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Abstract—Singing Voice Detection, also referred to as Vocal
Detection (VD), aims at automatically identifying the regions in
a music recording where at least one person sings. It is highly
challenging due to the timbral and expressive richness of the
human singing voice, as well as the practically endless variety
of interfering instrumental accompaniment. Additionally, certain
instruments have an inherent risk of being misclassified as vocals
due to similarities of the sound production system. In this paper,
we present a machine learning approach that is based on our
previous work for VD, which is specifically designed to deal with
those challenging conditions.

The contribution of this work is three-fold: First, we present
a new method for VD that passes a compact set of features to an
LSTM-RNN classifier that obtains state of the art results. Second,
we thoroughly evaluate the proposed method along with related
approaches to really probe the weaknesses of the methods. In
order to allow for such a thorough evaluation, we make a curated
collection of data sets available to the research community. Third,
we focus on a specific problem that was not obvious and had
not been discussed in the literature so far. The reason for this
is precisely because limited evaluations had not revealed this
as a problem: the lack of loudness invariance. We will discuss
the implications of utilising loudness related features and show
that our method successfully deals with this problem due to the
specific set of features it uses.

I. INTRODUCTION

THE task of detecting human singing voice in mixed music
signals – henceforth referred to as vocal detection (VD)

– remains a challenging one.
Vocals could be considered a musical instrument, most

likely the one with the highest amount of physical variation
and emotional expressiveness. In consequence of a compli-
cated movement of the jaw, tongue, and lips, the shape of the
vocal tract is modified, thus enabling the singer to pronounce
the lyrics of a song.

Furthermore, a modulation of the airflow through oscillation
of the vocal folds allows to produce a wealth of different
timbres1 and a wide range of fundamental frequencies (f0)
of up to 10 octaves [1]. The perceived height of a note
is independent of timbre and referred to as pitch, whereas
f0 is the main cue for pitch perception. Continuous pitch
fluctuations were already used to detect singing voice e.g., in
[2] and [3]. It seems they are a typical characteristic of vocals,
but not exclusively. In Fig. 1, we can see the spectrograms of
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actual singing voice (upper left) along with examples of three
instruments that are capable of producing similar sub-semitone
pitch fluctuations. Therefore, instruments – especially those
built to mimic the expressiveness of the human singing voice
– have an inherent risk of being misclassified as vocals. We
chose this specific voice example to demonstrate another fact
about the human singing voice which is often overlooked. As
we can see in the first four seconds of the spectrogram, it is
also possible – at least for well trained singers – to hold the
pitch perfectly. Consequently, the absence of pitch fluctuations
does not imply the absence of vocals, and the presence of pitch
fluctuations does not imply the presence of vocals.

Vocals and some instruments share not only the capability
to produce pitch fluctuations, but also the capability to produce
similar timbres. This is due to similarities in the sound pro-
duction, e.g. a saxophone’s reed resembles human vocal folds.
Additionally, the practically endless variety of interfering
instrumental accompaniment (see Fig. 2) contributes to the
complexity of this task.

The very first attempt to tackle VD was done by Berenzweig
and Ellis in [4], where they utilised the posterior probabilities
of phonemes from a neural network based speech recogniser
in order to derive a variety of models. After that, researchers
often focused on engineering high-level features specifically
for this task, or utilising features known from the speech
processing domain, e.g. Mel-Frequency Cepstral Coefficients
(MFCCs), Linear Predictive Coefficients (LPCs), Perceptual
Linear Predictive Coefficients (PLPs).

Li and Wang [5] used a VD before they separated the vocals
from instrumental accompaniment. They used MFCCs, LPCs,
PLPs, and the 4-Hz harmonic coefficient as features, which
they fed to a Hidden Markov Model (HMM) [6].

Ramona et al. used in [7] a very diverse set of features.
These include MFCCs, LPCs, zero crossing rate (ZCR),
sharpness, spread, f0, and some aperiodicity measure based
on the monophonic YIN library [8]. Furthermore, a multitude
of features is extracted from two different time scales. All in
all, their feature vector comprises 116 components, which is
then reduced to 40 by a feature selection algorithm [9] and
fed to a Support Vector Machine (SVM).

Mauch et al. [3] utilise four features in total, among
them MFCCs. They introduce three novel features which are
based on Goto’s polyphonic f0-estimator PreFEst [10]: Pitch
fluctuation, which is basically the standard deviation of intra-
semitone f0 differences. In addition to the MFCCs of the
untouched signal, the authors also propose MFCCs of the
re-synthesised predominant voice, and normalised amplitude
of harmonic partials. An SVM-HMM [11], [12] is used for
classification.
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Weninger et al. [13] extracted a 46-dimensional feature
vector containing the first 13 MFCCs (including the 0th),
along with their first and second order derivatives (delta
and double delta), short-time energy, its zero- and mean-
crossing rate, voicing probability, f0, harmonics-to-noise ratio,
and predominant pitch computed with the open-source toolkit
openSMILE [14]. The features are extracted after applying
a source separation algorithm specifically designed to extract
the vocals of the lead singer. As a classifier, they use Bidirec-
tional Long Short-Term Memory Recurrent Neural Networks
(BLSTM-RNNs), which have access to the complete past and
future context. Originally, this method was developed in order
to identify the gender of the lead singer, but they also report
excellent results for the VD task.

In [15], Hsu et al. used Gaussian Mixture Models (GMMs)
as states in a fully connected HMM with the Viterbi algo-
rithm [6]. They used Harmonic/Percussive Source Separation
(HPSS) as a pre-processing step. Their 39-dimensional feature
vector contains 12 MFCCs, the log energy, and their first and
second order derivatives.

In [16], it was shown that only appropriately selected and
optimised MFCCs fed to a Random Forest classifier could
achieve recognition results that are almost on par with more
complicated methods.

