidden covariance units, or to a to-
pographical mapping), optionally enforced to remain sparse (by applying a fixed
mask that resets most entries to zero after each update), only updated after the
filters C' had enough time to converge and constrained to columns of unit /; norm
[RH10].

4.4.2.3 Interpretations

The mcRBM is a powerful generative model. With its binary hidden mean and
covariance units, it can choose one of exponentially many mean vectors and one
of exponentially many covariance matrices to explain a single data point. These

YWith the £» normalization of the inputs this is actually not true, but we follow [RH10] in keeping
this constraint.
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Figure 4.10: Reconstruction of a music excerpt with (b) mean units and (c)
both mean and covariance units of an mcRBM. The covariance units
smoothen the mean unit’s prediction along the time axis and create
harmonics, except if the covariance unit states indicate a violation of
these smoothness assumptions (e.g., for the four percussion hits).

exponentially many possible mean vectors and covariance matrices are combined
from the templates and filters of W and C,!! which are trained to be useful for
modeling the data.

As for the bRBM, the columns of W form templates that are linearly combined
to represent a data point (but without squashing the result with a sigmoid function
to yield binary activation probabilities, as the mcRBM has linear real-valued in-
stead of logistic binary visible units). The columns of C, however, encode common
smoothness constraints seen in the training data. An activation pattern of hidden
covariance units describes the sets of constraints that are satisfied (active hidden
units, creating negative energy) and violated (inactive hidden units, not contribut-
ing to the energy of a configuration). For natural images, for example, the default
assumption could be that neighboring pixels are correlated, and a possible excep-
tion captured by a filter of C could be a vertical edge occurring in the image. The
pooling matrix P maps each hidden covariance unit to a group of similar filters in
C, achieving a certain level of invariance against transformations of the data (for
example, the model could learn to ignore small translations).

When generating data, the hidden mean units provide an approximation of a
data point as a combination of templates in W, and the hidden covariance units
represent knowledge about pair-wise correlations of visible units (the set of satis-
fied smoothness constraints). This knowledge is expressed in a covariance matrix
which is multiplied with the approximation provided by the mean units, smoothing

"This is important — if the possible mean vectors and covariance matrices would not share any
information, the model would be too expressive and prone to overfitting.
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the visible unit states in a way the model learned from training data. Figure 4.10
visualizes this for a music excerpt. For a trained mcRBM, we inferred the hidden
unit activations for each 15-frame mel-spectral block of the excerpt, then recon-
structed each block by calculating the visible units’ conditional distribution given
the hidden unit states, and averaged the (overlapping) block-wise reconstructions
to obtain a full reconstruction of the excerpt. In Figure 4.10b we show the recon-
struction of the model’s mRBM part, ignoring the hidden covariance units. While
the guitar and percussion are visible (cf. Figure 4.3 on p. 52), the spectrogram has
a lot of gaps. By including the covariance units (Figure 4.10c), the noisy mRBM
reconstruction is smoothed along the time axis, and for the guitar, harmonics are
emphasized or even newly introduced. Note that this smoothing is not the same for
each block, but depends on the content: For example, smoothing in time does not
occur for percussion and note changes. In summary, the covariance units allow the
mcRBM to generate plausible data even with inaccurate or incomplete representa-
tions from the mean units, by incorporating knowledge of pair-wise dependencies
between visible units. For a similar demonstration with natural images, please see
[RH10, Fig. 1].

When used as a feature extractor, the hidden mean unit states are inferred exactly
the same as in a bRBM: The templates (columns of W) act as filters detecting the
presence of common visible unit configuration patterns, and the filter activations
are squashed by a logistic sigmoid function. The filters of the factors (columns of
C) are treated differently: First their output is nonlinearly rectified by squaring it,
then activations of similar filters are pooled by the matrix P and mapped to the
logistic hidden covariance units. This strongly resembles the simple/complex cell
architecture found in the primary visual cortex of mammals, and when trained on
natural images, the filters indeed develop to edge detectors similar to these simple
cells [RKH10] (in our experiments, we will investigate what kinds of filters emerge
when training the model on music data). The fact that an mcRBM can directly
detect and model important features such as occluding edges independently of the
image content on either side of the edge makes it a possibly better choice for feature
extraction than an mRBM.

4.4.3 Deep Belief Nets (DBNs)

All types of RBMs discussed above have binary hidden units, yielding binary latent
representations of given input data. The most basic type of RBM, the bRBM
described in Section 4.4.1.2; also has binary visible units, usable to model binary
data. This allows us to train a bRBM on the latent representations of another
RBM, yielding a three-layer model with binary hidden variables. By recursively
applying this principle, we can build a stack of RBMs referred to as a Deep Belief
Net (DBN) [HOT06, HS06, BLPLO7]. Figure 4.11 visualizes the resulting model.
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Figure 4.11: A Deep Belief Network (DBN) composed of three RBMs.

Seen as a feature extractor, a DBN built in this way is just a Multi-Layer Per-
ceptron (MLP) with logistic hidden units. The first hidden layer already gives an
abstract representation of input data presented to the visible layer. Treating all
these representations for a dataset as new input data, the next-level RBM learns
even more abstract representations — “features of features” — capturing higher-order
correlations in the data. This process is repeated to learn more and more abstract
concepts.

When regarded as a generative model, the top two layers of a DBN form a
Restricted Boltzmann Machine with undirected connections, and the remaining
layers are connected by directed top-down connections (with the lowest layer being
the layer of visible units) [HOTO06]. To see why this is useful at all, let us consider
how the DBN is constructed. The first RBM is trained to approximate the observed
distribution of input data by the marginal probability density over the visible units,
p(v]@). We can also express this density (the generative model) via a prior over h
and a conditional probability:

p(v]0) = p(h|@)p(v|h,6)
h

The prior over the hidden units, p(h|0) is implicitly defined by the model parame-
ters of the RBM (see Equation 4.12, p.63). We can improve the generative model
by keeping p(v|h, @) and replacing p(h|@) by a better prior: the conditional distri-
bution of the hidden units given the training data. We can obtain samples from
this distribution by simply passing the training data through the RBM (i.e., by in-
ferring the hidden states h for training samples v according to p(h|v,0)) and then
use a second RBM to learn a generative model of the distribution [OHOS8, p.2].
As we discarded the first RBM’s p(h|@), only keeping p(v|h, ), the newly formed
generative model consists of an RBM in the top two hidden layers and directed
top-down connections to the visible layer. This process can be repeated to learn
better and better priors of priors. It can be shown that each added layer increases
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a lower bound on the likelihood of the model, provided that the number of hidden
units does not decrease, the layers are initialized in a particular way and train-
ing of each RBM follows the maximum likelihood gradient [HOT06, BLPL07]. In
practice, DBNs achieve good results even if all of these requirements are violated.

Once trained, a DBN can be fine-tuned to a specific task. In a supervised setting,
rather than treating the deepest-layer activations as features and training a classifier
on them, we can treat the DBN as an MLP, add an additional classification layer
and train the resulting network with backpropagation. In such a setup, building the
DBN from RBMs can be regarded as a greedy layer-by-layer pre-training, which is
far superior to random initialization of a deep network [EBC*10]. For unsupervised
tasks, a DBN can be fine-tuned with an up-down-up algorithm [HOT06] or stacked
in reverse onto itself to form a Deep Autoencoder, the weights of which can be
refined with backpropagation to minimize the reconstruction error. Alternatively,
RBMs can be stacked in a slightly different way to form a Deep Boltzmann Machine
(DBM) rather than a DBN, for which another unsupervised learning algorithm
exists [SH09a, SL10].

In this thesis, we do not perform any fine-tuning of DBNs. Due to the lack of
ground truth, we cannot easily provide a supervised learning signal for our similarity
estimation tasks, and whether unsupervised fine-tuning of the representations would
help in estimating music similarity has to be determined in future research.

4.4.4 Mini-batch k-Means++

A simple alternative for abstraction is clustering, which we will use in the experi-
ments as a base line for comparison to mcRBMs. To cope with our large datasets,
we use two special extensions of Lloyd’s original version of the k-Means cluster-
ing algorithm: Firstly, we initialize the cluster centroids with a technique called
k-means++, and secondly, we refine the clustering in mini-batches. Below we will
describe both methods, preceded by a brief outline of the k-Means algorithm.

4.4.4.1 k-Means

k-Means is an algorithm for unsupervisedly clustering a dataset X = (x1, x2,...N)
into a given number K of clusters. Each cluster is represented by a cluster centroid
cr € R? and each data point @, € R? is assigned to the cluster of the closest
centroid (in terms of Euclidean distance):

cl(z) = argmin [|c, — x|, (4.30)
k

The optimization problem to solve is to find a clustering C' = (e1, ca,...ck) that
minimizes the mean squared distance between the data points and their associated
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cluster centroids: N
1 2
J(C) = N Z Hccl(azi) - wzHQ (4.31)
i=1

Once we have a clustering, we can replace each data point @ by its cluster index
cl(x) to obtain a more abstract, albeit very simple description of it. This is known as
Vector Quantization (VQ). The optimal clustering C* = arg min. J(C') minimizes
the mean squared error of the reconstruction of a vector quantized dataset.

Finding the optimal clustering is generally hard, as the objective function J(C')
is nonconvex and nondifferentiable. Lloyd’s k-Means algorithm [L1082] attempts to
find a good solution by starting from an initial set of centroids C', then refining the
clustering by iteratively alternating between the following two steps:

E-Step: For each data point, find the closest centroid according to Equation 4.30.
This establishes an association of data points to clusters:

mb(k) = {x|cl(x) = k} (4.32)
M-Step: Replace each centroid with the mean of all data points associated to it:

1
Cp — ———— Z x (4.33)
‘mb(k)‘ xzemb(k)

This FEzpectation Mazimization algorithm is guaranteed to converge [BB95], but
not necessarily to the global optimum. Instead, it will often get stuck in a local
minimum, deterministically dependent on the initial set of centroids C'.

4.4.4.2 k-Means++

As stated above, the result of Lloyd’s k-Means algorithm depends on the initial-
ization of cluster centroids. One of the simplest initialization methods is to pick
the initial set of centroids C' as a random sample of K data points. Arthur and
Vassilvitskii [AV07] propose a more advanced seeding technique and show that
their initial clustering is expected to be only O(logk) times worse than the opti-
mal solution C*. They call their initialization method in combination with Lloyd’s
algorithm k-Means++. Here, we will refer to the seeding technique as k-Means++
initialization. It proceeds as follows:

1. Pick a random data point as the first centroid c¢;.

2. Sample the next cluster centroid ¢ from a probability distribution over the
dataset defined by
p(xn) o D(xy)?, (4.34)
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where

D(zx) = iefﬁ}gl}HCi —x||2 (4.35)

is the distance of x,, to the closest centroid picked so far.
3. Repeat step 2 until we have sampled K centroids.

Intuitively, the sampling step favors data points that currently contribute much to
the objective function (4.31) and thus will probably reduce J(C) a lot when added
to the set of centroids. Sampling outperforms a greedy choice of the data point
maximizing (4.35), which is sensitive to outliers that are far from the centroids
merely because they are far from all other data points, not because they are in a
yet uncovered cluster. For the theoretical proof of O(log k)-competitiveness, please
see [AVO7].

In our experiments, we use an extension of the k-Means++ initialization sug-
gested in [AV07, p. 8] which improves results in practice, although the theoretical
guarantees do not apply any longer: Instead of sampling a single centroid in step 2,
we sample 2 + |log k| candidates and greedily select the one reducing the objective
function (4.31) the most.

4.4.4.3 mini-batch k-Means

Lloyd’s classic batch learning for refining the initial choice of cluster centroids is
slow when handling millions of data points. Sculley [Scul0] proposes an adaption
of Lloyd’s algorithm to work with mini-batches (small random subsets of samples),
converging orders of magnitude faster to only slightly worse solutions. Starting
from an initialization of centroids C' and given a mini-batch size b, the algorithm
works as follows:

1. Initialize an update count vy for each cluster ¢ to zero.
2. Randomly pick a mini-batch M of b data points from X.

3. Find and store the index of the closest centroid cl(x) for each data point
reM.
4. For each data point © € M perform the following steps:
a) Retrieve the index of the previously stored closest centroid k.
b) Increment the update count v of this centroid by one.
¢) Move the centroid closer to the data point:

CcL (1—01k>ck+vlkw
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5. Return to step 2 (unless a stopping criterion is reached, such as a maximum
number of iterations).

Step 3 is important because the cluster associations might change during the fol-
lowing phase of updates, and we want to make sure each centroid accumulates the
updates from all data points assigned to it in a chosen mini-batch. If we calculated
the closest centroid on-the-fly in step 4a, the algorithm would reduce to the online
stochastic gradient descent method of [BB95], which only finds low quality solutions
due to stochastic noise [Scul0].

Details on the chosen hyperparameters for our experiments (the mini-batch size
and number of iterations) will be given in Chapter 5.

4.5 Global Modeling

To create a global song descriptor from the sequence of local feature descriptions,
we calculate a histogram of the descriptions. This discards the order of features
similarly to Bag-of-Words approaches successfully used in text processing [Lew98].
Unlike the Gaussian models popular in Music Similarity Estimation (Chapter 2),
histograms does not assume a Gaussian distribution of the local feature descriptions
and are much faster to compare (see the next section). While a histogram may not
be the best way for modeling the distribution of local feature descriptions, we
purposely chose the simplest model we could think of in order to minimize hand-
crafting.

k-Means For k-Means, histogramming is straightforward: We just count the num-
ber of occurrences of each cluster index in a song’s sequence of feature descriptions,
yielding a K-dimensional histogram.

RBMs For (mc-)RBMs, we consider two options:

1. Binarizing the hidden activations by thresholding'? and treating each com-
bination of active units as a separate feature to count, creating a histogram
over all combinations, or

2. interpreting hidden units as independent soft feature detectors and separately
adding up each unit’s real-valued activations over the whole song.

For a top hidden layer of H units, the first option creates a histogram of 2 bins
(one for each binary activation pattern) and is thus only applicable to models with a
small top layer. The second option creates H bins (one for each unit); the resulting
histogram is equal to the mean over all latent descriptions h up to a factor.

120f course we could also sample the binary states according to their Bernoulli probabilities, but
this would introduce unnecessary noise and make the descriptor indeterministic.
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Normalization To account for songs of different lengths, all histograms are nor-
malized to unit ¢; norm before comparing them.

4.6 Song Comparison

Having created global descriptors for a set of songs, we can estimate the similarity
of songs by comparing their descriptors. In our experiments, we tried a range of
different distance measures and additionally employ a technique called Distance
Space Normalization to optimize the similarity space.

4.6.1 Distance Measures

The feature histograms can be compared using any vector distance measure. Al-
ternatively, as the histograms are normalized, they can be interpreted as discrete
(multinomial) probability distributions, for which further comparison methods ex-
ist. We experiment with the cosine, euclidean (¢2) and manhattan (¢;) distance
as well as the symmetrized Kullback-Leibler (KL) and Jensen-Shannon (JS) diver-
gence, which we will list and briefly describe below.

4.6.1.1 Euclidean and Manhattan Distance

The Euclidean distance between two vectors « and y,

Iz —yllz = /(z — y)T (@ —y) = |3 (e — )2 (4.36)

i
and the Manhattan distance,

HfE—ylezm—yz‘!, (4.37)

i
are two special cases of the Minkowski distance (p-norm),

|z yl, = (Z i y|> ; (433)

a standard vector distance measure.

4.6.1.2 Cosine Distance
The cosine distance of two vectors & and y is defined as
xly

l——
[2]]2 - [|y]l2

(4.39)
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Geometrically, this is the cosine of the angle between the vectors, subtracted from
1, so it ranges from 0 for collinear vectors to 1 for orthogonal ones. It is invariant to
vector lengths and a common choice for comparing document word-count vectors
(which are equivalent to our feature histograms for k-Means features, if we consider
the cluster centroids to represent “music words” and the vector quantization to
resemble stemming).

4.6.1.3 Symmetrized Kullback-Leibler Divergence

The Kullback-Leibler divergence [KL51] between two probability distributions P
and @ over a discrete random variable X is defined as

L(P|Q) = ZP ZP (log P(x) — log Q(x)) . (4.40)

It is always non-negative. One interpretation is that the divergence calculates the
expected increase in code length for transmitting a sample  ~ P(X) when encoded
with an optimal code for () instead of the optimal code for P. By itself, the KL
divergence is not symmetric, but it can easily be symmetrized by adding two KL
divergences (repeated from Equation 2.4, p.15):

KIa(P,Q) = sKL(P|Q) + 3 KL(Q|IP)

This measure can directly be applied to our ¢; normalized feature histograms.
There are two caveats, however:

1. The KL divergence is not a metric, because it does not satisfy the triangle
inequality.'® This hampers the usage of metric-based indexing structures to
speed up the retrieval of similar music pieces to a query (see Section 2.2.4.3),
which is one of the most relevant uses of music similarity measures (see Sec-
tion 1.1.3). However, this thesis focuses on effectivity, not efficiency, so com-
putation speed is not an important issue.