The current state of the art with a feature engineering
approach is proposed in [17], where features like MFCCs,
Fluctogram [18], and some reliability indicators are fed to
an LSTM-RNN. The method is real-time capable, has a low
latency, and was evaluated on several data sets, most of them
publicly available.

Recently, researchers also started utilising feature learning
from a low-level representation with deep learning methods.
Leglaive et al. fed pre-processed mel-scaled spectrograms (by
a two stage HPSS) to deep BLSTMs in [19]. They iteratively
extended the architecture by hidden layers based on results on
the test set of the Jamendo corpus [7], and report no evaluation
results on truly unseen data.

The current state of the art utilising Convolutional Neural
Networks (CNNs) on mel spectrograms was proposed by
Schlüter and Grill in [20] and further refined in [21, Sec. 9.8].
They apply data augmentation techniques (pitch shifting, time
stretching, and frequency filters) in order to improve per-
formance. Without data augmentation – which most likely
improves other methods as well – the performance seems to
be on par with the feature engineering approach from [17].

The specific contributions of this paper are three-fold: As
our first contribution, we describe a compact, light-weight
method for VD that further improves upon previous work of
ours [17] in Section II. Despite similarities of the classifier
and feature extraction, we managed to reduce the computa-
tional burden, remove a weakness related to varying levels of
loudness, reduce the tendency of the algorithm to misclassify
certain instruments as vocals, while still improving the overall
performance.

Naturally, such claims cannot be made without proper
assessment over multiple and diverse sets of data. We consider
the inclusion of instrumental music and evaluation across
data sets of paramount importance. In doing so, we increase
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Fig. 1. Spectograms of instruments capable of producing voice-like pitch
trajectories. Upper left plot: actual singing voice; upper right: saxophone;
lower left: electric guitar; lower right: pan flute.
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Fig. 2. Spectograms to demonstrate interferences of instrumental accompa-
niment. Upper plot: vocals only; lower plot: mixed version. Especially in
the second half the interferences are quite severe, making it hard to extract
information that relates solely to vocals.

the relevance of the results. Unfortunately, openly available
data sets to evaluate VD methods are scarce. Therefore,
curated data sets based on previous findings (high risk of
false positives with certain instruments) are made available
to the research community: Ground truth annotations for one
openly available data set containing 100 songs, and six smaller
data sets containing instrumental music that were collected
and sorted into specific categories relating to the predominant
instruments. Those and other publicly available data sets
will be explained in more detail in Section III. Our second
contribution is the evaluation procedure in conjunction with
that data, and will be discussed in Section IV.

In Section V, we will expose that the previous evalu-
ation procedure still yields limited insights. As our third
contribution, we focus on a specific problem that had not
been discussed in the literature so far: the lack of loudness
invariance. We will discuss why utilising loudness related
features makes the outcome of a standard evaluation procedure
less meaningful. This paves the way to recognise the necessity
of a different evaluation strategy, which we then propose. We
finally demonstrate with concrete examples that even though
for some data sets the accuracy is equal for two methods, they
behave quite differently when we evaluate loudness invariance
according to the proposed evaluation.

II. METHOD

In this section, we discuss a set of features that is specifi-
cally tailored for the task of VD in combination with LSTM-
RNNs. This is the first contribution of our work, and a
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Fig. 3. The Fluctogram (lower plot) targets only sub-semitone fluctuations in
the second half of the spectrogram (upper plot), not the discrete pitch changes
in the first half.

continuation of previous research described in [17]. Regarding
our set of features, it is worth mentioning that all of them
are completely invariant to the level of energy/loudness – a
design choice that leads to a desirable robustness which will
be discussed later in Section V. The measurements taken to
improve upon our previous method all contribute approxi-
mately equally and are as follows. Contrary to our previous
approach, the reliability indicators are not fed to the classifier
anymore, but used to post-process the Fluctogram. By using
only a compact set of features, we drastically reduce the
number of weights in the LSTM-RNN. This procedure limits
the network’s capability to fit the training data and prevents
overfitting, hence acting as a regulariser. As a consequence of
these modifications, our method is less prone to false positives,
which will be demonstrated later in Section IV.

A. Classifier

RNNs are neural networks designed for stepwise processing
of sequential data, equipped with feedback (recurrent) connec-
tions to access the previous step’s internal state. This allows
RNNs to keep information in memory, and model an indefinite
temporal context. During training, recurrent connections can
lead to vanishing or exploding gradients, which Hochreiter
and Schmidhuber proposed to mitigate with Long Short Term
Memory (LSTM) units in [22]. The RNNs’ capability to learn
the amount of temporal context needed for classifying the
current frame can be an advantage over approaches with a
fixed-size context such as HMMs or CNNs.

LSTM-RNNs proved to be very successful and have de-
livered state of the art performance in a wide range of
tasks where the temporal context of a signal is important,
e.g. in handwriting recognition [23] or phoneme recognition
[24]. Since temporal context is sometimes also necessary for
humans to make a vocal-nonvocal decision,2 it seems natural
to use LSTM-RNNs for VD.

B. MFCCs

The spectral envelope of an audio signal is strongly related
to timbre, and envelope descriptors like LPCs, PLPs, or
MFCCs are used in most state of the art VD methods. Among
the aforementioned descriptors, MFCCs [25] are the most

2examples at http://www.cp.jku.at/misc/ieee2017vd/

933 

1481

2336

3709

f 
[H

z]

fluct
cont

1 2 3 4
time [s]

1319

2094

3304

5244

f 
[H

z]