2. The divergence (4.40) is undefined if distribution @ assigns zero probability
to an event that is not impossible under P, or equivalently: if there is a
histogram bin that is empty in histogram () but non-empty in histogram
P. This problem can be eliminated by adding a small constant € to each
histogram bin and renormalizing, at the disadvantage of introducing a new
hyperparameter that may affect the results.

13For example, three Bernoulli distributions P, Q, R with success probabilities 0.1, 0.5, 0.8 give
KL2(P,R) £ KL2(P,Q) + KL2(Q, R).
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4.6.1.4 Jensen-Shannon Divergence

The Jensen-Shannon divergence [Lin91] eliminates the problems of the KL diver-
gence, adding some computational overhead. It is defined as

JS(P|Q) = KL(P||M) + KL(Q|| M), (4.41)

where M is the averaged distribution

1
It is symmetric, avoids the problem of undefined KL divergences for zero proba-
bility events, and can be transformed into a proper metric satisfying the triangle
inequality by taking the square root of the divergences [ES03]. Furthermore, it has

an upper bound of 1 [Lin91].

4.6.2 Distance Space Normalization

For better comparability to the state-of-the-art methods of [PSST09] and [SWP10],
we optionally perform what Seyerlehner et al. termed Distance Space Normalization
(DSN): After computing the full distance matrix, each entry is normalized with
respect to the mean and standard deviation of its row and column. That is, given
an N x N matrix of distances D, we compute a normalized distance matrix D’
with entries

dzj - m(Dalvj)
s(D, 1, j)

(Dalvj 2N (ZDln+ZDnj>

is the mean of row ¢ and column j and

s(D,i,j) = $ 2N1—1 <Z (D m(D,1,j ) +Z< D,’L,j))2>

is the respective standard deviation.

Originally developed for combining different distance measures by adding their
normalized distances, it has been found that the changes in nearest neighbor ranks
induced by the normalization have a positive effect on similarity estimations [PSS™09,
p.5], [SWP10, Table 1]. This effect is investigated in more detail in forthcoming
work of Schnitzer et al. [SFSW11]. Here we apply it merely for comparisons to
the state-of-the-art approaches of Pohle et al. and Seyerlehner et al., which both
employ DSN in their methods.

dy; = (4.42)

where
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5 Experimental Evaluation

How well a system performs in music similarity estimation can only be determined
empirically. The first section of this chapter will show possible ways to evaluate
a music similarity measure, as well as public datasets to evaluate on. Section 5.2
describes the evaluation methods and datasets we have chosen for our experiments.
The first set of experiments, Section 5.3, explores the decorrelation properties of
the DCT, confirming our choice of using PCA as a preprocessing step for mel
spectra instead. Section 5.4 constitutes the main set of experiments: Starting
from a baseline system (the “Single Gaussian of MFCCs”, p.19), we gradually
change parts until we reach the system proposed in the previous chapter. With this
approach, we do not only find our system to outperform the baseline, but also see
how much each step contributes to the final performance. The closing section of this
chapter gives a final comparison of the base line system, state-of-the-art systems
and the best instantiations of different stages of our own system, summarizing our
findings.

5.1 Evaluating Music Similarity Measures

Under a good music similarity measure, pairs of songs assigned a low distance
should be perceptually similar. Such pairs can be found by considering the k&
nearest neighbors to a query song in a sufficiently large collection. Ideally, we
would obtain a lot of low-distance pairs using our music similarity estimation system
and ask human test subjects to judge their perceptual similarity. This would give
an impression of how well our system performs, and repeating this for a range
of different parameterizations would allow us to find the optimal instantiation of
our system. Further experiments with other approaches would finally enable a
comparison to the state-of-the-art.

However, such extensive listening tests would exceed our resources. Even the
largest-scale comparative listening test in the MIR community, the MIREX com-
petition,! only evaluates 1015 systems per year, which is still below the number
of variations of our system considered here. Furthermore, listening tests are not
freely repeatable, which would make it impossible for other authors to compare our
results to theirs.

"http://www.music-ir.org/mirex/
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As an alternative, several proxies to perceived similarity have been proposed,
allowing an easy and objective evaluation of different methods. Some authors have
also published datasets of songs along with such “proxy” ground truth to enable
the comparison of systems by their evaluation results on common test sets.

5.1.1 The Quest for Ground Truth

In order to be able to evaluate music similarity measures without conducting lis-
tening tests, several sources of similarity ground truth have been explored.

Many are based on partitioning a collection into sections, establishing a binary
similarity relation: Songs of the same section are assumed to be similar, songs
of different sections are not. Two objective ways to do so are forming groups
of songs by the album they first appeared in, or by the artist who interpreted
them [Foo97, LS01, BP03, WL07, SWWO08|. The partitioning can also be defined
manually, requiring somebody to cluster the collection by a subjective criterion.
For example, Aucouturier et al. [AF04] divide a test collection of 350 songs into
groups of similar timbre. Another popular choice is to partition a collection by
genre [LS01, AP02b, FPW05, PFWO05, LS06, PKSW06, SWKO08, HBC08, SPWS09,
PSS*09, SWP10, MLG'11]. Although genre attributions are not objective, as there
is not even consensus about the taxonomy [PC00], music distributors commonly
use musical genres to organize their collections, so genre annotations are easy to
obtain. Once a partitioning has been defined, music similarity measures can be
easily evaluated: For multiple query songs picked from the collection (often simply
for all possible queries), the k nearest neighbors in the collection are obtained with
the system under evaluation, representing the songs the measure defines to be most
similar to the query. A score for the system is computed as (a) the fraction of songs
among the neighbors that are in the same section as the query song, averaged over
all queries, or (b) the number of times that the majority of neighbors are in the
same section as the query song, divided by the number of queries. Method (a)
can be interpreted as a measure from information retrieval: Regarding songs in
the same section as the query as relevant to the query, others as nonrelevant, it
computes the precision of the system for the k top-ranked results. Method (b)
is equivalent to regarding each section as a class, and computing the system’s
accuracy in classifying the queries with a k-nearest neighbor classifier. We refer to
these evaluation metrics as the “precision at k” and “k-NN classification accuracy”,
respectively (cf. Section 5.2).

Instead of forming a strict partitioning of the collection, some sources of informa-
tion naturally lead to possibly overlapping sets of similar songs. The fraction of sets
in which two songs co-occur can then be interpreted as their similarity, and com-
puting this for all pairs results in a similarity matrix for the collection. [SWWO08]
crawled music blogs and treated songs posted in the same blog as a set of similar
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songs. However, they did not account for overlapping sets (or there simply were
none), resulting in a binary “same blog” similarity matrix used exactly like the al-
bum, artist or genre partitionings explained in the previous paragraph. [BLEWO03]
applied the technique to user-generated playlists mined from a hobbyist web site?
and to user collections crawled from a peer-to-peer file sharing network, treating
each playlist or each collection as a set of similar songs. However, as they were
only interested in artist similarity, song co-occurrences were mapped down to artist
co-occurrences. To eliminate the effects of popularity bias, the authors normalized
the similarity matrix by dividing each fraction of co-occurrences of two artists by
the fractions of occurrences of either artist alone. They evaluate a system against
this ground truth matrix by computing an agreement score between the lists of
k nearest neighbors produced by both, averaged over multiple queries, weighting
agreement between the top ranks higher than between low ranks.

[MEDLO9] use radio station playlists as a source of ground truth. In contrast to
[BLEWO03], they do not treat playlists as unordered collections, but consider playlist
transitions as an indication of similarity. For each query song, they construct a list
of all songs that directly followed it in any playlist, ordered by the occurrence
count of each such transition among the playlists. The top k songs of this list
are compared with the k£ nearest neighbors given by a music similarity measure
by simply computing the number of songs occurring in both lists divided by k.
Averaging this over all possible queries results in a total score for the measure.

[GKS07] and [ELBMGO8] propose to use social tags or user listening habits of
last.fm (see p.2) to infer similarity ground truth. Although they only deal with
artist similarities and are mainly interested in evaluating the performance of an
auto-tagger, it might be possible to leverage the data of last.fm also as song-level
ground truth for evaluating music similarity measures.

Several authors have collected song-level descriptions in online “games with a
purpose”. In these games, groups of users are presented with music clips to tag with
words or to rate by some criterion, and score points for blindly agreeing with each
other [MEQ07, KSE08, BOTLO09], or for correctly asserting whether they have been
presented the same song [LvA09]. This results in reliable descriptions confirmed
by multiple human judgements which could be used to construct similarity ground
truth.

One of the games, “Tag-a-tune” [LvA09], also has a bonus round which directly
asks users for similarity judgements: presented with triplets of songs, users have to
select the clip which is most dissimilar to the other two. A music similarity measure
could be evaluated by assessing how well it reproduces the users’ choice for each
triplet, possibly weighted by how strongly the human voters agreed. However, only
few such judgements have been collected (see Section 5.1.2).

’http://www.artofthemix.org

87


http://www.artofthemix.org

5 Experimental Evaluation

5.1.2 Available Datasets

Regardless of the type, ground truth is only useful for evaluating a measure when
paired with audio data the measure can be computed on. Unfortunately, most songs
(at least those which are popular enough to find reliable ground truth for) are under
copyright, making it difficult to share datasets between researchers. Some authors of
datasets circumvent copyright infringement by only sharing audio features (such as
MFCCs) rather than the original audio data, but this prevents evaluating systems
such as ours that are designed to extract their own features. The best way to
obtain a large dataset might be to create one ourselves, but this would exceed
our resources and make it difficult to compare our system to others. We will thus
restrict ourselves to using existing datasets.

In the following, we review a number of public datasets, in order to form a well-
founded decision on the evaluation method and data to use for our experiments.

RWC: Contains 215 tracks of 4 categories (Popular, Royalty-free, Classical, Jazz).
Full-length audio can be ordered on CDs, as well as MIDI scores and lyrics. To
avoid any copyright issues, all tracks have been recorded or written exclusively
for this dataset. [GHNOO02], http://staff.aist.go.jp/m.goto/RWC-MDB/

GTZAN: Contains 1,000 tracks of 10 genres (100 per genre). Includes 30-second au-
dio excerpts of different recording quality, and no artist information. [TC02],
http://marsyas.info/download/data_sets

USPOP2002: Contains 8,752 tracks with artist, album and title metadata. Audio
data is not provided, but MFCCs can be ordered on DVDs. Includes a lot
of artist-level ground truth: genre labels, “style” tags and expert similarity
judgements from AllMusic.com, playlist and collection co-occurrence counts
crawled as described in Section 5.1.1, and artist similarity judgements ob-
tained in an online survey. [BLEWO03], http://labrosa.ee.columbia.edu/
projects/musicsim/uspop2002.html

ISMIR2004: Contains 1,458 tracks of 6 genres, with partially available artist in-
formation. Full-length audio files are provided. The genre distribution is
highly imbalanced, with the largest genre (classical) spanning almost half of
the collection. http://ismir2004.ismir.net/genre_contest/index.htm,
http://mtg.upf.es/ismir2004/contest/

Ballroom: Contains 698 tracks of 8 different ballroom dances (Cha-cha, Jive, Quick-
step, Rumba, Samba, Tango, Viennese Waltz, Waltz). Includes 30-second
audio snippets of different quality, and no artist information. [GDPWO04],
http://mtg.upf.es/ismir2004/contest/rhythmContest/

88


http://staff.aist.go.jp/m.goto/RWC-MDB/
http://marsyas.info/download/data_sets
http://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html
http://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html
http://ismir2004.ismir.net/genre_contest/index.htm
http://mtg.upf.es/ismir2004/contest/
http://mtg.upf.es/ismir2004/contest/rhythmContest/

5.2 Chosen Evaluation Approaches

Homburg: Contains 1,886 tracks of 9 genres, with artist information. Only a ran-
dom 10-seconds excerpt of each song is included. Additionally provides 24
ways of how users would organize these songs in a personal collection (user taz-
onomies). [HMM™05], http://www-ai.cs.uni-dortmund.de/audio.html

Coidach: Contains 26,420 tracks of 55 genres, with carefully verified artist, album
and title information. Audio data is not freely available, but custom audio
features are supposed to be calculable on demand by the dataset maintainers.
[MMFO06], http://jmir.sourceforge.net/Codaich.html

CALb’00: Contains 500 tracks of popular western music, labeled by paid students
with 135 tags of 6 categories (genre, emotion, instruments, vocal style, song
characteristics, usage). [TBTLOT7], http://cosmal.ucsd.edu/cal/projects/
AnnRet/

Magnatagatune: Contains 5,306 tracks from 230 artists in 446 albums. FEach
track is split into 30-second clips, resulting in 25,863 clips in total. In-
cludes full audio content and labels for each clip out of a vocabulary of
190 tags. Additionally provides dissimilarity votes for 1019 different clips
in 533 distinct comparison triples (as described in Section 5.1.1). [LvA09],
http://tagatune.org/Magnatagatune.html

1517-Artists: Contains 3,180 tracks of 19 genres. Includes full-length audio data
and artist information. In addition, provides precalculated similarity matrices
for several similarity measures. [SWKO8|, http://www.seyerlehner.info

Unique: Contains 3,115 tracks of 14 genres. Includes 30-second audio excerpts,
and no two songs are by the same artist. Again, a number of precalculated
similarity matrices are provided. [SWP10], http://www.seyerlehner.info

Million Song: Contains 1,000,000 tracks with artist, album and title metadata.
Audio data is not provided, but “MFCC-like features” are included and audio
samples for many tracks can be downloaded from 7digital.com. [BMEWL11],
http://labrosa.ee.columbia.edu/millionsong/

5.2 Chosen Evaluation Approaches

Our choice of evaluation methods is limited by available data. While we could, for
instance, crawl radio station playlists from the web, hardly any of the corresponding
audio data will be freely available. Furthermore, as we would like to compare our
system to state-of-the-art approaches, we will have to restrict ourselves to datasets
and evaluation methods for which state-of-the-art results have been published — the
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5 Experimental Evaluation

alternative of reimplementing another author’s system for the purpose of evaluating
it is out of scope for this thesis.

The best-performing systems to date seem to be Pohle’s RTBOF [Poh10, PSST09]
and Seyerlehner’s BLS [Sey10, SWP10], as well as their combination CMB? (see
Section 2.3.4). These systems have been evaluated on several of the genre-labeled
datasets described above, either in terms of k-NN genre classification accuracy
or precision at k, and in addition to respective results across different choices of
kE [SWP10][Sey10, pp.141-142 and p.147], full similarity matrices are available
for Homburg, Ballroom, GTZAN, ISMIR2004, 1517-Artists and Unique online at
http://www.seyerlehner.info.

From these selection of datasets, we decide to use 1517-Artists, as it is one of
the largest and features a uniform genre distribution; Homburg, because it is older
and would allow a comparison to earlier published results; and Ballroom, since it
is widely used to evaluate rhythm features and enables us to assess if and how well
our system captures rhythmic aspects of songs. On GTZAN and ISMIR2004, both
state-of-the-art systems and the basic “Single Gaussian of MFCCs” already reach
k-NN genre classification accuracies between 80 and 90%, not leaving much room
for improvement, and the lack of artist information prevents usage of an artist filter
(see below). Unique might be interesting as an additional confirmation of results on
1517-Artists and Homburg, but would probably not add much to our findings. In
addition, we also performed precursory experiments using the similarity judgements
provided with Magnatagatune. However, data proved to be too scarce to produce
any conclusive results, so we restrict ourselves to evaluating the precision at k£ and
k-NN genre classification accuracy on 1517-Artists, Homburg and Ballroom.

While this seems to be a very simplistic way of evaluating a music similarity mea-
sure, crudely approximating similarities by a binary “same-genre” relation, genre
precision at k has actually been shown to highly correlate with human judgements
in listening tests [Poh10, p.28 and 26]* [Sey10, p.52 and 57]°, and both precision
at k and the related k-NN genre classification accuracy are established methods
for evaluating music similarity measures [LS01, AP02b, FPW05, PFWO05, LS06,
PKSWO06, SWK08, HBC08, SPWS09, PSS*09, SWP10, MLG"11]. Note that we
are not actually interested in achieving a high precision or accuracy on a particular
dataset. Unlike in classification, we use genre labels merely as binary similarity
ground truth and do not train on them, as this would tie the measure to a specific
genre taxonomy and dataset.

Some methods (especially those based on cepstral features) have been shown to
pick up on peculiarities in recording or mastering processes, leading to the artist and

3We refer to CMB in [SWP10], which is CMB3 in [Sey10].
4Pohle refers to it as “(probabilistic) genre classification accuracy”.
®Seyerlehner terms it “k-Neighbor Accuracy”.
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5.2 Chosen Evaluation Approaches

album effect [Sca09, FS10]: Songs of the same album or same artist are assigned
a low distance independently of their perceptual similarity. As all songs of an
artist tend to be attributed to the same genre, such a method would achieve overly
optimistic results in k-NN genre classification [Fle07]. To ensure that we only
evaluate the capability of finding similar songs, not of identifying songs of the same
artist or album, we use an artist filter throughout our evaluation: when computing
the nearest neighbors to a query under a similarity measure, songs by the same
artist as the query are ignored.

Formally, the evaluation proceeds as follows, for all three datasets. Let S =
{s1, 82,...sn} denote the set of songs of a dataset, let G = {g1,92,...9m} denote
the genres, and let ¢ : § — G be a function mapping each song to its genre.
Furthermore, let A = {aj,as,...ax} denote the artists, and let b : S — A map
each song to its artist (if no artist information is available, let A := S and b(s) := s,
so each song is mapped to a unique pseudo-artist). Following Knuth [Knu92], we
also introduce the following notation:

1 if Ais true
[A] = .
0 if A is false

Now, let m : S? — R be a dissimilarity measure to evaluate, and let n,, : SxN — 29
be defined as the set of artist-filtered nearest neighbors to a song with respect to
the measure m:

m(8,0):=10

N (S, k) = nm(s,k — 1)U {Ezlreg(gilsr)l(m(s, s)+oo-[s €npm(s,k—1)Vb(s) = b(s)])},

with ties in argmin broken arbitrarily, but deterministically. As a shorthand no-
tation, let x,,(s, k,g) denote the number of (artist-filtered) k nearest neighbors of
song s under measure m that are attributed to the genre g:

Tm (8, k,g) := Z [e(s") = g]

s'enm(s,k)

We then define the precision at k for a measure m as

1 Tm (8, k,c(s

and the (leave-one-out) k-NN genre classification accuracy as

‘; Z [c(s) = arg max (xm(s, k,g))}, (5.2)

g

with ties in arg max also broken arbitrarily, but deterministically.

91



5 Experimental Evaluation

The precision at k gives the average fraction of similar (in the sense of “same-
genre”) neighbors, the k-NN classification accuracy evaluates how often the most
prominent genre is the “correct” one. We will concentrate on the first evaluation
metric as it does not only rely on the most prominent genre in a set of neighbors
(which may be close to a tie more often than not for 8-19 genres among 1-20
neighbors, resulting in noisy scores), but determines the number of songs of the
genre we are currently interested in (i.e., the genre of the query). The classification
accuracies will only serve as a complementary measure to validate the precision
results (e.g., a precision of 40% could still result in 0% classification accuracy if
the remaining 60% of neighbors are always from a single “wrong” genre, indicating
some systematic error).

To gain insight into the kind of mistakes made by the systems, we will also visu-
alize the genre confusion matrices for some measures, showing which kinds of query
songs tend to be associated with songs of which foreign genres (see Section 5.5.2).

Finally we will compare the hubness between systems. Loosely speaking, the
hubness can be defined as the amount of hubs produces by each system, which are
songs that are irrelevantly close to a large number of other songs (see Section 2.2.4.3,
p.18). As a simplification, commonly the hubness is determined by just counting
the number of songs that occur among the k nearest neighbors of abnormally many
songs in a collection at all, boldly assuming that most of these occurrences will
be perceptually irrelevant, or acknowledging the fact that even relevant songs are
detrimental to a recommender or playlist generator if they occur too often. We will
describe the exact way of computing the hubness in Section 5.5.3.

Having established the datasets and evaluation methods to use, we can now
proceed to the experiments.

5.3 Results on Decorrelating Musical Spectra

In this section’s short set of experiments we will question the common assumption
that the discrete cosine transform®, the final step in computing Mel-Frequency Cep-
stral Coefficients (MFCCs), is a good choice for decorrelating musical spectra. As
we already noted in Section 2.2.1, MFCCs are a prevalent feature for timbre-based
music similarity estimation despite having been designed for processing speech, and
some authors cite [Log00] as a justification for applying MFCCs to music [Bur03].
However, in this paper, Logan does not evaluate MFCCs on a music similarity es-
timation task at all. She only observes that (a) using mel-scaled spectra instead
of linear spectra does not hurt performance in a music/speech discrimination test,
and (b) the principal components of mel-spectral log magnitude frames extracted

SThroughout this thesis, of the eight possible types of discrete cosine transforms [BYRO06], we
refer to DCT-II.
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from music look similar to the basis functions of the discrete cosine transform (and
judging from Logan’s plots, even the latter is questionable for all but the first 6
components, which is far below the number of cepstral coefficients normally used).

To better understand the similarities and differences between employing the DCT
and optimally decorrelating the features using PCA, we will first perform a visual
comparison not only of the two sets of basis functions, but also of the covariance
matrices yielding these functions as their principal components. Secondly, we will
evaluate if and how the differences affect a common music similarity measure. The
results corroborate our choice of PCA for decorrelation.

5.3.1 Visual Comparison

Logan [Log00] visually compared the principal components of spectral frames for
100 Beatles songs to the DCT basis functions. We will do the same for the larger
dataset 1517-Artists, and additionally compare the observed covariance matrix of
the spectral frames to a Toeplitz matrix. The principal components of Toeplitz
matrices of the form A;; = pl"=3l have been shown to approximate the DCT basis
functions as the matrix size tends to infinity [HP76, SGPT95, BYRO06], but are
already quite close even for an 8x8 matrix [ANR74]. Comparing the covariance
matrices will allow us to see better in which respect musical spectra differ from the
kind of data that could be decorrelated with a DCT.

The first two rows of Figure 5.1 show the covariances (left column) and principal
components (right column) of a million mel-spectral frames randomly sampled from
the 1517-Artists dataset. For the first row (Figure 5.1a), we used a linear scaling of
mel magnitudes, i.e., the direct output of the mel filter bank (cf. Figure 4.3c, p. 52),
the second row depicts log-scaled magnitudes, i.e., the representation MFCCs are
computed from by applying a frame-wise DCT (cf. Figure 4.3d, p.52). The third
row of the Figure, 5.1c, shows the Toeplitz matrix A;; = 0.9"=J1 and its principal
components.

Interpreting the Toeplitz matrix as a covariance matrix, it describes spectra in
which all frequency bins are correlated with their neighboring bins, with exponen-
tial decay in proportion to their distance in mel space. Its princical components,
the columns of the image in the right panel of Figure 5.1c, almost perfectly resemble
the basis functions of the 40-dimensional DCT (only the first column is a bit off:
in contrast to the first DCT basis function, which is constant, it has a slight oscil-
lation in it). The plot below the image of principal components shows the variance
captured by each component. We can clearly see that this variance decreases with
increasing spatial frequency of the component (number of oscillations in the column
of the image) — this is the common assumption made when compressing data with
a DCT by omitting the highest components (as is done for MFCCs). Thus, for
spatially correlated data of the form described above, a DCT is suited well for both
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decorrelation and lossy compression.

However, mel-spectral frames of music do not seem to be of this form. While
each dimension is correlated with its two direct neighbors (see the left panels of
Figures 5.1a and 5.1b) — which is evident as each mel filter overlaps with two
neighbors (Figure 4.2, p.51) —, generally no regularly decaying correlation with
farther neighbors can be observed. Instead, there are some faint diagonals visible in
both covariance matrices, indicating another kind of regular correlation. A tempting
idea is to interpret these as harmonic overtones, but as the mel scale is logarithmic
in frequency, overtones would appear in parallel to the main diagonal; the observed
diagonals seem to point to a common origin of 0 Hz instead (which is not part of
these covariance matrices as the mel filters used here start at 130 Hz, see p. 50).

Another deviation from the form of a Toeplitz matrix is the dependency on fre-
quency. For the linear-magnitude mel-spectral frames (Figure 5.1a), low frequen-
cies (the top rows and left columns) weakly covary with all other frequencies, while
higher frequencies do not. This is partly due to the low variance of higher fre-
quencies (values on the main diagonal decrease when moving to the bottom right),
which seem to carry less energy in music. The lack of covariance causes the prin-
cipal components to be spatially local, in strong contrast to DCT basis functions
(compare the right panels of Figures 5.1a and 5.1c).

With log-scaled magnitudes, the difference in variance between low and high fre-
quencies is reduced. Still, the covariances are strongly dependent on the frequency:
The highest frequencies now covary with each other (visible as a dark field in the
bottom right corner of the left panel of Figure 5.1b), while low frequencies still
mostly correlate with their direct neighbors only. Possibly, the highest frequen-
cies are only reached with percussion, which has a broad frequency spectrum and
thus activates most high frequency mel filters simultaneously, or the log-scaling em-
phasizes high-frequency low-amplitude noise in songs. The corresponding principal
components (right panel of Figure 5.1b) are less spatially local, and show some
signs of increasing spatial frequency with decreasing variance, similar to the princi-
pal components of the Toeplitz matrix. Another interesting effect of log-scaling the
magnitudes is the seemingly better compaction of energy in the first components:
While for linear-scaled magnitudes, 5, 10 and 22 components were necessary to cap-
ture 75%, 90% and 99% of the variance, respectively, the first principal component
of log-magnitude mel spectra alone captures 90%, and 18 components suffice to
capture 99% (shown as vertical bars in the plots of the right panels of Figures 5.1a
and 5.1b). This property of energy compaction is important for lossy compression
by dropping high components, and frequently attributed to the DCT as well.”

"Intuitively, the first principal component of log-magnitude spectra is of course not as informative
as the first 10 components of linear-magnitude spectra, but it explains the same amount of
variance in the respective data. This shows that variance is not always a good indicator of
informativeness, so energy compaction does not necessarily result in useful compression.
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In conclusion, the principal components of mel-spectral frames are very different
to the basis functions of a DCT (right panels of Figure 5.1). This is because mel-
spectral frames differ from the kind of spatial correlation that could be optimally
decorrelated with a DCT in several respects: (a) Covariances mainly occur between
directly adjacent mel filters, energy is not smoothly distributed over the spectrum
of each frame, (b) covariances are dependent on the frequency, (c) albeit weak,
there are systematic interactions between frequencies which are not close neighbors
(visible as diagonal artifacts in covariance matrices). While the principal compo-
nents of log-magnitude mel spectra are closer to DCT basis functions than the ones
of linear-magnitude spectra, they still lack the DCT’s spatial globality. In contrast
to Logan [Log00], we are skeptical about whether a DCT is a good approximation
of the PCA for musical spectra.

5.3.2 Effects on Music Similarity Estimation

While the previous section’s visual inspection established that the PCA of mel-
spectral frames is noticeably different from the DCT used in the computation of
MFCCs, we are only interested in whether this difference has an effect on music
similarity estimation. We will thus evaluate a simple music similarity measure,
the “Single Gaussian of MFCCs” proposed by Mandel and Ellis [MEO05] (see Sec-
tion 2.3.1, p.19), on 1517-Artists and experiment with variations of the low-level
features (i.e., replacing the DCT with an optimally decorrelating transformation)
and of the global model (i.e., restricting the model’s ability to handle correlations
in the features).

Recapitulating Mandel and Ellis’ method, the MFCC feature extraction chain
computes the mel spectrum, log-scales the magnitudes, applies a frame-wise DCT
and keeps only the first components. A song is then modeled by fitting a single full-
covariance Gaussian to its set of MFCCs, and songs are compared by the symmetric
Kullback-Leibler divergence (cf. [LSMWO05]):

1
KLy (N(Mm o) N (pa, 21)) = z(trace(xflzk) +307'%) +

(11 = 1) (S0~ + B0 (1 — pro) —2N) - (53)

Table 5.1 lists the genre precision at k (with k ranging from 1 to 20) for several vari-
ations of the local features in this method, with the last row showing the original
MFCCs. Specifically, we change the MFCC feature extraction chain by transform-
ing the magnitudes with PCA or ZCA whitening instead of the DCT. As we want
to validate the choice of low-level representation for our own proposed system, we
also assess the effect of omitting the log scaling of magnitudes. We make three
interesting observations:
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local feature variations precision at
magn. scaling ‘ transformation ‘ dim. 1 5 10 20
none 40 18.0 15.1 14.1 12.9
linear 40 18.0 15.1 14.1 129
PCA 20 17.0 15.0 139 12.8
none 40 21.1 17,9 16.5 15.1

40 21.1 17,9 16.5 15.1

log PCA 20 20.6 178 16.4 15.2
ZCA 40 21.1 17,9 16.5 15.1

random 40 21.1 17,9 16.5 15.1

DCT 20 20.0 175 16.1 149

Table 5.1: Precision at k on 1517-Artists for several variations of mel-spectral fea-
tures (two scalings of magnitudes, different linear transformations with
or without dimensionality reduction) modeled by a full-covariance Gaus-
sian and compared with symmetric KL divergence.

1. Log-scaled magnitudes consistently outperform linear magnitudes.

2. When modeling songs with full-covariance Gaussians and comparing those
with the symmetric KL divergence, the similarity measure is invariant to
invertible linear transformations of the local features. That is, PCA, ZCA
and DCT perform exactly like unprocessed features if no dimension reduction
is employed. Even a random transformation does not change the results,
provided that it is invertible.

3. When performing dimensionality reduction from 40 to 20 dimensions (a typ-
ical setting for MFCCs [SWKO09]), PCA is slightly superior to the DCT (see
sixth row and last row of Table 5.1). However, uncompressed mel spectra
perform better.

We repeat the experiment, this time restricting the Gaussian models to diag-
onal covariance (Table 5.2). Song models are still compared by symmetric KL
divergence. With this change, the model cannot capture correlations between local
feature dimensions any longer, so linear transformations of the features change the
results. Specifically, we observe the following:

1. The results are considerably worse than for full-covariance Gaussians — but
here, we are only interested in comparing the feature variations to one another.

2. Log-scaled magnitudes still outperform linear magnitudes, except for raw (un-
transformed) features.

97



5 Experimental Evaluation

local feature variations

precision at

magn. scaling ‘ transformation ‘ dim. 1 5 10 20
none 40 15.2 13.7 13.0 12.3

linear 40 149 124 11.6 10.8
PCA 20 14.0 13.0 12.0 11.2

none 40 13.1 11.0 104 9.7

40 18.5 159 15.0 13.9

o PCA 20 178 156 145 13.5

& ZCA 10 || 18.9 16.2 148 135
random 40 9.8 8.0 7.9 7.8

DCT 20 176 154 144 134

Table 5.2: Repetition of the previous experiment (Table 5.1), restricting Gaussians
to diagonal covariance, still comparing with symmetric KL divergence.

3. PCA and ZCA whitening of log-magnitude frames perform best; for linear
magnitudes, the PCA transformation hurts performance, though. As to be
expected, the random transformation gives very poor performance (but still

above the random baseline of 1/19 ~ 5%).

4. Again, PCA-compressed frames slightly outperform MFCCs (last row), but
uncompressed whitened frames perform better.

Further simplifying the model, we restrict the Gaussians to be isotropic with
unit variance (i.e., the covariance matrix is the identity matrix), compared with
symmetric KLi divergence. With this restriction, the model just captures the mean
of a song’s frames, and the KL divergence degenerates to a quarter of the squared
Euclidean distance between the mean vectors. In our nearest-neighbor-based eval-
uation, this is equivalent to directly comparing the means by Euclidean distance
(squaring does not change the neighbor ranks). While this is a blatantly simple
model, k-Means builds on the same operations (calculating the mean and com-
paring by Euclidean distance), so results with different feature variations could be
interesting for later experiments with models based on k-Means. From Table 5.3,

we see:

1. The results are again much worse than for less restricted Gaussian models.

2. Again, log-scaled magnitudes are superior to linear-magnitude spectra.

3. PCA- and ZCA-whitened log-magnitude frames perform best (with identical

results®).

8This affirms what we already learned in Section 4.3.1.3, p.59: ZCA is a non-scaling rotation of
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local feature variations precision at
magn. scaling ‘ transformation ‘ dim. 1 5 10 20
none 40 12.0 10.6 10.1 9.8
linear 40 14.3 127 121 114
PCA 20 12,5 11.8 11.3 10.9
none 40 13.1 12.6 11.8 10.9
40 15.7 13.9 12.8 11.6
1 PCA 20 134 128 122 11.3
©8 ZCA 10 || 15.7 13.9 12.8 11.6
random 40 10.2 9.5 9.2 8.6
DCT 20 13.6 12.2 11.6 10.8

Table 5.3: Repetition of the previous experiments, modeling songs just by the mean
of their features, compared with Euclidean distance.

4. With dimensionality reduction, PCA again outperforms MFCCs, with a larger
margin than before.” Again, uncompressed features perform better.

Summarizing the results, we draw a range of conclusions regarding the applica-
bility of MFCCs to music similarity estimation.

Reducing the dimensionality of mel-spectral frames hurts performance for all
three models, so it seems that some relevant information is lost when dropping
higher cepstral coefficients or principal components. This is contrary to Aucouturier
et al. [AF04], who found dimensionality reduction to be helpful — however, they
evaluated via R-Precision on an (unpublished) small timbre-clustered dataset, used
diagonal-covariance GMMs for global modeling and probably another (unspecified)
mel filter bank, and each aspect alone could explain the difference in our findings.
We will have to perform further experiments with different models to understand
the influence of dimensionality reduction.