1 2 3 4
time [s]

fluct
cont

Fig. 4. Left side: spectrograms representing the 9th band (upper plot) and
the 11th (lower plot). Right side: the corresponding Fluctogram (fluct) and
Spectral Contraction (cont). The Fluctogram is most reliable when a large
amount of energy is located near the center (notice how the vibrato at the end
is only well captured in the upper plot). In such cases, the higher reliability
is indicated by a higher Spectral Contraction.
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Fig. 5. Left side: spectrogram of piano onsets. Right side: the corresponding
Fluctogram (fluct) and Spectral Flatness (flat). As can be seen, the percussive
nature of those onsets - even though they stem from a harmonic, pitch-
discrete instrument - causes occasionally false positive pitch fluctuations. A
high Spectral Flatness (notice the increased values corresponding to the onsets)
indicates low reliability of the Fluctogram in such cases, enabling us to ignore
those non-existing pitch fluctuations.
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Fig. 6. Left side: spectrogram of actual singing. Right side: the corresponding
Fluctogram (fluct) and Spectral Flatness (flat). The quiet last second causes
some false positive pitch fluctuations. Again, a high Spectral Flatness (notice
the increased value in the last second) indicates low reliability of the
Fluctogram in such cases.

widely used audio features, especially for Music Information
Retrieval (MIR) tasks. In [16], it was shown that it can make
a substantial difference if MFCCs are parametrised towards a
specific task, in this case VD. Classification results using only
such optimised MFCCs along with their first order derivatives
(deltas) seemed to be on par with sometimes more complicated
state of the art methods.

In several experiments with our internal train data set, we
discovered that for classifiers like Random Forests or SVMs
as used in [16], [18], [26], [27], MFCCs turned out to be
the most useful features, and adding their deltas increased the
performance only slightly. However, it seems to be different
when using sequential classifiers like RNNs as in [13], [17].
In this case, our experiments revealed quite a different ranking
of feature importance. The MFCC deltas turned out to be the
most useful features, while adding MFCCs themselves even
lowered the performance. Regardless of the classifier, MFCC
double deltas never turned out to be useful. Therefore, we only
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use the deltas of MFCCs 0− 17, resulting in 18 attributes in
our proposed method.

The observation window to compute the MFCCs is 100
ms long, and always placed symmetrically around the current
frame of 20 ms, that is, we use additional 40 ms of the signal
in both directions.

C. Fluctogram and Reliability Indicators

The Fluctogram is a refinement of a feature that was initially
introduced by Sonnleitner et al. [28] to detect the presence
of speech in mixed audio signals. This feature was based on
the observation that spectrograms of speech signals tend to
display patterns of tonal components (i.e. partials) that vary
in frequency over time. Since vocals often exhibit a similar
characteristic, we take the basic idea of computing the cross-
correlation of neighbouring frames.

In particular, each magnitude spectrum of a time frame
|Xn| is compared to the subsequent one |Xn+1| by computing
the cross-correlation. The actual feature value is the index
of the maximum correlation when |Xn+1| is shifted ±m
frequency bins. A non-zero feature value indicates a pitch
fluctuation. While we could instead employ f0-estimation
and compute the temporal difference between f0 estimates,
directly cross-correlating spectral frames has two advantages:
First, multiple pitch estimation is still considered an open
problem for mixed musical signals, and potential errors will be
propagated through the remaining processing chain. Second,
vocals are not always predominant, therefore characterising
predominant pitch trajectories would give results that are not
always targeted at vocals.

1) Fluctogram: The procedure to compute the Fluctogram
is as follows. First, we perform a Discrete Fourier Trans-
form (DFT) on 20 ms audio frames to obtain the short-
term magnitude spectrum |Xn[f ]|. The actual observation
window to compute the spectrum is 100 ms long, and always
placed symmetrically around the current frame, that is, we use
additional 40 ms of the signal in both directions. In order to
ensure proper frequency resolution in the lower region for the
logarithmic scaling, we apply a zero padding factor of 23.

We then map the frequency axis of the spectrum to a
logarithmic scale that relates to pitch. The rationale behind
this is that fluctuating trajectories of the partials need to be
equidistant for the cross-correlation to reveal them. We suggest
a pitch scale that spans 4.5 octaves from A#3 (233 Hz) to
E8 (5274 Hz). The result is a logarithmically scaled spectrum
with 540 bins, where 10 bins cover the range of one semitone.
Notice that the pitch of vocals could well be beneath the
lower boundary of this scale. Nevertheless, it is very likely
to capture pitch fluctuations, since the relatively high amount
of partials that are produced along with low pitched sounds
still influences the result of the cross-correlation in the region
above the actual pitch.

Afterwards, we divide this spectrum into 11 overlapping
bands, each band 240 bins wide, spanning two octaves. The
bands are always 30 bins apart from the next, which equals
three semitones. Intuitively, it would make sense to set the
individual bands only one semitone apart, but experiments with

our internal data led to the conclusion that this mostly just
increases the size of the feature vector without significantly
increasing the performance.

We then weight each band by a triangle window that
matches its bandwidth to reduce the influence of partials that
could cross the band boundaries.

The harmonic fluctuations within each band are then re-
vealed by pinpointing the maximum cross correlation at shifts
of ±5 bins, which equals half a semitone. Therefore, only
sub-semitone, pitch-continuous fluctuations are targeted and
detected, as can be seen in Fig. 3. Notice that we don’t capture
the actual trajectories of the harmonic fluctuations depicted in
the spectrogram, but their first order derivatives.

2) Reliability Indicators: As will be demonstrated later on,
the Fluctogram is error-prone under certain circumstances, and
some fluctuations are either not present in the signal at all,
or not well captured. To alleviate this, additional information
that characterises the reliability of the information captured
in the individual bands of the Fluctogram is needed. In short,
the Fluctogram is most reliable when most of the energy is
concentrated near the center of the frequency band, and the
signal is more harmonic and less like white noise. Therefore,
we suggest to compute two additional descriptors that we use
to post-process the Fluctogram.

The first reliability indicator, which we call Spectral Con-
traction (SC) [18], was inspired by Spectral Dispersion (SD)
[29]:

sd[n] =

N−1∑
j=0

|Xn[j]|2|j − fc|, (1)

where n is the index of the frame, N the number of bins of
the spectrum, Xn the spectrum, j the index of a bin, and fc
the index of the central bin of the spectrum.