When performing dimensionality reduction, PCA gives slightly better results
than the DCT used for computing MFCCs. So if training data is available before-
hand, PCA-whitened mel-spectral frames are to be preferred over MFCCs.

Optimal decorrelation and whitening (by PCA or ZCA) help, unless the model
is capable of capturing (co-)variances itself. For the classical “Single Gaussian

PCA whitening, so the distance between the means of two sets of data points is the same under
both transforms. For the same reason, it does not make a difference for k-Means.

9Note that we perform PCA whitening, so the improvement over MFCCs may be due to better
decorrelation for compression, due to whitening, or both. In the previous two experiments,
the models were invariant to whitening (i.e., component-wise linear scaling), and PCA out-
performed MFCCs by a smaller margin. This indicates that both optimal decorrelation and
whitening can be helpful, depending on the model.
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of MFCCs” it does not make a difference — a “Single Gaussian of unprocessed
mel-spectral frames” performs exactly the same. For a mean-only model, both
decorrelation and whitening are important, and this may also apply to k-Means.

Finally, log-scaled magnitudes were found to generally outperform linearly-scaled
magnitudes, corroborating [LRO05].

5.4 Stepwise Evaluation of the New System

In the previous section, we performed a limited evaluation of some variations of log-
frequency, log-magnitude spectrograms, which form the base of the system proposed
in Chapter 4. Here we will evaluate the complete system on all three datasets.

Section 5.4.1 introduces the random baseline as well as results with the “Single
Gaussian of MFCCs” and three state-of-the-art methods for 1517-Artists, Homburg
and Ballroom, allowing us to value the performance of our system. Instead of
evaluating our complete system right away, we will start from the “Single Gaussian
of MFCCs” and gradually change it into the mcRBM-based system we proposed.
Specifically, we will replace the single Gaussian with a Gaussian Mixture Model
in Section 5.4.2 to see the effect of a more powerful (multimode) global model.
In Section 5.4.3, we model the songs as histograms of vector-quantized spectral
frames instead, then exchange the simple k-Means based vector quantizer with
RBMs and mcRBMs as unsupervised feature abstractors in Section 5.4.4. The
remaining sections extend the frame-wise local features to blocks of frames (i.e.,
spectrogram excerpts), again with Gaussian-based (Section 5.4.5), k-Means-based
(Section 5.4.6) and RBM-based (Section 5.4.7) song models, the latter constituting
the final system. At each stage, we explore the parameter space to find the best
possible instantiation, so we can assess the influence of each change at its full
potential. Section 5.4.8 applies Distance Space Normalization (DSN) to our best
models to make the results comparable to the state-of-the-art, and Section 5.4.9
finally explores how well our method performs when evaluated on a different dataset
than trained for.

5.4.1 Lower bound, Baseline and State-of-the-art

To be able to value the performance of our system on a dataset, we establish some
results to compare it to:

Lower bound: As a first step, for each of the datasets we compute the random
baseline using a randomized dissimilarity measure. This serves as a lower
bound that any meaningful measure must surpass.

Baseline: Secondly, we will use the classic “Single Gaussian of MFCCs” of Man-
del and Ellis [MEO5] as a baseline method. We use 20 cepstral coefficients
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precision at

dataset method 1 5 10 20
random 4.6 5.1 5.1 5.1
G1 of MFCCs 20.0 175 16.1 149
1517-Artists | Pohle RTBOF 30.0 275 255 236

Seyerlehner BLS 31.3 284 265 244
Seyerlehner CMB || 33.8 30.5 28.4 26.1

random 152 15.1 155 155
G1 of MFCCs 44.2  41.7 40.3 38.6
Homburg Pohle RTBOF 49.1 475 46.2  44.7

Seyerlehner BLS 48.8 46.7 453 44.1
Seyerlehner CMB || 51.5 49.5 47.5 46.4

random 125 12,7 131 129
G1 of MFCCs 48.4 414 374 335
Ballroom Pohle RTBOF 90.3 82.2 77.5 70.3

Seyerlehner BLS 81.0 733 67.7 60.8
Seyerlehner CMB || 88.1 81.8 76.7 69.7

Table 5.4: Lower bound, “Single Gaussian of MFCCs” and state-of-the-art results
on all three evaluation datasets

(including the zeroth coefficient) of 40 mel bands (see p.50 for the exact fil-
ter bank), and a single full-covariance Gaussian per song compared by the
symmetric KL divergence (Equation 5.3, p.96). Methods falling short of this
baseline of a simple feature and model do not have any practical significance.

State-of-the-art: As surpassing the baseline of Mandel and Ellis does not show
much, we also compare our results to three state-of-the-art measures de-
scribed in Section 2.3.4 (p.27): Pohle’s RTBOF, Seyerlehner’s BLS and the
combination of both measures, Seyerlehner’s CMB. Results for these datasets
are reported in [SWP10] and [Seyl0, pp.141-142 and p.147]. To get more
accurate numbers, however, we download the distance matrices from http:
//www.seyerlehner.info and evaluate with these.

Figure 5.2 shows the precision at k& and k-NN classification accuracies for all 5
measures on all three datasets, with k ranging from 1 to 20. Additionally, Table 5.4
lists the precisions in numbers to facilitate the comparison to results in the next
sections. As described in Section 5.2 (p.89), results on 1517-Artists and Homburg
are artist-filtered, results on Ballroom are not (due to missing artist information).

We can see that the “Single Gaussian of MFCCs” (here “G1 of MFCCs”) sig-
nificantly surpasses the random baseline on the datasets, but is again significantly
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Figure 5.2: Lower bound, “Single Gaussian of MFCCs” and state-of-the-art results

on all three evaluation datasets



5.4 Stepwise Evaluation of the New System

outperformed by the state-of-the-art on 1517-Artists and Ballroom. On Homburg,
the margin between the non-random measures is less distinct. BLS was optimized
for 1517-Artists [SWP10] and slightly outperforms RTBOF on this dataset, RTBOF
was optimized on Ballroom [PSST09] where it significantly surpasses BLS, and both
measures perform similarly on Homburg, with a slight advantage of RTBOF over
BLS. Combining the two measures (CMB) gives a significant boost on 1517-Artists,
a minor improvement on Homburg and a slight degradation on Ballroom.

For k = 1, precision at k and k-NN classification accuracy are identical by defi-
nition (see Equations 5.1 and 5.2, p.91). With increasing k, the precision tends to
decrease, while the classification accuracy tends to increase.'® The ranking of the
five systems is the same under both evaluation measures, but the precision at k is
more consistent over different choices of k. For some of the future experiments, we
will thus only report the precision at 10 if it helps the presentation of results.

5.4.2 Frame-wise Gaussian Mixture Models

As a first extension, we replace the song-wise Single Gaussian model with a Gaus-
sian Mixture Model (GMM), as has been used by Aucouturier et al. ([AF04], see
Section 2.2.2, p. 14). This allows us to see whether merely allowing the song model
to capture more complex distributions of local features (in particular, multimode
distributions) improves the similarity measure. We compute the distance between
GMDMs using a Monte-Carlo approximation of the symmetric Kullback-Leibler di-
vergence with 2,000 samples of each model (see Section 2.2.3, p. 14).

Table 5.5 shows our results. We evaluated mixture models of 20 diagonal-
covariance Gaussians on MFCCs and PCA-whitened log-magnitude mel-spectral
frames with or without dimensionality reduction. In all cases, the GMMs could
not outperform full-covariance single Gaussians, falling behind by up to 3.5 percent
points of precision at 1. Curiously, even a full-covariance GMM of 20 components
does not surpass a single Gaussian model on MFCCs.

Note that the GMMs incur considerable computational costs: While computing
the 5,054,610 pairwise dissimilarities between all 3,180 songs of 1517-Artists takes 3
minutes for the Single Gaussian model, the Monte-Carlo estimation of the Kullback-
Leibler divergence increases the computation time to 3,911 minutes or 2.7 days
for the diagonal-covariance GMM, and 20,904 minutes or 14.5 days for the full-
covariance GMM of MFCCs.!!

1ONote that for Homburg, even thscale=.58¢ random similarities gain classification accuracy with
increasing k: This is because Homburg has an uneven distribution of genres, and with increasing
k it becomes more and more probable that the most prominent genre of a random set of songs
equals the most prominent genre in the dataset. The other datasets have a uniform distribution
of genres, so both precision and classification accuracy are close to ﬁ independent of k (where
|G| is the number of genres).

H'Measured on a 3 GHz machine using unoptimized algorithms of http://scikit-learn.sf.net.
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local features mixture model precision at

no. and type of comp. 1 5 10 20

1 full-cov. Gauss. 20.0 175 16.1 149

MFCCs, 20-dim. 20 diag-cov. Gauss. 19.7 16.9 156 14.5
20 full-cov. Gauss. 200 166 15.6 14.3

log-magn. mel-spectral | 1 full-cov. Gauss. 206 178 16.4 15.2
frames, PCA, 20-dim. | 20 diag-cov. Gauss. 19.6 17.0 159 14.5
log-magn. mel-spectral | 1 full-cov. Gauss. 21.1 17.9 16.5 15.1
frames, PCA, 40-dim. | 20 diag-cov. Gauss. 176 154 144 132

Table 5.5: Gaussian Mixture Models of 1 or 20 full-covariance or diagonal-
covariance Gaussians, evaluated on MFCCs or PCA-whitened mel-
spectral frames of 1517-Artists.

5.4.3 Frame-wise k-Means Histograms

Instead of directly working with low-level local features, we now employ k-Means
as a simple unsupervised feature abstractor. In particular, we create a codebook
using mini-batch k-Means++ (Section 4.4.4, p.77) on mel-spectral frames, then
represent songs by replacing all their local features by the index of the respective
closest codebook entry and calculating a histogram over these indices (Section 4.5,
p.80). To be invariant to the song lengths, histograms are normalized to unit ¢;
norm.

Both learning and applying the dictionary were performed on GPU using cu-
damat [Mni09]. We compute the k-Means++ initialization on a random sample
of 1,000,000 local features from the respective collection we evaluate on (as in
[SWKO08]), then refine the clustering with mini-batches of 1024 local features each
randomly sampled from the whole collection.

In the following, we perform multiple sets of similarity estimation experiments
exploring different aspects of the parameter space. Afterwards we will analyze the
best performing codebook qualitatively.

5.4.3.1 Distance Measures

As described in Section 4.6.1 (p.81), there are several possible distance measures
for comparing the normalized song-wise histograms. In a first set of experiments,
we evaluate and compare five measures: The euclidean (¢1) and manhattan (¢2) dis-
tance, cosine distance, Kullback-Leibler (KL) and Jensen-Shannon (JS) divergence.
For more reliable results, we evaluate these measures on two different codebooks of
64 and 128 entries. Assuming that the distance measure is independent from the
exact type of local feature, we perform these experiments on unprocessed linear-
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codebook size 64 codebook size 128
distance measure precision at precision at

1 ) 10 20 1 ) 10 20
manhattan (¢;) 13.7 128 120 11.3 | 149 13.7 127 120

euclidean (¢3) 121 115 11.1 106 | 146 127 119 11.2
cos distance 124 117 11.1 10.7 | 14.0 122 11.7 11.2
KL divergence 14.7 13.9 12,9 11.9| 151 142 134 123
JS divergence 146 13.8 128 11.8|16.2 14.6 13.6 12.4

Table 5.6: Comparison of different distance measures for k-Means histogram mod-
els using two different codebook sizes on linear-magnitude mel-spectral
frames of 1517-Artists.

magnitude mel-spectral frames.

Table 5.6 shows that KL and JS divergence perform best, followed by manhattan,
euclidean and cosine distance (in this order). Compared to KL divergence, JS
divergence has two advantages: It does not have any hyperparameters (for the KL
divergence, a small constant € has to be added to the histograms to avoid zeros),
and it can be turned into a proper distance metric by taking the square root (see
Section 4.6.1.4, p.83). The manhattan distance, the best performing of the vector
space distance measures we tried, is also metric and a lot faster to compute than a
divergence (the full distance matrix for 1517-Artists is computed in 1 second, while
it takes about 2 minutes for the JS divergence). We will thus continue our k-Means
evaluation using both the JS divergence and manhattan distance.

5.4.3.2 Model Size

Table 5.6 already indicates that performance improves with larger codebooks. In a
next set of experiments, we will quantify the effect of the codebook size. We evaluate
codebooks from 32 up to 1024 entries, again using linear-magnitude mel-spectral
frames as local features.

From Table 5.7 we see that each doubling of codebook size gives an improvement
between 0.1 and 0.8 percent points in precision at 10. We decided to stop at a size of
1024 entries to keep the models comparable in dimensionality to the mcRBM-based
systems we will evaluate further below, but it would be interesting to see how much
this type of system would benefit from even larger codebooks. Computationally,
these codebooks do not pose any problem: With 1024 entries, computing the full
distance matrix for 1517-Artists takes 6 seconds using manhattan distance, and 7
minutes using JS divergence. For further experiments, we will only use codebooks
of 512 and 1024 enries.
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code- manhattan distance JS divergence
book precision at precision at
size 1 5 10 20 1 5 10 20

32 | 136 117 11.3 108 | 148 13.1 122 114
64 | 13.7 12.8 12.0 113 | 146 13.8 128 11.8
128 | 149 137 127 120 16.2 146 13.6 124
256 || 15.7 13.7 13.1 121 | 16.2 149 13.7 125
512 || 156.2 142 13,5 123 | 16.6 15.0 14.0 128
1024 || 16.3 14.8 13.8 12.6 | 17.3 15.3 14.2 13.0

Table 5.7: Comparison of different codebook sizes for k-Means histogram models
on linear-magnitude mel-spectral frames of 1517-Artists.

5.4.3.3 Preprocessing Variants

Having determined the best distance measures and codebook sizes, we now evalu-
ate several variants of preprocessing the mel-spectral frames. Specifically, we will
experiment with a simple normalization of the standard deviation of each dimen-
sion — a common preprocessing step for k-Means — and with PCA whitening (with
and without dimensionality reduction). Additionally, we compare results for linear-
scaled magnitudes with log-scaled magnitudes. We will not employ ZCA whitening
because it would give the same results as PCA whitening (see Section 4.3.1.3, p. 59),
safe for differences caused by the random k-Means++ initialization. To obtain more
reliable results, we evaluate each feature variant with two codebook sizes (512 and
1024 entries) and two distance measures (manhattan distance and JS divergence).

Our results in Table 5.8 indicate that scaling each dimension to unit standard
deviation already gives a considerable improvement of results, consistent across
both codebook sizes and distance measures (second row of the table). For linear-
magnitude frames, whitening tends to decrease performance. Dimensionality re-
duction helps, but does not generally perform as well as the simple normalization
of standard deviation (compare rows 4 and 2). Log-scaled magnitudes significantly
outperform linear-magnitude frames, and also surpass any of the Gaussian-based
frame-wise models we evaluated. Here, full-dimensional PCA-whitened frames per-
form best, followed by compressed PCA-whitened frames and “std-normalized”
frames.

5.4.3.4 Qualitative Analysis

Hoping to gain a better understanding of why the system works, we analyze the
codebook of the best performing instantiation.
Figure 5.3 shows a random excerpt of a codebook learned on PCA-whitened log-
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codebook size 512

codebook size 1024

4y JS 0y JS
magn. | linear | feat. prec. at prec. at prec. at prec. at
scaling | transf. | dim. 1 10 1 10 1 10 1 10
none 40 152 135 | 16.6 14.0| 16.3 13.8 | 17.3 14.2
linear std 40 171 146 | 188 15.0| 177 149 | 183 15.5
PCA 40 14.0 120 159 133 | 14.1 123 | 165 134
20 16.7 13.8| 189 149 | 176 142 | 189 15.1
std 40 21.1 166 | 21.5 17.1| 220 169 | 225 17.5
log PCA 40 22.4 18.9 | 23.6 19.6 | 23.8 19.4 | 25.1 20.0
20 22.1 188 | 22.8 189 | 22.7 19.2 | 22.8 19.5
Table 5.8: Comparison of different feature preprocessing transformations for mel-
spectral frames of 1517-Artists across two differently sized codebooks
(512 and 1024 entries) and two distance measures (manhattan distance
and JS divergence).
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Figure 5.3: Random excerpt of a codebook learned by k-Means on 1517-Artists.
Each block depicts a single mel-spectral frame, with mel frequency in-
creasing from bottom to top, and high and low (log-scaled) magnitudes
denoted by bright and dark gray tones, respectively.
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1517-Artists Homburg Ballroom
method precision at precision at precision at
1 5 10 1 5 10 1 5 10
G1 of MFCCs 20.0 175 16.1 | 442 41.7 403 | 484 414 374

Seyerlehner ML-VQ || 22.8 20.0
Seyerlehner CMB 33.8 30.5 28.4 |51.5 495 475|881 81.8 76.7
k-Means 1024, JS 25.1 21.3 20.0 | 46.0 429 41.3 |46.4 39.2 358

Table 5.9: Results for the best frame-wise k-Means histogram model on all three
datasets compared to three other approaches.

magnitude mel-spectral frames of 1517-Artists. For the visualization, the codewords
have been unwhitened, so they are directly interpretable as spectral frames. As we
can see, few codewords focus on a single mel filter only, most encompass multiple
non-adjacent frequencies instead, which could be harmonic overtones or chords.
Resynthesizing the sound (“audialization”) reveals that most centroids are very
noisy, but some resemble string or wind instruments or vowels, albeit without any
dynamics (as single frames cannot capture any time information). A model of a
song might thus capture the proportion of noisy to harmonic frames, as well as the
amount of prominent singing, but only in a pitch-dependent manner.

5.4.3.5 Conclusion

In our experiments, we determined the best performing preprocessing of local
features for k-Means clustering as well as the best performing distance measure
for comparing VQ-based feature histograms to estimate song similarities on 1517-
Artists. We also observed that results improve with larger VQ codebooks, but to
keep song models compact, we did not attempt to find the optimum codebook size.
We will now validate our parameter choices on Homburg and Ballroom, as well as
briefly compare our results to other approaches.

Table 5.9 shows the results for our best VQ-based model (a 1024-entry code-
book of full-dimensional PCA-whitened log-magnitude spectral frames) on all three
datasets. On 1517-Artists and Homburg, the VQ-based model notably outperforms
the “Single Gaussian of MFCCs” (and also any of the other Gaussian-based models
we evaluated). Interestingly, it also beats the multi-level VQ approach of [SWKO0S]:
On 1517-Artists, they report precisions at 1 and 5 of 22.83% and 19.96%, respec-
tively. They created a codebook from 321-dimensional log-frequency log-magnitude
spectral frames in two stages (first for each song, then for the collection), but only
extracted frames at likely note onset positions and did not standardize or whiten
the features, all of which may be a reason for worse performance. On Ballroom, we

108



5.4 Stepwise Evaluation of the New System

excluded 4 seconds of fade-out of each song as well as 28 songs that have been sam-
pled at only 11 kHz from training, as these atypical frames adversely affected the
PCA transform and codebook (resulting in about 1 percent point worse precision
at 1). Still the “Single Gaussian of MFCCs” performs better than our VQ-based
model, possibly indicating that VQ is not suited for all kinds of music. Given that
Ballroom is a dataset of ballroom dance music, the significance of an evaluation
of features that are inherently incapable of capturing any rhythm may be limited,
however.

5.4.4 Frame-wise (mc)RBM Histograms

For the next set of experiments, we replace the VQ-based feature abstractor with
an mRBM or mcRBM. We train a model on a random set of a million mel-spectral
frames extracted from 1517-Artists (the same set used for k-Means), then use it
to generate high-level feature descriptions by clamping a mel-spectral frame to the
visible units and inferring the hidden unit activations according to p(h|v,8) (see
Section 4.4, p.61). A global model for a song is computed by summing up the hidden
state activation vectors across all frames of the song, resulting in a histogram in
which each bin represents the cumulative activation of a hidden unit over the song
(see Section 4.5, p.80). As in previous experiments, histograms are normalized to
unit £; norm to account for differences in song length.

We use a Gaussian-Bernoulli RBM (referred to as “mRBM?”, see Section 4.4.2.2,
p.70) with 580 or 1024 hidden units, trained on GPU using cudamat [Mni09] for
100 epochs with CD-1, a mini-batch size of 128 samples, a slowly annealed learning
rate starting at 0.075, a momentum of 0.9 (halved for the first 20 epochs) and
01 weight decay of 0.001 (0 for the first 15 epochs). These choices roughly follow
[Hin10], but results were very robust to changes of the training hyperparameters.
The size of the hidden layer was chosen to fit the number of mcRBM hidden units
and k-Means centroids, respectively.

For the mcRBM, we chose an architecture of 1296 factors, mapped topographi-
cally to 324 hidden covariance units, and 256 mean units. We defer the explanation
of the choice of architecture to Section 5.4.7, in which we train mcRBMs on blocks
of frames.'? Training was also performed on GPU using cudamat, based on the code
accompanying [RH10], keeping the suggested hyperparameter settings: 50 training
epochs with PCD-1, mini-batches of 128 samples, learning rate and weight decay as
for the mRBM described above, HMC with 20 leapfrog steps and a target rejection
rate of 10%. For further details regarding the training, please see Section 4.4.2.2

(p-73).

12The reason is that we actually performed extensive block-wise mcRBM experiments first, and
only flipped the order of presentation in this chapter.
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¢y distance JS divergence
model precision at precision at
1 5 10 20 1 5 10 20
mRBM 580 14.2 129 123 11.7| 14.2 128 123 11.7
mRBM 1024 | 14.5 13.5 12.7 120 ] 14.0 133 127 12.0
mcRBM 580 || 20.5 17.7 16.5 14.9 | 19.6 16.8 15.4 14.0

Table 5.10: Results for (mc)RBM histogram models on PCA-whitened log-
magnitude mel-spectral frames of 1517-Artists.

As for k-Means, we will first evaluate the system in terms of precision at k, then
perform a qualitative analysis of the features learned by the model.

5.4.4.1 Quantitative Analysis

We train the models on the best performing features of the previous experiments:
PCA-whitened log-magnitude mel-spectral frames.!3 Table 5.10 shows that the
mcRBM performs significantly better than the mRBMs. Specifically, the mcRBM
slightly surpasses the “Single Gaussian of MFCCs” (e.g., Table 5.9), while the
mRBMs fall 5 to 6 percent points behind. However, both cannot compete with
the k-Means histogram models. Interestingly, for this type of histogram, the JS
divergence performs worse than manhattan distance — for VQ-based models, it is
the other way round.

5.4.4.2 Qualitative Analysis

To visualize the filters learned by the models to infer latent representations with
or to generate data from, we unwhiten the incoming weights of mRBM hidden
units, mcRBM factors and mcRBM hidden mean units. The unwhitened incoming
weights of a unit can be interpreted as the kind of mel-spectral frame the unit would
respond to the most (more precisely: the direction in the feature space it is aligned
with), where values of zero denote invariance of the filter to the respective part of
the spectrum.

The mRBM weights (Figure 5.4a) all seem to concentrate on lower frequencies,
but without any clear patterns within this range, and their audialization sounds like
low-pass filtered white noise. The mcRBM’s covariance filters, or factor weights,
mostly react on complex patterns of simultaneously active mel filters, while some
(e.g., the 8th in Figure 5.4b) simply capture correlations of a range of neighboring
frequencies. Figure 5.4c shows some of the mean unit weights of the same mcRBM.

13In Section 5.4.7, we will evaluate (mc)RBMs on other variations of local features.
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) mRBM weights mcRBM cov. ﬁlterb mcRBM mean Welghts

Figure 5.4: Randomly selected examples of mRBM weights (a), mcRBM factor
weights (b) and mcRBM mean unit weights (c) learned on mel-spectral
frames of 1517-Artists. Each block depicts a single frame, with mel
frequency increasing from bottom to top, and high and low magnitudes
denoted by bright and dark gray tones, respectively. To enhance con-
trast for the visualization, tones have been scaled separately for each
frame to either assign black to the lowest negative or white to the high-
est positive value, leaving middle gray assigned to zero.

Most of them seem to just focus on two adjacent frequencies. Audializations of
both types of mcRBM filters are still rather noisy (as all frequencies are active in
most filters), although some pitch preferences can be heard. In contrast to k-Means
centroids, none of the sounds resemble anything heard in music.

In summary, the filters are difficult to interpret both from their visualization and
their audialization — this will change when local features include time information.

5.4.5 Block-wise Single Gaussian Models

In the next sets of experiments, we will evaluate the effect of including temporal
information in local features. First, we return to Gaussian-based models, just
replacing the mel-spectral frames with mel-spectral blocks. Specifically, instead
of representing a song as a collection of its frames, we form overlapping blocks of
consecutive frames at each valid position in the song (see Figure 4.3e, p.52) and
treat these blocks as higher-dimensional local features to be modeled. As GMMs
did not show any improvement over single-component Gaussian models and were
expensive to compute, we will only consider single Gaussians.

In particular, we experiment with blocks of 9, 15, and 39 log-magnitude mel-
spectral frames, using diagonal- or full-covariance Gaussian models. At a frame
hop size of 32ms, these blocks represent up to 1.2s of music. For full-covariance
models, all blocks were PCA-compressed to 99% of their original variance (retaining
67, 109, and 310 dimensions for 9-, 15-, and 39-frame blocks, respectively). Even
then, Gaussian models for the largest block size have 48,515 dimensions, which far
exceeds the model sizes of any of the similarity measures considered in this thesis.
For the shortest blocks and for diagonal-covariance Gaussians on all block lengths,
we also run experiments with uncompressed PCA-whitened features to see how
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block | preprocessed | covariance | model precision at
length | feature dim. | of model dim. 1 5 10 20
40 diagonal 80 || 18.5 159 15.0 13.9
1 full 3,320 || 21.1 17.9 16.5 15.1
20 diagonal 40 || 17.8 15.6 14.5 13.5
full 860 || 20.6 17.8 164 15.2
360 diagonal 720 || 229 200 183 16.7
9 full 65,340 | 21.3 18.9 175 16.2
67 diagonal 134 || 22.2 189 175 16.0
full 2,345 || 21.5 19.1 17.8 16.4
600 | diagonal 1,200 | 22.9 20.2 186 17.0
15 109 diagonal 218 || 229 194 182 16.8
full 6,104 || 22.1 19.1 17.8 16.4
1560 | diagonal 3,120 || 23.4 204 186 17.0
39 310 diagonal 620 || 23.2 20.6 19.2 17.5
full 48,515 || 21.0 184 174 16.0

Table 5.11: Results for single Gaussian models on log-magnitude mel-spectral
blocks of 1517-Artists. The first column lists the length of blocks in
frames, the second lists the feature dimensionality after preprocessing
with PCA whitening and optional compression to 99% of the original
variance. The third and fourth column list the type of Gaussian and
the resulting model dimensionality.

dimensionality reduction affects performance.

Table 5.11 shows the results for several combinations of block lengths, PCA com-
pression and Gaussian models. For comparison, we included results for frame-wise
features (block length 1). We can see that performance generally improves with
increasing block length. Interestingly, diagonal-covariance models outperform full-
covariance models for mel-spectral blocks, while it is the other way round for single
frames. PCA compression reduces precision for short blocks, but improves preci-
sion for 39-frame blocks. The best performing instantiation, a diagonal-covariance
Gaussian on PCA-compressed mel-spectral blocks of 39 frames, is still superseded
by our best frame-wise k-Means histogram model, though. Extrapolating the re-
sults, we expect that further increasing the block length will not push the limit
much further. We will see that other types of models are suited much better for
capturing temporal information.

112



5.4 Stepwise Evaluation of the New System

codebook size 512 codebook size 1024
block | preprocessed 0y JS 4y JS
length | feature dim. prec. at prec. at prec. at prec. at

1 10 1 10 1 10 1 10

40 || 224 189 | 23.6 19.6 | 23.8 194 | 25.1 20.0

L 20 || 22.1 188 | 228 189 | 22.7 19.2| 228 195
9 360 18.2 159 | 19.0 16.5
67 || 25.8 22.0 | 27.0 22.5|26.5 22.0|27.3 224

15 109 || 25.9 21.3 | 25.6 222 | 25.0 21.1| 259 21.6
39 310 || 159 140 | 172 124 | 19.2 163 | 204 16.7
67 244 20.1 | 23.7 21.0

Table 5.12: Results for k-Means histogram models on log-magnitude mel-spectral
blocks of 1517-Artists. For block lengths of 1 and 9 frames we list results
with both full-dimensional and compressed blocks, for larger blocks only
compressed features were evaluated.

5.4.6 Block-wise k-Means Histograms

So far, VQ-based methods performed best in our evaluation. The next set of ex-
periments will assess if performance improves with mel-spectral blocks, as it did for
Gaussian-based models. Following Sections 5.4.3 and 5.4.4, we will first evaluate
precision at k, then perform a qualitative analysis of the codebooks.

5.4.6.1 Quantitative Analysis

Again, we experiment with log-magnitude mel-spectral blocks of 9, 15, and 39
frames, whitened by PCA and optionally compressed to 99% of the original vari-
ance. To reduce computational costs, we train the codebook on a million blocks
randomly sampled across the songs of a dataset rather than all blocks of a col-
lection. Other than that, we proceed as for frame-wise k-Means: Each song is
transformed into a sequence of maximally overlapping mel-spectral blocks, which
are replaced by codewords and histogrammed into a global model. The results (Ta-
ble 5.12) show that blocks of 9 frames perform best, followed by 15-frame blocks,
while 39-frame blocks perform significantly worse than single frames. Interestingly,
PCA compression hurts single-frame models, but helps for blocks: an experiment
with uncompressed 9-frame blocks gave very poor results (third row of the table).
To see whether performance is dependent on the block length or merely on the
dimensionality of local features, we performed an additional experiment compress-
ing 39-frame blocks to as few dimensions as 9-frame blocks (last row of the table).
While this notably improved results, blocks of 9 frames still perform best.
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1517-Artists Homburg Ballroom
method precision at precision at precision at
1 5 10 1 5 10 1 5 10
G1 of MFCCs 20.0 175 16.1 | 44.2 41.7 40.3 | 484 414 37.4
Seyerlehner CMB 33.8 30.5 28.4|51.5 495 475 | 88.1 81.8 76.7
frame-wise k-Means || 25.1 21.3 20.0 | 46.0 42.9 41.3 | 46.4 39.2 35.8
block-wise k-Means || 27.3 24.2 224 | 44.9 445 43.5|54.0 459 42.1

Table 5.13: Results for the best block-wise k-Means histogram model on all three
datasets compared to three other approaches.
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(c) 39 frames (1248 ms), cpr. to 310 dim.

, uncompressed

39 frames, compressed to 67 dim.

Figure 5.5: Exemplary unwhitened codebook entries learned by k-Means on mel-
spectral blocks of different lengths and different PCA compressions.
Each block depicts a spectrogram excerpt: Time increases from left to
right, mel frequency from bottom to top, and bright and dark gray tones
denote high and low (log-scaled) magnitudes, respectively.

Evaluating the best-performing instantiation (9-frame blocks whitened and com-
pressed to 67 dimensions in a 1024-entry codebook compared by JS divergence) on
Ballroom, we find that precisions have improved by up to 7 percent points over
frame-wise k-Means histograms (Table 5.13). On Homburg, precisions improved
by about 2 percent points, but not for the closest neighbor. Block-wise k-Means
histograms outperform the “Single Gaussian of MFCCs” on all three datasets, but
still fall short of the state-of-the-art.

5.4.6.2 Qualitative Analysis

We now take a look at the codebook entries to better understand the system.
Specifically, we search for an explanation as to why dimensionality reduction im-
proves performance. As in Section 5.4.3.4, we unwhiten the codewords, making
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5.4 Stepwise Evaluation of the New System

them interpretable as spectrogram excerpts.

Figure 5.5 shows randomly picked codewords from four different codebooks learned
on 1517-Artists. Comparing Figures 5.5a and 5.5b, two codebooks of 9-frame blocks,
we see that the uncompressed version features much sharper visual details than the
codebook learned on PCA-compressed frames. Seemingly, “softer” codewords are
suited better for capturing the sound of a music piece (see Table 5.12). When
resynthesized, the difference in detail can also be heard: most codewords are short
(288 ms) excerpts of singing or instruments, but only in uncompressed frames it is
possible to understand syllables.

Codewords learned from weakly compressed longer blocks are still very detailed
(Figure 5.5¢). Their audialization sounds like noisy music excerpts; it is possible to
understand full words, recognize rhythms or parts of melodies (without identifying
the instrument). Given that the codewords are linear combinations of actual music
excerpts, this is not surprising, but it indicates that many cluster centroids are
dominated by a single training example. With stronger compression (Figure 5.5d),
codewords look more abstract, with clear horizontal or vertical structure. Many are
just noisy, some are rhythmic, capture two or three notes or sound like whispering
voices.

All in all, it seems that not performing any dimensionality reduction leads to
many highly detailed codewords that are almost directly copied from a song and do
not form useful generic templates for modeling music. PCA compression reduces
the variability of data and seems to help forming more abstract codewords. For
single frames, this was not a problem — a spectral frame only describes a stationary
distribution of frequencies, which is not as specific to a particular song as a second-
long excerpt, and a higher level of detail seemingly helped to better distinguish
spectral aspects relevant to perceived music similarity.

5.4.7 Block-wise (mc)RBM Histograms

For frame-wise features, mcRBMs were only marginally better than the “Single
Gaussian of MFCCs”. We will now evaluate if and how their ability to find and
model dependencies between input dimensions helps to capture the dynamics of
short music excerpts, and whether this improves music similarity estimation.