Basically, SD indicates how much of the energy resides in
the center of the power spectrum |Xn|2, and the smaller its
value, the more energy is concentrated near the center. The
fact that SD was not developed with our specific use-case in
mind contributes to two problems. First, the result is energy-
dependent (unless derivatives are used as actually suggested
for beat-tracking in [29]). Second, the applied weighting
|j−fc| of the power spectrum is effectively an inverse triangle
window, which we consider too sensitive to pitch fluctuations.

With that in mind, we suggest to use the ratio of the
weighted power spectrum |Xn|2 ∗ w to the power spectrum
|Xn|2 itself to compute SC, as given in Equation 2. The result
is loudness invariant and always in the range [0 − 1], where
small values indicate that the energy is widely dispersed. Large
values indicate that the energy is primarily concentrated near
the center. In order to reduce the sensitivity towards sub-
semitone pitch fluctuations, we suggest as weighting window
w a Chebyshev window that matches the bandwidth with a
sidelobe attenuation of 200 dB.

sc[n] =

N−1∑
j=0

|Xn[j]|2w[j]

N−1∑
j=0

|Xn[j]|2
(2)
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In Fig. 4 we demonstrate the usefulness of the SC feature,
where we can see the spectrograms of the same signal, but
from two different frequency bands. The upper left plot depicts
the spectrogram of the 9th band, and the lower left depicts the
spectrogram of the 11th frequency band. On the right sides
we can see the corresponding Fluctogram and SC values. The
vibrato towards the end is well captured by the Fluctogram in
the upper right plot, but not so much in the lower right plot. By
comparing the spectrograms, a correlation between the amount
of energy near the center and the reliability of the Fluctogram
reveals itself: The more the energy is concentrated near the
center, the more reliable the Fluctogram becomes. In order
to keep only well captured fluctuations, we reset Fluctogram
values to 0 where the corresponding SC is below 0.1. We don’t
actually feed this feature to the classifier directly.

The second reliability indicator describes the similarity of
the signal to white noise, and we suggest the Spectral Flatness
(SF) measure [30]. It is usually computed as the log-scaled
ratio of geometric mean to arithmetic mean of the power
spectrum. However, for the sake of simplicity, we suggest to
compute SF as follows:

sf [n] =

N

√
N−1∏
j=0

|Xn[j]|

1
N

N−1∑
j=0

|Xn[j]|
(3)

The result is loudness invariant and always in the range
[0−1], where small values indicate high harmonicity and high
values indicate a high similarity to white noise.

Again, we don’t feed this feature to the classifier, but we
use it to reset Fluctogram values to 0, as soon as the SF
exceeds a value of 0.6. The justification for this measurement
is given in Fig. 5, where we can see the occasional false
positive fluctuations corresponding to percussive onsets of an
otherwise harmonic instrument (piano). Another example of
false positive fluctuations is given in Fig. 6, caused by a high
amount of noise towards the end of the plot.

The resulting Fluctogram does not suffer from false pos-
itives or poorly captured fluctuations anymore, and has 11
feature values.

D. Complete Feature Set and Final Classifier

For VD, the audio signal is analysed and classified with a
time resolution of 20 ms. That is, we have 50 training examples
per second, each characterised by 29 features computed around
the current time point: 11 Fluctogram features, post-processed
by two different reliability indicators, and 18 MFCC-based
features (deltas from MFCCs 0-17).

All of the features can be calculated from the same spectro-
gram with an observation window length of 100 ms, centered
around a 20 ms frame. After extraction, we standardise fea-
tures to zero-mean and unit variance according to the train
set. The validation and test sets are always left unseen in this
regard, and normalised according to the train set.

The LSTM-RNN has one input layer matching the size
of the feature vector (29), one hidden layer with 55 LSTM

units, and one softmax layer with two units.3 The weights are
randomly initialised from a zero-mean Gaussian distribution
with a standard deviation of σ=0.05. We add noise to the input
features for improved generalisation in the form of another
zero-mean Gaussian distribution (σ=0.3).

Each song from the train set is then presented to the LSTM-
RNN on a frame-by-frame basis in correct order. The weights
are updated with a steepest descent optimiser [31] (rate=10−5,
momentum=0.9) in order to minimise the cross entropy error
[31].

III. DATA

In this section, we stress the importance of proper data
sets for VD evaluation based on a discussion of three major
problems/threats: first, the threat to produce false positives by
mistaking instruments as vocals; second, the risk of missing
vocals with low SNR; third, the danger of getting overly
optimistic results due to something that we would call the
data set effect. As a consequence, we publish novel data sets,
each carefully designed to reveal the three biggest potential
weaknesses of VD algorithms.

A. Threat 1: False Positives
As previously discussed, highly harmonic instruments have

an increased risk for being misclassified as vocals. Usually,
metrics like the false positive rate or precision on songs (i.e.,
recordings that actually contain a singing voice) are used
to estimate the performance in this regard. However, a high
precision does not necessarily reflect a high robustness against
false positives. Only the presence of a large number of adver-
sarial examples allows for a meaningful robustness evaluation.
Therefore, we suggest to incorporate instrumental music in the
evaluation, preferably instrumental cover versions, where the
vocalist is replaced by a highly expressive instrument. For
the remainder of this paper, we refer to such recordings as
instrumentals, and to recordings actually containing vocals
as songs. Fortunately, it is relatively easy to compile a data
set which contains solely instrumentals. In the past [18],
we already identified instruments that tend to produce false
positives (strings, electric guitars, flutes, and saxophones), and
we just need to compile instrumentals having those as lead
instruments. Every frame in an instrumental that is classified
as vocal by a VD algorithm is a false positive then.

Since different instruments challenge VD algorithms in
different ways, we suggest to analyse them separately.