5.4.7.1 mRBMs

As in Section 5.4.4, we begin with standard Gaussian-Bernoulli RBMs (mRBMs)
of 580 or 1024 hidden units. Instead of training on single frames, we train on
a set of a million log-magnitude mel-spectral blocks (centered on the frames we
used for frame-wise RBMs) whitened with PCA and compressed to 99% of their
original variance. Song-wise accumulations of hidden unit activations are compared
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block | preprocessed | hidden precision at
length | feature dim. | units 1 5 10 20
1 A0 580 || 14.2 129 123 11.7
1024 || 14.5 13.5 12.7 12.0
9 67 580 || 15.2 13.5 12.6 11.8
1024 || 149 134 128 11.9
15 109 1024 || 14.8 134 125 118
39 310 1024 || 14.3 13.5 12.9 11.8

Table 5.14: Results for mRBM histogram models on log-magnitude mel-spectral
blocks of 1517-Artists. Blocks were PCA-whitened and compressed
to 99% of their original variance, single frames (block length 1) were
whitened only.

with ¢; distance, as JS divergence produced worse results in our frame-wise RBM
experiments.

Table 5.14 shows that the performance of the model is largely independent of
the block length — apparently, the model fails to incorporate any useful temporal
information and performs just as bad as for single frames (well above the random
baseline, but much worse than the “Single Gaussian of MFCCs”).

5.4.7.2 mcRBM Architectures

We now proceed to experimenting with mcRBMs. A first critical choice concerns
the number of factors, hidden covariance and hidden mean units to use, and the
related question of how to map factors to hidden covariance units. For orientation,
we will review other authors’ decisions on this.

Ranzato et al. [RH10] train mcRBMSs of 256 factors, 256 hidden covariance and
100 hidden mean units (from now on, we will use a shorthand notation of the form
£256-¢256-m100) on 768-dimensional ZCA-whitened 16 x 16 color image patches to
qualitatively analyze the filters, and an architecture of £1024-¢1024-m576 on the
same data to demonstrate the quality of images generated by the model. For both
architectures, the authors used a one-to-one mapping of factors to covariance units
(i.e., the pooling matrix P was initialized to the negative identity matrix) which
was allowed to change freely during training. In another experiment, Ranzato
et al. train an f576-c144-m81 model on 192-dimensional 8 x 8 color image patches.
Obviously, a one-to-one mapping of factors to covariance units is not possible in
this case. Instead, they initialize the pooling matrix to a 2-dimensional topography:
Arranging the factors and covariance units on a 24x24 and 12x12 grid, respectively,
each covariance unit is mapped to a block of 3x3 factors, with adjacent block centers
separated by 2 units (cf. Figure 5.6). This encourages neighboring factors to learn
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Figure 5.6: Initialization of an mcRBM'’s pooling matrix to a 2-dimensional topog-
raphy mapping 62 = 36 hidden covariance units to 122 = 144 factors.
Each block shows the outgoing weights of a covariance unit to the fac-
tors arranged on a 12 x 12 grid, with black denoting negative weights,
and white denoting zero. 9 factors are associated with each unit, partly
shared between neighboring units.

similar filters and makes covariance units invariant to slight variations in the input.

Dahl et a. [DRMH10] train an f1024-¢1024-m512 architecture on 15-frame mel-
spectral blocks from speech which were PCA-whitened and compressed to 384 di-
mensions. They initialize the pooling matrix to the negative identity, and only
allow updates to the main diagonal and its two neighbor diagonals, corresponding
to a 1-dimensional topography.

Both authors do not explain their choice of architecture any further, so we will just
start with a similarly sized model and try some variations to understand how the
architecture influences performance. We begin with a £324-¢324-m256 model trained
on log-magnitude mel-spectral blocks of 9 frames, PCA-whitened and compressed
to 67 dimensions (explaining 99% of the original data variance). As for mRBMs,
song-wise hidden representation histograms are compared with ¢; distance only.

Table 5.15 (row 1) shows encouraging results: In contrast to frame-wise mcRBM
models, the first block-wise mcRBM model we tried performs quite close to k-Means
histogram models.

Reducing the number of covariance units and factors in favor of mean units (f90-
c90-m490, row 2) or adding more factors and covariance units (f1296-¢1296-m256,
row 3) reduces performance, so we assume that the proportion of covariance to
mean units is appropriate in the first model.

When we increase the number of factors and keep the number of covariance units
constant (f1296-¢324-m256, rows 4-6), we cannot use one-to-one pooling. Simply
initializing the pooling matrix to a 2-dimensional topography as in [RH10] (cf.
Figure 5.6) makes training instable: In preliminary experiments, we often found
that as soon as we allow the model to update the pooling matrix (after 10 epochs,
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architecture training precision at

fact. cov. mn. | pooling epochs 1 5 10 20

1) 324 324 256 | 1:1, free 50 26.3 23.0 21.1 19.5

2) 90 90 490 | 1:1, free 50 25.5 227 21.0 194

3) | 1296 1296 256 | 1:1, free 50 249 21.7 20.7 19.0

4) [ 1296 324 256 | 2d, free 50 25.1 226 21.0 19.3

5) | 1296 324 256 | 2d, masked | 50 26.6 23.7 21.9 20.1

6) | 1296 324 256 | 1d, masked | 50 26.3 23.6 21.9 20.2

7) | 1296 1296 256 | 1:1, free 50 25.1 21.8 20.7 19.1

8) | 1296 324 256 | 2d, masked | 50 26.5 23.8 21.8 20.2

9) | 1296 1296 256 | 1:1, free 10 24.2 21.6 20.0 18.6

10) | 1296 324 256 | 2d, masked | 10 25.5 229 214 19.7
11) | 2500 625 512 | 2d, masked | 50 239 214 20.1 185

Table 5.15: Results for different mcRBM architectures and training variants on 9-
frame log-magnitude mel-spectral blocks of 1517-Artists. Blocks were
PCA-whitened and compressed to 99% of their original variance.

to let the factors stabilize first), weights change chaotically and eventually NaNs
(a special code for undefined numbers in floating point arithmetics) occur. We
therefore experimented with masking the updates: Entries of the pooling matrix
that are zero in the initial topographic mapping are reset to zero after each weight
update (subsequently, the columns are renormalized to unit ¢ norm as explained
in Section 4.4.2.2, p.73). This improves precision over the first model by about
half a percent point (rows 1 and 5), and also performs better than unconstrained
pooling matrix updates (rows 4 and 5). As an alternative to the 2-dimensional
topographic mapping, we initialize and constrain the pooling matrix to a diagonal
line, effectively creating a 1-dimensional topography. Performance is similar to the
2-dimensional topographic pooling (rows 5 and 6).

To make sure the difference in results stems from the architecture and not from
different random initializations, we repeat the experiment for two of the models
(f1296-¢1296-m256 and f1296-c324-m256, rows 7 and 8).'* Precisions change by at
most 0.2 percent points, so results are fairly consistent (compare rows 3 to 7, and
5 to 8).

Early stopping of training after 10 epochs results in worse models (rows 9 and 10),
so for future experiments, we will continue training our mcRBMs for 50 epochs.!®

1 As training an mcRBM takes between 6 and 24 hours, depending on the model size and input
feature dimensionality, we cannot simply do this for all our models to quantify the influence of
random initialization.

151t would be interesting to know the exact development of precision at k with the number of
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local feature variations
magn. | linear | feat. precision at
scaling | transf. | dim. 1 5 10 20

360 || 26.6 23.0 21.2 19.5
PCA 67 || 26.6 23.7 21.9 20.1
log 31| 226 201 190 17.6
360 || 26.5 229 21.2 19.5
ZCA -

¢ 67 || 22.0 194 18.0 16.7

linear | PCA 164 | 20.1 16.8 15.6 14.3

*embedded in 360 dimensions, see text

Table 5.16: Comparison of different feature preprocessings for f1296-¢324-m256
mcRBMs trained on 9-frame mel-spectral blocks of 1517-Artists.

A larger version of the best performing model (£2500-c¢625-m512, row 11) does not
perform well, possibly it is oversized for only 67 dimensions of input. For future
experiments, we will thus focus on the architecture of 1296 factors, 324 hidden
covariance and 256 hidden mean units, with a 2-dimensional topographic pooling
matrix, constrained to remain topographic during training (f1296-c324-m256, rows
5 and 8).

5.4.7.3 Preprocessing Variations

As for block-wise k-Means models, we perform a set of experiments to assess the
effect of different preprocessing settings on similarity estimation. Specifically, we
train the best performing model of the previous section (f1296-c324-m256) on log-
magnitude mel-spectral blocks of 9 frames that have been preprocessed with PCA
whitening and compression to 100%, 99% or 98% of original data variance (360, 67
or 31 dimensions) or with ZCA whitening (including a version that drops higher
principal components, resulting in features that lie on a 67-dimensional linear man-
ifold in the 360-dimensional feature space; see the end of Section 4.3.2, p.60). In
addition, we report results for an mcRBM trained on linear-magnitude blocks. We
also tried training mcRBMs on unwhitened blocks, but the factors remained noisy
throughout training and the mean units all developed identical weights — possibly,
different training hyperparameters would allow the model to learn better, but this
is not worth the effort.

Table 5.16 shows that uncompressed blocks lead to a reduction in precision by
about 0.5 percent points for £ > 1 (rows 1 and 2). Strong compression noticeably

training epochs, but we did not have the resources to evaluate this, as it would keep a GPU
busy with feature extraction for several days.
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mel block precision at
bands | length 1 5 10 20

11 205 17.7 16.5 149
9| 26.6 23.7 219 20.1
40 15 || 28.1 247 23.0 21.2
39 | 29.0 254 240 219
75 || 27.5 247 236 21.7

9| 278 243 229 2038
70 15 || 286 25.0 23.6 21.5
39 | 29.5 25.5 236 21.7

9 239 214 20.1 185
15| 273 241 224 20.7
39 || 28.7 254 24.3 22.2
75| 27.0 251 234 216

model

£1296-¢324-m256

£2500-¢625-m512 40

Table 5.17: Comparison of different block lengths and frequency resolutions for
mcRBM histogram models on log-magnitude mel-spectral blocks of
1517-Artists. Blocks were PCA-whitened and compressed to 99% of
their original variance, single frames (block length 1) were whitened
only.

hurts performance (row 3), too, so we assume compression to 99% of variance is
a reasonably good choice. ZCA whitening performs the same as PCA whitening
(rows 1 and 4), but does not allow dimensionality reduction, so we will not consider
it in future experiments. As for the other methods evaluated in this chapter, linear-
scaled magnitudes perform considerably worse than log-scaled magnitudes.

5.4.7.4 Block Size Variations

As mcRBMs are specifically designed to capture high-order dependencies between
input dimensions, we hope them to excel at blocks of longer time scales or higher
frequency resolution. We thus train the best performing architecture (f1296-c¢324-
m256) on blocks of 15, 39 and 75 frames, as well as on blocks of 70 instead of 40 mel
bands (cf. Figure 4.2, p.51). Following our findings from Table 5.16, we preprocess
these blocks with PCA whitening and compression to 99% of variance. To account
for the higher complexity of input data, we will also experiment with the larger
architecture 2500-¢625-m512.

Our results are listed in Table 5.17. Starting from our previous model of 9-frame
blocks (row 2), increasing the block length noticeably improves performance (rows
3-5). The best precision is obtained for blocks of 39 frames; both 15-frame and 75-
frame blocks perform worse. Increasing the frequency resolution further improves
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Eﬁ;i{h first-layer model 22‘%dd1t10§.al layef
f1296-c¢324-m256 — 580 — 580 — 580

9 21.9 223 222 218
£1296-c¢324-m256 — 2048 — 1024 — 580

9 21.9 224 223 214

39 24.0 23.7 23.7 239
mRBM 1024 — 2048 — 1024 — 580

9 12.8 13.0 122 12.6

Table 5.18: Comparison of different DBN histogram models on log-magnitude mel-
spectral blocks of 1517-Artists. Up to three layers of differently sized
bRBMs are stacked on top of an mcRBM or mRBM; each layer’s rep-
resentation is evaluated separately in terms of precision at 10.

performance for blocks of 9 and 15 frames (rows 6 and 7). For blocks of 39 frames
(row 8), precision is increased among close neighbors only and decreased for k > 5.
The larger mcRBM model is inferior to the small architecture except on blocks of
39 frames, on which it surpasses the small model by about 0.5 percent points in
precision for k > 5.

In summary, all variants of models on 39-frame blocks perform similarly well,
with deviations depending on the size of the neighborhood used for computing the
precision at k.

5.4.7.5 DBNs

The song-wise histogram used in mcRBM-based models has a possible disadvantage:
By separately adding up each hidden unit’s activations, it cannot capture which
combinations of units were active for blocks in a song. An RBM could be trained
on an mcRBM’s latent representations to learn and represent typical combinations
of active units. Recursively applying this principle, a stack of RBMs should be able
to capture high-order dependencies in the data.

In fact, Dahl et al. [ DRMH10] report a considerable improvement in phone recog-
nition rates by stacking Bernoulli-Bernoulli RBMs (bRBMs) on top of an mcRBM.
They were able to reduce the phone recognition error from about 23% with a single
added bRBM to 20.5% for a Deep Belief Net (DBN, see Section 4.4.3, p.75) of 8
hidden layers. In the following, we evaluate whether a DBN also helps to learn
better features for music similarity estimation.

First, we start from the f1296-¢324-m256 architecture on 9-frame blocks. We
compute the mcRBM’s latent representation for each of the one million blocks
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orieinal additional top layer
DBgN combination-wise histogrammed unit-wise h.
6 7 8 9 10 11 12 512
prec. at 10 | 224 [19.2 198 204 209 21.1 21.7 221 221

Table 5.19: Comparison of unit-wise and combination-wise histogramming of latent
representations of 9-frame spectral blocks. On a f1296-c324-m256—529
DBN, we train bRBMs of 6 to 12 hidden units for combination-wise song
histograms, and a bRBM of 512 hidden units for unit-wise histograms.
We report the precision at 10 using these histograms as song models
compared by ¢; distance.

used for training and treat these representations as a new dataset. We train a
bRBM of 580 hidden units on this data and stack it on top of the mcRBM, forming
a DBN of two hidden layers (the mcRBM and bRBM layer). We extend this
DBN with another bRBM trained on the first bRBM’s latent representations, and
finally a third bRBM trained on the representations of the second one, all of the
same size. Fach hidden layer of the final DBN produces abstract 580-dimensional
representations of spectral blocks clamped to its visible units. In the top part of
Table 5.18, we compare the different representations to the original mcRBM feature
descriptions in terms of precision at 10: The first two additional layers provide a
marginal improvement over the first layer, the top layer does not.

In the next set of experiments, we increase the size of the additional layers: The
first bRBM is set to 2048 hidden units, the second and third to 1024 and 580 units,
respectively. We evaluate this setup on the f1296-c¢324-m256 architecture on 9- and
39-frame blocks, as well as on an mRBM of 1024 hidden units on 9-frame blocks.
In all three cases, the additional layers still only result in minor positive or negative
changes of precision at 10 (Table 5.18).

As a more direct way to capture combinations of active units (which was one of the
motivations for using DBNs, cf. p. 121), we change the method of building a global
song model: Instead of summing up the hidden unit activations for all the blocks of
a song, we binarize the activations and count how often each possible combination
of active units occurs (see Section 4.5, p.80). Of course, this is only possible with
a very small hidden layer. We stack bRBMs with 6 to 12 hidden units on a DBN,
resulting in song histograms over 26 = 64 to 2'2 = 4096 combinations of active
units. For comparison, we also evaluate with a 512-unit top layer histogrammed the
original way. Table 5.19 shows that while the precision improves with the number
of hidden units, combination-wise histogramming does not perform as well as unit-
wise histogramming. Histograms over 512 hidden units perform 1.1 percent points
better than histograms over 512 combinations of 9 hidden units, and it takes 12
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hidden units (4096 combinations) to close this gap in precision. k-Means codewords
provide much better descriptions of local features than these binary RBM codes (see
Table 5.12, 113).

In summary, we do not find a notable or consistent improvement in similarity
estimations with Deep Belief Nets, but no degradation either. Possibly, additional
layers do not actually learn more useful representations, but only increase the net-
work’s discriminative power when subsequently fine-tuned to a classification task
as in [DRMH10, HE10].

5.4.7.6 Qualitative Analysis

In Figure 5.7a, we visualize filters learned by mRBMs and mcRBMs on 9-frame and
39-frame PCA-compressed mel-spectral blocks of 1517-Artists and Ballroom. As in
Section 5.4.4.2, we unwhiten the incoming weights of hidden units for mRBMs, and
the incoming weights of mean units and factors for mcRBMs, allowing to interpret
them as spectrogram excerpts.

mRBMs (first column) fail to learn clearly-structured features, explaining their
poor performance in comparison to k-Means or mcRBMs. This corroborates Kriz-
hevsky’s results [Kri09], who only succeeded in training this model on very small
image patches of 8 x8 pixels (our mel-spectral blocks are 40x9 or 40x39 “pixels”).

mcRBMs develop highly interesting filters, however, which are very different from
the Gabor-like filters learned on natural images (cf. [RH10]). Before we analyze the
filters in detail, let us recapitulate how the mean unit weights and factor weights
can be interpreted (cf. Section 4.4.2.3, p.75). The mean filters can be understood
as templates that are linearly combined to represent a data point, or as filters that
are multiplied element-wise with a mel-spectral block, then summed (i.e., the filter
activation corresponds to the dot product of the filter and a data point). The
factor weights encode smoothness constraints in generating a data point: “pixels”
that are both bright or both dark are correlated, pixels of opposite brightness are
anti-correlated, and mid-gray pixels are uncorrelated. When used as a filter, the
activation corresponds to the squared dot product of the filter and a data point.
For example, a filter with vertical positive and negative ripples (e.g., the fourth and
fifth of Figure 5.7b) does not react to excerpts of steady volume, and is most active
for regular changes in loudness matching the periodicity of the ripples.

mcRBM filters learned on linear-magnitude blocks (Figure 5.7a, second row) are
very local and noisy, but filters on log-magnitude blocks seem to capture musical
structure. Mean unit weights learned on 9-frame blocks (first row) mostly show
uninterpretable patterns, with a few exceptions clearly localized in frequency. Fac-
tors instead often have a clear horizontal or vertical structure, detecting frequency
patterns (global in time) or changes in loudness (local in time), respectively. Note
how neighboring factors develop similar filters due to the 2-dimensional topographic
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(a) Excerpts of the weight matrices of mRBMs and mcRBMs on 1517-Artists and Ballroom

(b) Recurrent schemes in mcRBM factor weights on 1517- Artlsts (39-frame log-magnitude blocks)

Figure 5.7:
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Exemplary unwhitened filters learned by mcRBMs on mel-spectral
blocks of different lengths and datasets. Each block depicts a spectro-
gram excerpt of 9 or 39 frames: Time increases from left to right, mel
frequency from bottom to top, and bright and dark gray tones denote
high and low magnitudes, respectively.
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1517-Artists Homburg Ballroom
method precision at precision at | precision at
1 5 10 1 10 1 10
G1 of MFCCs 200 175 16.1 | 442 403 | 484 374
Seyerlehner CMB 33.8 30.5 28.4 |51.5 47.5 | 88.1 76.7
k-Means 1024, 40x9" 273 242 224 | 449 43.5| 54.0 42.1
f1296-c324-m256, 40x 39 || 29.0 25.4 24.0 | 452 44.0| 73.9 62.8
£1296-¢324-m256, 70x 15 || 28.6 25.0 23.6 | 48.4 44.0 | 60.3 50.0
£2500-c625-m512, 40x 39 || 28.7 25.0 24.2 | 475 44.2 | 73.4 61.0

*size of input blocks in mel bands x block length

Table 5.20: Results for the best block-wise mcRBM histogram models on all three
datasets compared to three other approaches.

pooling matrix (we display a 16x3 excerpt of the 1296 factors arranged on a 36x36
grid). On 39-frame blocks, filters seem much easier to interpret. Mean unit weights
often look like notes with several harmonics, slightly localized in time (on 1517-
Artists) or global (on Ballroom). Some mean unit weights also develop as a single
sharply localized impulse over all frequencies (with a slight preference of high fre-
quencies), which could represent percussion. These filters occur separately for all
possible positions in the 39-frame block. Factors develop very different patterns,
many of which regularly occur in all of the mcRBMs we have studied.

Figure 5.7b shows two examples each for such recurring schemes in the factors
of an mcRBM trained on 39-frame blocks of 1517-Artists. In reading order, these
filters can be interpreted as note onsets (impulse localized in time), fixed-length
notes (an onset followed by an offset with steady activation in between), repetitive
percussion (regular vertical ripples), chords (irregular horizontal ripples) and note
transitions (horizontal ripples shifting to other frequencies).

On Homburg, results were very similar to 1517-Artists. However, on Ballroom
we noted a higher dominance of repetitive percussion filters and fewer note onset
or harmonic filters with the best performing preprocessing (blocks compressed to
80 dimensions; see Section 5.4.7.7).

5.4.7.7 Conclusion

We found that mcRBMs gain a lot of performance by incorporating more time
information (up to 39 frames) or increasing the frequency resolution of mel-spectral
blocks. Seemingly, their ability to model dependencies in time or frequency pays off
when applied to sufficiently rich input features. To validate our findings, we evaluate
mcRBMs on Homburg on Ballroom, comparing our results to other methods.
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Table 5.20 shows our results. On all three datasets, mcRBMs surpass block-wise
k-Means histogram models, but still fall behind the state-of-the-art. Note that long
blocks perform notably better than short blocks on Ballroom, which is reasonable
assuming that ballroom dances are mostly defined via rhythmic aspects rather than
short-term features.

On Ballroom, we made several further interesting observations. We first trained
our model on the complete clips, which include about 4 seconds of fadeout each,
reaching 72.4% and 57.6% precisions at 1 and 10, respectively (for the smaller
mcRBM on blocks of 39 frames). Looking at the PCA components and mcRBM
filters, we noted that most of them were highly dominated by the fadeouts, possibly
wasting most of the model’s generative power on an aspect that is not at all relevant
to music similarity. When we removed all blocks containing fadeouts from the
training set, the precisions dropped to 62.6% and 50.1%, respectively. Investigating
the issue, we noted that our default choice of PCA compression to 99% of variance
resulted in 80-dimensional features when including fadeouts, and 901 dimensions
when excluding fadeouts. Forcibly setting the compression to 80 dimensions again,
results improved to 74.0% and 62.8% as reported in the table — an improvement by
about 12 percent points just from changing the PCA compression strength. This
shows that preprocessing the features is still critical with mcRBMs, and a more
thorough analysis of the effects of preprocessing may give rise to better results.

5.4.8 Distance Space Normalization

The state-of-the-art approaches of Pohle (RTBOF, [PSST09]) and Seyerlehner (BLS,
[SWP10]) combine similarity estimations obtained with multiple features to include
both rhythmic and timbral information. As different features yield distance mea-
sures on very different scales, sometimes orders of magnitude apart, they normalize
distances obtained with different features before combining them to a total sim-
ilarity estimate. Specifically, they employ a technique termed “Distance Space
Normalization” (DSN, see Section 4.6.2, p.83). As DSN alone has been shown to
improve music similarity estimates, Seyerlehner performs DSN not only on the dis-
tances of different features, but also on their combination, resulting in an additional
improvement of k-NN genre classification accuracy and precision at k.

For a fair comparison to these state-of-the-art approaches, we apply DSN to the
distance matrices of our best methods as well as on Pohle’s RTBOF (Seyerlehner’s
BLS and CMB - the combination of RTBOF with BLS — are already normalized).
Table 5.21 shows that DSN consistently improves precision at k£ by 1 to 3 percent
points except for k-Means histogram models (possibly, the JS divergence already
results in mostly symmetrical neighborhood relations, so DSN cannot improve the
distance space any further; cf. [SFSW11]). We defer a detailed comparison of our
normalized models to the state-of-the-art to Section 5.5.1.
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5.4 Stepwise Evaluation of the New System

1517-Artists | Homburg Ballroom
method DSN || precision at | precision at | precision at
1 10 1 10 110
— 200 161] 442 403 484 374
Gl of MFCCs v || 217 181 | 465 42.6 | 51.7 415
— | 30.0 255 | 491 46.2 | 90.3 77.5
Pohle RTBOF J |l 30.7 268| 500 46.1|90.4 79.0
Seyerlehner BLS v 31.3 265 | 48.8 453 | 81.0 67.7
Seyerlehner CMB v || 33.8 28.4|51.5 47.5 | 881 76.7
x — 25,1 200 46.0 41.3| 46.4 358
k-Means 1024, 40x1 v |l 25.0 214 | 441 412 491 39.7
— || 273 224 449 435 | 540 421
k-Means 1024, 409 v || 285 235 441 428 | 540 453
— | 29.0 24.0| 452 44.0 | 73.9 628
f1206-¢324-m256, 40>39 == o | o048 | 480 447 | 77.2 65.1
— || 286 236 | 484 44.0| 60.3 50.0
£1296-¢324-m256, 7015 v || 299 250 48.7 45.5| 65.3 53.1
— || 28.7 242 475 442 | 734 61.0
£2500-c625-m512, 4039 v 130.2 25.1]49.6 45.5| 75.2 634

*size of input blocks in mel bands X block length

Table 5.21: Results for the best models on all three datasets with and without
Distance Space Normalization (DSN), compared to the state-of-the-art.
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precision at k, evaluated on
mcRBM 1517-Artists | Homburg Ballroom
trained on 1 10 1 10 1 10

1517-Artists || 29.0 24.0 | 46.6 43.5 | 66.3 51.0
Homburg | 26.3 22.0 | 45.2 44.0 | 59.3 47.3
Ballroom || 25.4 204 | 449 39.9| 73.9 62.8

Table 5.22: Cross-dataset generalization of the f1296-¢324-m256 mcRBM on blocks
of 39 frames

On a side note, it is interesting to see how DSN improves RTBOF. As CMB is a
combination of Seyerlehner’s BLS with normalized RTBOF, part of CMB’s advan-
tage only stems from normalizing RTBOF and not from adding new information to
the similarity measure.

5.4.9 Cross-Dataset Generalization

Up to now, we have only reported results for models trained unsupervisedly (i.e.,
not taking into account any meta-information such as genre labels) on the very
same dataset they are evaluated on. For most practical applications, it is infeasible
to always train a feature extractor on the songs we want to compute similarities
for.

Ideally, we would evaluate generalization on a train/test split of each dataset,
such that we train a model unsupervisedly on a subset of the collection only, then
evaluate on the remaining songs. However, when selecting a sufficiently large and
diverse training set, the remaining test set would be too small for reliable genre-
based evaluations. The alternative would be n-fold cross-validation: Splitting a
collection into n same-sized parts, we could train a feature extractor on n — 1 parts
and evaluate on the remaining fold, then repeat for all n possible assignments of
folds for training and testing and average the results. However, we would need to
train n models instead of one, which is infeasible for the number of mcRBM models
we are evaluating (each taking between 6 and 12 hours to train on an nVidia GTX
480 graphics card).

Instead, to investigate how well a learned feature set generalizes, we evaluate it
on the datasets it has not been trained on. This evaluates a much stronger type
of generalization than cross-validation could — we do not only investigate if learned
features generalize across songs, but also if they generalize across collections of
completely different genre taxonomies.

Table 5.22 shows that the feature extractors of 1517-Artists apply well to Hom-
burg, but not vice versa, possibly because Homburg contains less training data.
Extractors of Ballroom do not perform well on the other datasets and vice versa.
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This indicates that feature extractors trained on a particular collection are only
applicable to collections of music similar to it. The Ballroom dataset contains a
fairly different set of musical styles and possibly requires features the model could
not learn from 1517-Artists or Homburg. Indeed, in Section 5.4.7.6 we noted that
models trained on Ballroom seemed to develop more rhythmic feature detectors.

This can be seen as a disadvantage against the state-of-the-art, which performs
well on all three datasets with a single set of features. However, both Pohle’s
RTBOF and Seyerlehner’s BLS are engineered towards Western music, and the
adaptability of our method to data could be an advantage when applied to music of
different cultures. Furthermore, both state-of-the-art methods perform best on the
datasets they have been optimized for: RTBOF on Ballroom, and BLS on 1517-
Artists. Future experiments will show whether training our method on a larger and
more diverse collection yields more general features competitive to the state-of-the-
art.

5.5 Final Comparison

Complementing the evaluation of systems in terms of precision at k, we will now
perform a deeper comparison of the best performing instantiations of each stage to
the state-of-the-art. Specifically, we evaluate similarity measures in terms of k-NN
genre classification accuracy in Section 5.5.1, analyze the plausibility of estimated
low cross-genre similarities in Section 5.5.2, and examine if and how methods differ
in producing hubs in Section 5.5.3.

5.5.1 Retrieval Precision and Classification Accuracy

Figure 5.8 shows the precision at k and k-NN classification accuracies for the “Single
Gaussian of MFCCs”, frame-wise and block-wise k-Means histogram models, the
£2500-¢625-m512 mcRBM (termed mcRBM 1137 for its total number of hidden
units) and the three state-of-the-art approaches BLS, RTBOF and CMB. For 1517-
Artists (Figure 5.8a), we also show the performance of the 20-component diagonal
GMM of MFCCs and an mRBM. Additionally, Table 5.23 lists the precisions in
numbers for easier comparison.

In Figures 5.8a and 5.8b we see that each step from the baseline system (the
“Single Gaussian of MFCCs”) to our final system improves performance on 1517-
Artists and Homburg: Histograms of unsupervisedly learned frame-wise features
perform better than Gaussian models of MFCCs, block-wise features outperform
frame-wise features, and mcRBMs surpass k-Means. Only mRBMs fall behind the
baseline system (demonstrating the importance of the mcRBMs covariance model)
and will not be considered any further. More importantly than surpassing the
baseline, our best model, the f2500-c625-m512 on blocks of 39 frames, is remarkably
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1517-Artists | Homburg Ballroom

method model || precision at | precision at | precision at

dim. 1 10 1 10 1 10

Random baseline 4.6 5.1 ] 15.2 155 | 125 13.1
G1 of MFCCs 230 || 20.0 16.1 | 44.2 403 | 484 374
Pohle RTBOF 1,331 || 30.0 25.5| 49.1 46.2|90.3 77.5
Seyerlehner BLS 9,448 || 31.3 26.5 | 488 453 | 81.0 67.7
Seyerlehner CMB 10,779 || 33.8 28.4 | 51.5 47.5 | 88.1 76.7
k-Means 1024, 40 x 9" 1,024 || 27.3 224 | 449 435 | 54.0 42.1
£1296-c324-m256, 40 x 39 580 || 29.0 24.0| 45.2 44.0| 73.9 62.8
£1296-c324-m256, 40 x 39, DSN 580 || 30.1 24.8 | 48.0 44.7 | 77.2 65.1
2500-¢625-m512, 40x 39, DSN | 1,137 || 30.2 25.1 | 49.6 45.5 | 752 63.4

*size of input blocks in mel bands x block length

Table 5.23: Our best models compared to the baseline and state-of-the-art on all
three evaluation datasets.

close to the state-of-the art on 1517-Artists and Homburg: When using Distance
Space Normalization (DSN) as employed by the three state-of-the-art methods, it
is 0.4 to 0.7 percent points behind RTBOF, about 1 percent point behind BLS
on 1517-Artists, but also 0.8 percent points above BLS on Homburg, and 2 to 3.5
percent points behind CMB on both datasets (Table 5.23).

On the Ballroom dataset, results are different. Firstly, frame-wise k-Means fea-
tures perform worse than the baseline system (Figure 5.8¢c). As ballroom dances
are characterized by their rhythm, evaluation results for frame-wise features are of
limited significance, though. Furthermore, the f1296-c¢324-m256 architecture per-
forms better than the larger mcRBM: Possibly, the larger model is oversized for
features of only 80 dimensions. Compared to the state-of-the-art, there is a large
gap of 3 to 13 percent points. This suggests that our system is not yet optimally
suited for modeling rhythms, although it does learn some useful long-term features
if given a chance to: On Ballroom, short blocks perform considerably worse than
long blocks.

5.5.2 Genre Confusion

For a better understanding of how our similarity measure falls short of the state-of-
the-art, we analyze the k-NN genre classification confusion matrices for the “Single
Gaussian of MFCCs”, the large mcRBM and Seyerlehner’s CMB on 1517-Artists
and Ballroom. Although we are not actually interested in genre classification rates,
the confusion matrices reveal whether songs of a particular genre are assigned low
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Ballroom, respectively (cf. Figure 5.2 or Table 5.23).
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distances to songs of a perceptually unrelated genre or whether “mistakes” are
plausible (or even desirable).

Figure 5.9 depicts the matrices. We immediately see that the Gaussian-based
approach produces more misclassifications, as was clear from the classification rates
(Figure 5.8). Many of these misclassifications are severe: For example, some Hip-
Hop songs are classified as Electronic, some Classical pieces are classified as Folk and
Viennese Waltz is often classified as Tango (more often than as Waltz or Viennese
Waltz). A misclassification means that, for example, some Hip-Hop songs have
more Electronic songs than Hip-Hop songs among their nearest neighbors, which
does not seem sensible.