B. Threat 2: Low SNR
Many data sets used in the literature contain profession-

ally recorded and mastered songs. Usually, those recordings
have relatively high SNRs, which in our case could also be
described as vocals-to-accompaniment ratio. However, since
the advent of digital music distribution services like Jamendo
[32], many recordings are available that are produced with
less-than-optimal recording equipment and mixing/mastering
skills, often with a low SNR. Therefore, we suggest to evaluate
VD algorithms also in this regard.

3The softmax output layer is not necessary for a 2-class problem, but can
easily be modified to support N-class problems.
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C. Threat 3: Data Set Effect

The data set effect occurs for many reasons and is not so
easy to spot. It is closely related to overfitting, and considers
also the possibility that overfitting is present but not noticeable
due to data set specifics. In general, the data set effect
comprises all the reasons that could lead to overly optimistic
results, like similarities of training and testing data in terms of
audio codec, genre, artist, recording or mastering equipment,
instrument and vocal timbre, mood, rhythm, loudness, singing
style, and vocalist gender. Related to this are the artist and
album effects discussed in the Music Information Retrieval
(MIR) literature, mostly in the context of audio similarity [33]
and artist identification [34].

Since it sometimes occurs that research is done on data sets
without in-depth knowledge of such subtle relationships, one
could end up totally unaware of the presence of this effect.
However, by using different data sets for training and testing
respectively, this pitfall can be easily avoided, yielding more
realistic results.

To give an example, for the RWCMDB-P-2001 data set
[35] it is common practice to report 5-fold CV results where
the folds are randomly generated [3], [16]–[18], [20]. Due to
production resource constraints, the 100 songs are performed
by only 34 singers. Obviously, by randomly dividing such a
data set, some singers will end up in the training as well as in
the test set, rendering the results less meaningful. Therefore,
we suggest to use this data set exclusively for testing. An
overview of our train, validation, and test setup is given in
Table I, and will be discussed in more detail in the following
sections.

D. Train Data

The train data is composed of 316 audio recordings, for
a total of 20 hours, 13 minutes. Approximately 30% of the
frames are annotated as vocal, and the amount of a capella
singing, i.e. without instrumental accompaniment, is negligi-
ble. As already stated, we would prefer to use complete data
sets in either train, validation, or test set. However, we kept
the original split of the jamendo [32] data set, and added the
subsets to our own collection accordingly. This was necessary
to ensure a sufficient amount of vocal examples in the training
phase. The train data contains the following data sets:

• golden pan (pan flute instrumentals)
• golden sax (saxophone instrumentals)
• rockband (rock songs)
• jamendo training (pop/rock songs)
• heavy instr. (electric guitar instrumentals)
• opera (opera arias)
The opera songs comprise a selection from the operas La

Traviata, Madame Butterfly, and Die Zauberflöte.

E. Validation Data

Validation data is used for early stopping [31] (no im-
provement after 20 epochs) in order to yield models with
good generalisation capabilities. Additionally, the results on
the validation data were used to find suitable thresholds for re-
setting non-reliable Fluctogram values as previously discussed

in Section II-C2. It is composed of 239 audio recordings, for
a total of 17 hours, 38 minutes. Approximately 21% of the
frames are annotated as vocal. The validation data contains
the following data sets:

• dg (opera songs from Don Giovanni)
• hi (electric guitar instrumentals)
• jamendo validation (pop/rock songs)
• pakarina (pan flute instrumentals)
• rb (rock songs)
• softj (saxophone instrumentals)
• sq (string quartet instrumentals)

F. Test Data

The test data contains only audio recordings available to
the research community, and is unseen in all regards. It is
composed of 545 audio recordings, for a total of 41 hours, 48
minutes. Approximately 21% of the frames are annotated as
vocal. The following data sets are not provided by the authors,
but available for research from public sources.

• jamendo test (pop/rock songs)
• rwc_pop (pop/rock songs)
• rwc_classical (orchestra instrumentals)
• rwc_jazz (jazz instrumentals)

Data sets with the prefix rwc_ are all part of the RWC Music
Database [35]. We had to ignore two recordings from the
rwc_jazz data set, since they contained singing voice. The
exact list of recordings that we used for our evaluation is
available on the accompanying web page to this article. For
the data set rwc_pop we revised the ground truth annotations,
which we will also release.

The following data sets are part of our second contribution,
and are available online as well. They are organised in dif-
ferent categories mainly with respect to the most challenging
instruments for VD algorithms known to us so far.

• msd100 (rock songs)
• yt_classics_song (opera songs)
• yt_classics_instr (orchestra instrumentals)
• yt_guitars (acoustic guitar instrumentals)
• yt_heavy_instr (electric guitar instrumentals)
• yt_wind_flute (flute instrumentals)
• yt_wind_sax (saxophone instrumentals)
Specifically with the threat of low SNR in mind, we propose

to use the publicly available Mixing Secret Dataset 100
(msd100) [36], for which we manually prepared annotations
for the presence of vocals. This data set was initially used for
source separation evaluation, and includes 4 stereo sources
corresponding to the bass, the drums, the vocals and the
remaining instruments for each of the 100 songs. Although
the songs are professionally recorded, the provided mixes are
not professionally mixed and mastered (at least according to
our own judgement). Some songs contain vocals that are hard
to perceive, even for human listeners, which makes it a very
challenging data set that helps to scrutinise VD algorithms.