The mcRBM performs significantly better. On 1517-Artists, the most common
confusions are between Alternative/Punk and Rock/Pop, Classical and New Age,
Folk and Country, Hip-Hop and Reggae, R&B and Reggae. While we assume Al-
ternative and Rock to significantly overlap, explaining confusions, the acceptability
of other “mistakes” would have to be assessed in listening tests targetting the songs
in question. Children’s, Easy Listening, Religious, Soundtracks and World are con-
fused with most other genres. This is plausible: World music and Easy Listening
lack substantial intra-genre similarity, and the other three genres are only defined
by their lyrics or context, not by musical qualities. On Ballroom, prominent con-
fusions are between Viennese Waltz and Waltz, Waltz and Rumba, Rumba and
Quickstep. Waltz and Rumba both frequently feature violins accompanied by slow,
soft drums, only differing in their rhythm. Depending on the application, their
confusion may thus even be desired. The other confusions are hardly acceptable,
though: Waltz and Rumba are much slower than Viennese Waltz or Quickstep.

Comparing the mcRBM to Seyerlehner’s CMB, there are surprisingly few qual-
itative differences on 1517-Artists: While CMB is slightly better in recognizing
Blues, R&B, Hip-Hop and Reggae, most mistakes are the same as for mcRBMs.
Possibly, some confusions are inherent in the dataset; a closer examination requires
listening tests. For Ballroom, there is a noticeable decrease of misclassifications
in CMB compared to the mcRBM. Most notably, CMB is better in distinguish-
ing Waltz and Viennese Waltz, and fewer songs are misclassified as Quickstep or
Rumba. This indicates that a key advantage of CMB over mcRBMs may be its
improved ability to capture a song’s tempo.

5.5.3 Hubness

Another quality indicator for similarity measures is its hubness: the amount and
severity of “hubs” [AP08] or “popular nearest neighbors” [RNI10] appearing in a
collection. Originally, Aucouturier et al. [AP08] defined hubs for music similarity
measures as songs that occur among the nearest neighbors of extraordinarily many
other songs despite not sharing any perceptual similarity to those songs. As a
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simplification, perceptual similarity is often ignored, reducing the definition of hubs
to overly popular nearest neighbors.

With this definition, hubness can be evaluated by analyzing the distribution of
k-occurrences. The k-occurrence of a song s is defined as the number of times it
occurs among the k nearest neighbors of all the other songs in a collection under a
dissimilarity measure m. Following Section 5.2 (p.91), this can be formalized as

om(s,k) =[5 € nm(s,k)]. (5.4)

s'eS

The left panel of Figure 5.10a shows the k-occurrences for all the 3,180 songs
of the 1517-Artists dataset under a randomized dissimilarity measure, for k = 20.
While it allows us to see the range of k-occurrences (left axis), it is difficult to assess
how many songs are popular nearest neighbors. One way to visualize this would be
sorting the songs by their k-occurrence, another is calculating a histogram of how
many songs of each k-occurrence value can be found, i.e., calculating the observed
distribution of k-occurrences in the dataset. The right panel of Figure 5.10a shows
such a histogram for the same randomized measure. We see that it is roughly
following a normal distribution with a mean of 20: Many songs occur among the
20 nearest neighbors of 20 other songs, some occur in as few as 7 or as much as
36 nearest-neighbor lists. As a randomized similarity measure can be expected to
produce a rather uniform (albeit asymmetrical) neighborhood graph of few hubs,
we will use its k-occurrence distribution as a reference to compare other methods
against.

To complement the qualitative comparison of distributions, we calculate the skew-
ness of each distribution. Following [RNI10, p. 6], we define the skewness, or asym-
metry, of a distribution of k-occurrences as

. 3
Son(k) = ((onter) — 1) >S€S, (5.5)

o3

where (-)scs denotes the average over all songs s and

B= <Om(37 k>>seS

7= {onlss k) =) _,

denote the mean and standard deviation of k-occurrences, respectively. A skewness
of zero corresponds to a symmetrical distribution around the mean, a positive value
indicates a skewness to the right, i.e., to songs of high k-occurrences.

Figure 5.10b shows the k-occurrence histogram and skewness for four similar-
ity measures with and without Distance Space Normalization (DSN). The top left
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depicts the histogram for the unnormalized “Single Gaussian of MFCCs”. The
qualitative difference to the randomized measure is obvious: Only around 50 songs
occur among the 20 nearest neighbors of 20 songs (compared to over 250 for the
randomized measure), some songs have k-occurrences up to over 300 (strong hubs),
and over 400 songs even do not occur in any nearest-neighbor list at all (so-called
anti-hubs or orphans). The skewness is an order of magnitude larger than the ran-
domized measure’s. Clearly, a music recommendation system based on the “Single
Gaussian of MFCCs” would be suboptimal, suggesting a few songs again and again,
while missing a good portion of the collection completely.

In the second row, first column, the histogram for our mcRBM-based similarity
measure is displayed. While still far from a normal distribution, both hubs and
orphans are less severe than for the Gaussian-based measure: The largest hub has
an k-occurrence of 120, and there are less than 140 orphans. Furthermore, the
skewness is only about half as large.

The third row, first column, shows the histogram for Pohle’s RTBOF. The dis-
tance measure of RTBOF is a sum of several distances separately normalized by
DSN. Compared to our measure, it produces larger hubs of k-occurrences up to 142,
but still has a slightly lower skewness as there are fewer hubs between k-occurrences
of 80 and 120.

When employing DSN (second column), all distributions considerably improve in
terms of skewness, number of hubs and number of orphans, corroborating results of
Schnitzer et al. for a similar normalization of distances [SFSW11]. Qualitatively, our
mcRBM-based method is most similar to RTBOF (except that RTBOF produces
an additional hub of an k-occurrence of 100). The “Single Gaussian of MFCCs”
produces almost three times as many orphans, more hubs and has a higher skewness.
Of the measures evaluated, the histogram for CMB (which employs DSN) most
closely resembles the randomized measure’s distribution: The histogram is smooth,
produces 3 orphans only, has a peak of over 160 songs at a sensible k-occurrence of
18, and only few hubs above an k-occurrence of 50. Still, our measure has a slightly
lower skewness.

5.5.4 Summary

We have shown that our proposed similarity measure comes close to the state-of-
the-art in several respects. Furthermore, by examining different prestages to our
final system, we have assessed the influence of each of its components.

A comprehensive evaluation of the music similarity estimation quality, using genre
precision at k as a proxy (see Section 5.2, p.89), shows that each step from a
baseline system, the classic “Single Gaussian of MFCCs” proposed by Mandel and
Ellis [MEO05], towards our final system, which is based on descriptions of short music
excerpts provided by an mcRBM, improves the quality of the similarity measure. In
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particular, unsupervisedly learned features on PCA-whitened mel-spectral frames
outperform MFCCs, block-wise features surpass frame-wise features, and mcRBMs
perform better than mRBMs or k-Means. DBNs did not improve results any further.
Notably, the advantage of mcRBMs over k-Means becomes apparent only when
applying it to sufficiently long music excerpts: k-Means performs best for short
excerpts of 0.3s, while mcRBMs profit from longer mel-spectral blocks up to 1.2s
(Tables 5.12 and 5.17). Especially on the Ballroom dataset, mcRBMs strongly
outperform k-Means due to their better ability of capturing temporal structure
(Figure 5.8).

Compared to the state-of-the-art, our best mcRBM-based models are almost at
par to Pohle’s RTBOF [PSS*09] on the 1517-Artists and Homburg dataset, very
close to Seyerlehner’s BLS [SWP10] on Homburg and in its vicinity on 1517-Artists,
and 2 to 3.5 percent points behind the two methods’ combination CMB [SWP10].
Note that we achieve these results with 580-dimensional or 1,137-dimensional vector
space song models, while BLS uses 9,448 dimensions and RTBOF uses Gaussian-
based models of 1,331 dimensions (Table 5.23).

On the Ballroom dataset, however, there is a larger gap of 3 to 13 percent points to
the state-of-the-art (mainly to RTBOF, which has been optimized for this dataset).
This indicates that our method is not suited well for capturing rhythms, and an ex-
amination of the genre confusion matrices revealed that the main weakness appears
to be a lack of sensitivity to tempo (Section 5.5.2).

Another possible problem with our approach is that we mostly trained the feature
abstractor on the same collection we evaluate on. As we ignore genre information
during training, our system cannot overfit to the genre retrieval or classification
task we evaluate with. The mcRBM will, however, adapt its filters to the kind of
music it is trained on. In Section 5.4.9, we show that we can still take a model from
one dataset and apply it to another collection of a different genre taxonomy. Except
in the case of transferring an mcRBM from 1517-Artists to Homburg, this degrades
performance, though, most severely when exchanging models with mcRBMs trained
on Ballroom. This shows how our features adapt to data, which could be a desirable
effect or a disadvantage, depending on the application.

In terms of producing hubs, our mcRBM-based method seems to be at least
as suited for music recommendation as Pohle’s RTBOF, slightly inferior to Sey-
erlehner’s CMB, and much better than the “Single Gaussian of MFCCs” (Sec-
tion 5.5.3).

All in all, these are encouraging results for unsupervised feature extraction, con-
sidering that RTBOF and BLS (and consequently CMB, the combination of RTBOF
and BLS) are based on several carefully tuned hand-crafted features developed over
the course of several doctoral dissertations [Pam06, Poh10, Sey10].
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6 Conclusion

To conclude this thesis, we firstly review what we achieved, then give an outlook
on future work.

6.1 Recapitulation

We have developed, presented and evaluated a system for content-based music
similarity estimation.

Following a detailed review of existing approaches, we have set up a list of guide-
lines for designing our own system (Chapter 2). Specifically, we decided to follow
the established architecture of a local feature extractor transforming an audio signal
into a sequence of features, a global model aggregating these features into a repre-
sentation of a song, and a distance measure comparing such song models. Noting
that the local feature extraction stage of most systems in literature is hand-crafted,
we decided to employ machine learning for obtaining better performing or bet-
ter justifiable features. In particular, we were interested in unsupervised machine
learning, as ground truth on music similarity to train with is hard to find, and
unsupervised learning has proven useful to learn abstract representations of data
in many other tasks.

A survey of related problems in three other domains, namely text retrieval, com-
puter vision and speech processing, revealed several ideas that could be applicable
to content-based music similarity estimation (Chapter 3). Most importantly, it
showed that generative models of data excel in different tasks of all domains, and
that a recently proposed such model, the mean-covariance Restricted Boltzmann
Machine, learned features enabling state-of-the-art results in both object recogni-
tion and speech recognition. Although originally developed to model images, it has
successfully been used on excerpts of audio spectrograms, and it seemed promising
to apply it to music as well.

We therefore proposed a system for content-based music similarity estimation us-
ing an mcRBM to unsupervisedly learn local features on log-frequency log-magnitude
spectrogram excerpts (Chapter 4). These spectrograms have been hand-crafted in
the Speech Recognition community, but we only aimed to replace the years of
hand-crafting in Music Information Retrieval that build on the same type of spec-
trograms, engineered over the course of several doctoral dissertations: Fluctuation
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6 Conclusion

Patterns [Pam06], their tempo-independent variant [Poh10], and six types of block-
level features [Sey10].

Our comprehensive evaluation showed that our system does not surpass the state-
of-the-art, but performs remarkably close to it without incorporating any musical
knowledge by hand, and with lower-dimensional song models (Chapter 5). Fur-
thermore, we showed that each component of our final system contributes signifi-
cantly to its performance: mcRBMs provide better local feature descriptions than
either mRBMs or k-Means, our system profits from using longer spectrogram ex-
cerpts instead of single spectral frames, and vector space song models outperform
Gaussian-based models. Except when it comes to modeling rhythms, simple k-
Means clustering for feature extraction turns out to reach good performance as
well, if data is appropriately preprocessed. In modeling rhythms, mcRBMs signifi-
cantly surpass k-Means, but still fall behind the state-of-the-art more clearly than
in modeling timbre and short-term temporal structure, as demonstrated by results
on a dataset of Ballroom music. For a more extensive summary of our evaluation,
please see Section 5.5.4.

On a side note, we showed that the Discrete Cosine Transform (DCT) used
in the computation of Mel-Frequency Cepstral Coefficients (MFCCs), the prevalent
feature for modeling timbre in music, does not approximate an optimal decorrelation
of mel filter outputs too well, and is inferior to mel-spectral frames processed with
Principal Component Analysis (PCA) in music similarity estimation (Section 5.3).

6.2 Future Work

To improve on these initial results, we will explore several extensions to our method.

First of all, our current approach of forming a global model by summing the
activations of hidden units for each mel-spectral block of a song completely dis-
cards information about which features were active in combination. For example,
an mcRBM trained on 1-second spectrogram excerpts develops single note onset
detectors at multiple positions within the excerpt (Section 5.4.4.2, p.110), but in
the global song model, no information about patterns of simultaneous onsets is
retained. By training deep architectures, with higher layers integrating informa-
tion over longer contexts (such as convolutional RBMs, p.40), we hope to improve
modeling of temporal structure such as rhythms or melody.

In a similar manner, we could hierarchically integrate information in the fre-
quency domain: Limiting and shifting the spectrogram excerpts not only in time,
but also in frequency, features would not need to be learned separately for differ-
ent pitches, but could be reused (this has also been suggested in [HBCO09, p.3]).
Depending on how the features extracted at different frequencies are aggregated,
features could even become pitch-independent, possibly capturing timbre more ac-
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6.2 Future Work

curately.

Inspired by state-of-the-art methods, we will evaluate whether our system can
benefit from combining features learned on different time scales, analogous to ex-
isting systems combining timbral and rhythmic components. In addition, we will
see how our system improves when combined with existing hand-crafted features
or similarity measures, similar to [SWP10] — while this partly defeats the purpose
of employing unsupervised learning, it could provide further insight into which rel-
evant musical aspects are currently missed by our features, or it could result in
an improvement over the state-of-the-art by combining empirical induction and
knowledge engineering.

We will also further investigate the adaptability of our method to data: By
training on a larger and more diverse dataset, we hope to obtain more general or
more competitive features (that are not specifically targetted to ballroom music,
for example), and by evaluating our method on collections of non-Western music,
we hope to show that our approach can be superior to engineered state-of-the-art
features mainly developed for Western popular music.

In addition to employing unsupervised learning for local feature extraction, we
will leverage larger datasets to also unsupervisedly learn the global song models.
Several of the methods discussed in Chapter 3 might prove beneficial for this.

In parallel, we will investigate if k-means can be further improved by increasing
the size of the dictionary or using soft cluster assignments, and if recent powerful
generative deep models (e.g., [NCKN11]) can provide better representations of mu-
sic excerpts. More generally, we think that separating learning of feature sets from
using them for encoding of music data, similar to [CN11], is an exciting approach
for future research.
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Appendix A

Derivations for Restricted Boltzmann
Machines

To achieve a higher level of self-containment for this thesis, in this appendix we show
how to derive two important quantities for binary Restricted Boltzmann Machines
from their energy function (Equation 4.10, p.63) and the joint probability density
of visible and hidden states defined via this energy function (Equation 4.8, p.62).
In particular, we derive the conditional probability of a hidden unit being active
given a visible state vector, and the gradient of the model’s log likelihood with
respect to the connection weights.

A.1 Conditional probabilities

We will derive the probability of a hidden unit hy being active conditioned on the
states of the visible units v. For conciseness, we omit the model parameters 0 as
a parameter to the energy function and probability distribution functions as we
discuss a single static model only. Some of the steps are marked with a number
above the equals sign and explained below the following equations.
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Explanation of steps marked with a number:

1. We start from the definition of conditional probability.

2. We substitute the definition of the joint probability density function for an
RBM (Equation 4.8, p.62).

3. We split the sum over all configurations g into two sums over configurations
with an active and inactive hidden unit gj, respectively.

4. We substitute the energy function of the bRBM (Equation 4.10, p.63).

5. From the sums over j, we move out the terms for j = k, for which we substitue
the known values of g; = g;.

6. As the terms depending on g, have been moved out of the two long exponen-
tials, the sums over {g|grx = 0} and {g|gr = 1} are equal so their quotient
evaluates to 1.

For the Bernoulli-Bernoulli RBM regarded here, the conditional probabilities of
the visible units can be similarly derived to

P(’Uk = 1|h) = O'(ak + Zijhj).
J

A.2 Likelihood Gradient

In order to train an RBM by maximum likelihood, we need to derive the gradient of
the likelihood function with respect to each model parameter. Instead of optimizing
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A.2 Likelihood Gradient

for the likelihood (Equation 4.15, p.64), we can optimize for the log likelihood,
which is equivalent (because the log function is a stricly increasing function), but
simplifies the derivation. Here we exemplarily show how to derive the gradient
of the log likelihood of the binary RBM with respect to a connection weight W;;.
Again, some of the steps are numbered and explained further below.
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Explanation of steps marked with a number:

1. We substitute the definition of p(v|0) (Equation 4.11, p.63).
2. We derive the log functions, applying the chain rule of differentiation.

3. We substitute the definition of the partition function Z(6) (Equation 4.9,
p. 62), then derive the exponential functions, again applying the chain rule.

4. We substitute and derive the bRBM energy function (Equation 4.10, p. 63).
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