Data sets with the prefix yt_ were selected from Youtube,
and will be provided as file lists. All ground truth annotations
will be made available directly.
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TABLE I
OVERVIEW OF THE DATA SETS, FOR EACH SET INDICATING IF IT ACTUALLY CONTAINS SINGING VOICE, THE AVAILABILITY, IF WE CURATED IT BY

OURSELVES, AND IF WE CONSIDER IT SUITED TO HELP (WHEN TRAINING) OR GIVE INSIGHT (WHEN TESTING) REGARDING THE AFOREMENTIONED
THREATS.

data set contains publicly annotated # recordings length threat 1 threat 2 threat 3
vocals available ourselves [min] (false pos.) (low snr) (data set effect)

Train set
jamendo train X X – 61 239 X – –
opera X – X 32 142 – – X
rockband X – X 75 296 X – –
golden pan – X X 28 103 X – X
golden sax – X X 100 345 X – X
heavy instrumentals – – X 20 88 X – –
all – – – 316 1213 – – –

Validation set
dg X – X 13 45 – – X
jamendo validation X X – 16 61 X – –
rb X – X 74 299 X – –
hi – – X 72 345 X – –
pakarina – X X 15 70 X – X
softj – X X 29 152 X – X
sq – X X 20 68 X – X

all – – – 239 1040 – – –

Test set
jamendo test X X – 16 71 – – –
msd100 X X X 100 417 – X X
rwc_pop X X X (revised) 100 407 – – X
yt_classics_song X X X 9 47 – – X
rwc_classical – X X 55 308 X – X
rwc_jazz – X X 48 218 X – X
yt_classics_instr – X X 112 622 X – X
yt_guitars – X X 12 51 X – X
yt_heavy_instr – X X 50 209 X – X
yt_wind_flute – X X 21 76 X – X
yt_wind_sax – X X 22 82 X – X

all – – – 545 2508 – – –

With these data sets, we can now evaluate VD algorithms in
more detail compared to what has been done in the literature
so far. In the following Section we will demonstrate that even
though some methods are conceptually very close (all LSTM-
RNNs with MFCCs+more features), on some data sets they
are quite different in behaviour.

IV. EXPERIMENTS

In the following section, we present the results of several
experiments. As feature engineering baselines for comparison
we chose the methods from Weninger et al. [37]4 and our
previous approach from [17] that we already briefly introduced
in Section I. This selection is based on the fact that they all
are conceptually very close to our proposed approach: MFCCs
and some additional features fed to an LSTM-RNN classifier.5

As a feature learning baseline we chose the method from
Schlüter [21, Sec. 9.8]. In order to investigate the impact of
data augmentation (pitch shifting up to ±30%, time stretching
up to ±30%, and frequency band filters up to ±10 dB; deemed
the optimal combination in [20]), we report results achieved
with and without it.

4We do not utilise the source separation from [37] as this will most likely
improve the other methods as well, according to [27]

5For all methods, we utilise RNNLIB from Alex Graves [38]

For the remainder of this paper we refer to the methods
as follows. WEN: Weninger et al. [37]; LEH: Lehner et al.
[17]; CN1, CN2: Schlüter [21, Sec. 9.8] without and with
data augmentation, respectively;6 NEW: the proposed method.
All results were achieved with a single model each (i.e., no
ensembling), selected from 24 models trained with different
random initialisations for each method. The model selection
for each method was based on the best performance according
to the results on the validation set.

The key aspects of all four methods are listed in Table II.
Notice that our proposed method NEW has the least number of
features and learnable network parameters (i.e., weights). The
minimum latency due to the feature extraction is explained in
detail in [17]. All methods are online capable, except method
WEN due to the use of a BLSTM-RNN. This variant of the
LSTM-RNN requires access to the complete future context
of the sequence, hence turning method WEN into an offline
method.

In Table III the results of validation and test sets are listed
in terms of accuracy. For the remainder of this section, we

6Specifically, the baseline from https://github.com/f0k/ismir2015/tree/phd_
extra, with an adapted learning rate schedule to account for the larger data set,
dropping the rate when the error plateaus and stopping on the third plateau.

https://github.com/f0k/ismir2015/tree/phd_extra
https://github.com/f0k/ismir2015/tree/phd_extra
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TABLE II
OVERVIEW OF THE KEY ASPECTS OF THE METHODS.

WEN LEH CN1/CN2 NEW
# features 46 111 n/a 29
# weights 82 k 37 k 1600 k 19 k
min. latency [ms] 200 140 1260 140
online capable no yes yes yes
loudness invariant no no no yes

focus on the test set results – the only results on truly unseen
data.

Regarding songs (row all song), our proposed method NEW
outperforms method WEN by 8.1 percentage points (ppt),
method LEH by 1.1 ppt, method CN1 by 0.4, and is only
outperformed by method CN2 by 2.7 ppt. The data set msd100
seems to be the most challenging. This is not surprising, since
we specifically selected it in order to evaluate performance
regarding low SNR of vocals (Threat 2). All methods suffer
from a low recall (i.e., true positive rate), and method NEW is
on par with CN1, and outperforms method WEN by 7.6 ppt,
and method LEH by 2.7 ppt. CN2 outperforms method NEW
by 1.5 ppt.

Regarding instrumentals (row all instr), our proposed
method NEW is on par with method CN2, outperforms method
WEN by 2.1 ppt, and method LEH by 0.6 ppt, and method
CN1 by 0.2 ppt. The data set yt_wind_sax leads to a relatively
high number of false positives in general, but seems to be
specifically challenging for method WEN, which produces
17.8% false positives.

If we would try to interpret the test set results, it would be
plausible – hence tempting – to draw, inter alia, the following
conclusions: (1) Overall, CN1 is on par with NEW; (2) CN2
performs better on songs, and on par on instrumental music
compared to NEW; (3) WEN handles all instruments relatively
well, except saxophone music; (4) LEH seems to have just
a slight weakness on wind instruments. In order to support
those conclusions even more, we could also report results
based on other metrics like precision, recall, and f-measure.
Furthermore, statistical significance tests if the best performing
method is an actual improvement over the other approaches
seem to be appropriate.

However, we do not report any more results in order to
avoid the incorrect impression that they would improve the
quality of the evaluation. This is based on the realisation
of the severe implications on the interpretability of standard
evaluation results caused by a lack of loudness-invariance. As
we will demonstrate in the following section, an evaluation
that disregards loudness-invariance yields misleading results –
regardless of the evaluation metrics.

V. LOUDNESS

In this section, we will demonstrate the negative effects of
utilising loudness-related features like 0th MFCC, as is done in
the baseline methods WEN [37] and LEH [17]. Furthermore,
we will demonstrate that this is also an issue for our feature
learning baseline methods CN1 and CN2 [21, Sec. 9.8], and
data augmentation does not lead to satisfactory results. In this

TABLE III
VALIDATION AND TEST SET RESULTS (ACCURACIES [%]). THE UPPER

SECTIONS OF EACH OF THE TWO TABLES CONTAIN THE RESULTS
REGARDING ACTUAL SONGS, AND THE LOWER SECTIONS RELATE TO PURE

INSTRUMENTAL MUSIC.

Validation Set
data set WEN LEH CN1 CN2 NEW
dg 89.2 90.2 91.9 92.4 90.2
jamendo 80.1 80.8 88.8 91.3 84.0
rb 85.2 86.0 91.1 92.4 88.8
all song 84.9 85.7 90.8 92.2 88.2
hi 98.5 98.4 99.2 99.1 99.8
pakarina 94.8 97.6 98.3 98.9 99.8
softj 98.1 99.5 99.1 99.7 99.4
sq 92.0 99.9 99.1 98.8 99.6
all instr 97.3 98.7 99.1 99.2 99.7
all validation 92.5 93.7 95.9 96.5 95.2

Test Set
data set WEN LEH CN1 CN2 NEW
jamendo 84.2 87.0 92.1 93.2 85.1
msd100 70.8 75.7 78.4 79.9 78.4
rwc_pop 77.5 87.7 85.4 90.6 87.7
yt_classics_song 84.9 90.0 91.6 93.7 89.0
all song 75.4 82.4 83.1 86.2 83.5
rwc_classical 97.2 99.9 99.9 99.9 99.9
rwc_jazz 97.0 98.7 99.7 99.9 99.8
yt_classics_instr 98.9 99.8 99.3 99.4 100
yt_guitars 99.1 99.5 99.3 99.5 100
yt_heavy_instr 98.5 97.1 98.4 99.4 99.8
yt_wind_flute 98.4 96.4 99.2 99.6 99.4
yt_wind_sax 82.2 96.6 99.1 98.6 99.3
all instr 97.4 98.9 99.3 99.5 99.5
all test 89.1 92.8 93.2 94.5 93.5

work, loudness refers to some strictly increasing function of
the signal power, such as the 0th MFCC. The exact definition
is not important because we are only interested in loudness in-
variance. Since explicit information about loudness invariance
is usually not provided, we propose an evaluation strategy that
specifically targets the negative impact on performance caused
by varying levels of loudness.

After investigating the Jamendo train set [32], an almost
perfect linear correlation revealed itself: the higher the value
of the 0th MFCC, the higher the probability of the frame being
annotated as vocal. We utilised the 0th MFCC also in our
previous works [16]–[18], [26], [27], since it led to a raise
in accuracy of approximately 4 ppt on an internal data set
comprising only songs. However, by including instrumental
music in the evaluation, we discovered that the utilisation
of features correlated with loudness increases the risk of
instrument-vocal misclassification. After further investigations,
it became clear that the negative impact is more severe than
initially estimated, since we could also trick models into
generating false positives on non-musical sound sources. The
details of this will be discussed in the next section.

A. Adversarial Examples

In this section, we will demonstrate that loudness-related
features will end up having a high importance for the predic-
tion, even though the model was trained with both songs and
instrumental music.
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Fig. 7. Just white noise with increasing loudness (reflected by 0th MFCC
in the upper plot) is all it takes to generate false positives (∼ 50% of the
predictions in the lower plot are above threshold), even though the model
(WEN) performed relatively well on the experiments in the previous Section.

First, we give an example of a rubbish adversarial, that
is, we demonstrate that we can induce misclassification on
white noise – a signal that is clearly non-musical. For that,
we generate 30 seconds of white noise, and linearly increase
the volume from the beginning to the end. Fig. 7 shows in the
upper plot the corresponding values of the 0th MFCC, and
in the lower plot the predictions of the model from method
WEN. Reaching probabilities up to 0.9, the model predicts
approximately 50% of this example as vocal. On recordings
from the test set, we could also observe that the same model
produces false positives on applause, again something clearly
non-musical.

Another kind of adversarial examples are those that are
perceptually almost indistinguishable from the original, but
lead to an erroneous output. Changing the loudness of an audio
recording is a modification where the result is perceptually
very close to the original recording. However, for algorithms
that incorporate loudness-related information, this modifica-
tion can have a severe impact on their performance.

Fig. 8 shows the effect on the behaviour of the model
from method WEN on two examples of instrumental music
taken from the test set. Along with spectrograms, there are
three posterior probability plots, each stemming from either
increased, untouched, or decreased loudness. We can make
two interesting observations: first, just changing the loudness
slightly by ±3 dB can increase the amount of false positives
considerably; second, there is no common weakness regarding
a specific level of loudness modification: in the upper example
it is a decreased loudness that causes more false positives,
and in the example below an increased loudness. It seems that
for every recording there is a different level of loudness that
triggers the highest numbers of errors. This raises an important
question: If changing the loudness can have such an impact
on the performance, to what extent is a good performance
(according to a standard evaluation) simply caused by the
“right” level of loudness?

B. Severe Impact on Evaluation

There are mainly three reasons why an evaluation as done
in the previous section is less meaningful for algorithms that
lack loudness-invariance.

First, the conclusion that a method is robust against false
positives for data sets containing mostly specific instruments

Franz Schubert - Sonatine fuer Violine und Klavier a moll - Andan...

-3 dB

-0 dB

120 125 130 135 140 145

time [s]

+3 dB

RWC - Classical - CD1 - 05

-3 dB

-0 dB

275 280 285 290 295 300

time [s]

+3 dB

Fig. 8. Two examples of loudness sensitivity from the same model on
pure instrumental music. Upper plots: log scaled spectrograms of each audio
segment; below: posterior probabilities from decreased (-3 dB), untouched
(-0 dB), and increased (+3 dB) loudness. Darker regions in the posterior
probability plots indicate false positives.

is invalid. A good performance could just be the result of the
most appropriate level of loudness.

Second, results may not accurately represent the behaviour
that one could expect from a method on data taken “from
the wild”: recordings from social media platforms, where the
recording conditions are different all the time, or even change
throughout the same recording e.g. due to altering microphone
positions.

Third, summarised results from a data set after all record-
ings were modified identically in terms of loudness may not
reveal an existing weakness in this regard. As already shown
(see Fig. 8), different levels of loudness can cause either
lower or higher numbers of errors, depending on the recording.
Therefore, an averaged result over several identically modified
recordings could be similar to the results of the untouched
recordings, since lower and higher numbers of errors per
recording could cancel each other out.

The assessment that would reveal any loudness sensitivity
best has to take into account that possibly just a single
recording gives a different performance. Maybe there is just
one example that could help to detect a specific weakness, and
we consider such examples that induce erroneous behaviour
most valuable for gaining insights. Therefore, we suggest a
new evaluation strategy.

C. Evaluation Strategy for Loudness-Invariance

We suggest a different approach for evaluation between sev-
eral levels of loudness in order to reveal a potential sensitivity
to loudness.

First, we have to define the range of gain that is applied
in order to end up with loudness-modified recordings. We
suggest steps of 3 dB in both directions up to 9 dB, that is, we
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end up with six new versions of the recordings.7 After that,
we compute the range of best and worst accuracy from all
versions – inclusive the untouched ones – per recording. The
distribution of the ranges in accuracy from a data set can then
be summarised by a box plot, representing the sensitivity to
loudness.

This way we prevent positive and negative effects from
compensating each other, ending up in no overall impact.

Furthermore, even if just a single recording gives away a
sensitivity to loudness, it will not get smoothed out, but appear
as an outlier. In our case these are the most important examples
to gain insight about model behaviour.

However, this evaluation should be considered only addi-
tional – although important – information. It does not represent
the overall performance, hence the results from a standard
evaluation still need to be taken into account in order to get
meaningful insights. Our suggested evaluation approach could
be considered a measure of certainty of the results from a
standard evaluation: the lower the sensitivity to loudness, the
more meaningful the standard evaluation.

In the next section, we will discuss the results from our
evaluation strategy. We will demonstrate that methods that
achieved the exact same results on the standard evaluation can
behave quite differently.

D. Results

The box plots presented in Fig. 9 and 10 reflect the impact
in accuracy between worst and best case, with a possible range
of 0 − 100%, separately for validation and test sets. In order
to interpret these, one has to consider two things: first, the
lower the median and smaller the interquartile range of the
distributions, the lower the sensitivity to loudness; second,
outliers can be the most important examples in order to prove
that a method is not loudness invariant. After all, we only need
one example to disprove a hypothesis.

It can be seen that our new method is not affected by
loudness manipulations, as designed, while all others are.

Furthermore, comparing CN1 and CN2, we can see that the
data augmentation used to train CN2 is not only insufficient to
eliminate loudness sensitivity, but even has a negative effect on
some instrumental data sets (hi, pakarina, sq, yt_heavy_instr,
yt_wind_sax). The obvious idea of additionally augmenting
training data by random loudness gains within ±10 dB [20,
Sec. 4.2] does not change these results.

Interestingly, although (according to the standard evalua-
tion) two methods yield the same results on the untouched
audio recordings on the data set softj (LEH: 99.5%, NEW:
99.4%), our proposed evaluation reveals quite a difference
between them in Fig. 9. It seems that the small number of
false positives for method LEH is just the result of the right
level of loudness, and the standard evaluation results can not
be fully trusted. Similarly, in Fig. 10, the two methods give
the same results on the untouched audio recordings on the
data set rwc_pop (LEH: 87.7%, NEW: 87.7%), yet exhibit

7Note that the gain should be applied to floating-point signals or features;
for 16-bit integer samples a positive gain might lead to overflow or clipping
and confound the results.

a different behaviour when evaluated on loudness modified
audio recordings. Although the difference is not as clear as
with the previous example, the median impact of loudness
modification on accuracy is a lot higher (LEH: 7.4%, NEW:
0%). Another example is the data set msd100, where methods
CN1 and NEW both reach 78.4% accuracy, and yet the
loudness sensitivity is higher for CN1.

VI. CONCLUSION

This article has presented three contributions to the problem
of singing voice detection from audio: an efficient and light-
weight detection method that competes successfully with the
state of the art; several new annotated data sets made publicly
available; and a discussion and demonstration of a loudness
dependence problem, along with a strategy for analysing it.

Only the feature learning approach [21, Sec. 9.8] with data
augmentation (CN2) outperforms our method on songs, and
reaches equal performance on instrumental music according to
a standard evaluation. However, as demonstrated in a follow up
experiment, CN2 exhibits a loudness sensitivity. This brought
to light that part of the performance gap between CN2 and
our approach is coincidentally due to a convenient level of
loudness during standard evaluation.

We hope that this work will foster an understanding of the
challenges and pitfalls related to developing and evaluating
VD algorithms, and influence the way they are designed and
evaluated in the future.
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Fig. 9. The impact of different levels of loudness on the validation set (low values reflect loudness invariance). Notice that the instrumental data set softj
gives equal performance for method LEH and NEW when conventionally evaluated, although they behave differently according to our suggested evaluation
strategy. Our proposed method (NEW) is the only one not affected by varying levels of loudness.
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Fig. 10. The impact of different levels of loudness on the test set. Notice that the data set rwc_pop gives equal performance for method LEH and NEW when
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similar sensitivity of all methods, although in general they behave quite differently. This supports our claim, that a thorough evaluation always has to be done
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