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ABSTRACT

The recognition of boundaries, e.g., between chorus and
verse, is an important task in music structure analysis. The
goal is to automatically detect such boundaries in audio
signals so that the results are close to human annotation.
In this work, we apply Convolutional Neural Networks to
the task, trained directly on mel-scaled magnitude spectro-
grams. On a representative subset of the SALAMI struc-
tural annotation dataset, our method outperforms current
techniques in terms of boundary retrieval F -measure at dif-
ferent temporal tolerances: We advance the state-of-the-art
from 0.33 to 0.46 for tolerances of±0.5 seconds, and from
0.52 to 0.62 for tolerances of ±3 seconds. As the algo-
rithm is trained on annotated audio data without the need
of expert knowledge, we expect it to be easily adaptable
to changed annotation guidelines and also to related tasks
such as the detection of song transitions.

1. INTRODUCTION

The determination of the overall structure of a piece of au-
dio, often referred to as musical form, is one of the key
tasks in music analysis. Knowledge of the musical struc-
ture enables a variety of real-world applications, be they
commercially applicable, such as for browsing music, or
educational. A large number of different techniques for au-
tomatic structure discovery have been developed, see [16]
for an overview. Our contribution describes a novel ap-
proach to retrieve the boundaries between the main struc-
tural parts of a piece of music. Depending on the music
under examination, the task of finding such musical bound-
aries can be relatively simple or difficult, in the latter case
leaving ample space for ambiguity. In fact, two human an-
notators hardly ever annotate boundaries at the exact same
positions. Instead of trying to design an algorithm that
works well in all circumstances, we let a Convolutional
Neural Network (CNN) learn to detect boundaries from a
large corpus of human-annotated examples.

The structure of the paper is as follows: After giving an
overview over related work in Section 2, we describe our
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proposed method in Section 3. In Section 4, we introduce
the data set used for training and testing. After presenting
our main results in Section 5, we wrap up in Section 6 with
a discussion and outlook.

2. RELATED WORK

In the overview paper to audio structure analysis by Paulus
et al. [16], three fundamental approaches to segmentation
are distinguished: Novelty-based, detecting transitions be-
tween contrasting parts, homogeneity-based, identifying
sections that are consistent with respect to their musical
properties, and repetition-based, building on the determi-
nation of recurring patterns. Many segmentation algorithms
follow mixed strategies. Novelty is typically computed us-
ing Self-Similarity Matrices (SSMs) or Self-Distance Ma-
trices (SDMs) with a sliding checkerboard kernel [4], build-
ing on audio descriptors like timbre (MFCC features), pitch,
chroma vectors and rhythmic features [14]. Alternative
approaches calculate difference features on more complex
audio feature sets [21]. In order to achieve a higher tempo-
ral accuracy in rhythmic music, audio features can be ac-
cumulated beat-synchronously. Techniques capitalizing on
homogeneity use clustering [5] or state-modelling (HMM)
approaches [1], or both [9, 11]. Repeating pattern discov-
ery is performed on SSMs or SDMs [12], and often com-
bined with other approaches [13, 15]. Some algorithms
combine all three basic approaches [18].

Almost all existing algorithms are hand-designed from
end to end. To the best of our knowledge, only two meth-
ods are partly learning from human annotations: Turn-
bull et al. [21] compute temporal differences at three time
scales over a set of standard audio features including chro-
magrams, MFCCs, and fluctuation patterns. Training Boost-
ed Decision Stumps to classify the resulting vectors into
boundaries and non-boundaries, they achieved significant
gains over a hand-crafted boundary detector using the same
features, evaluated on a set of 100 pop songs. McFee et al.
[13] employ Ordinal Linear Discriminant Analysis to learn
a linear transform of beat-aligned audio features (including
MFCCs and chroma) that minimizes the variance within a
human-annotated segment while maximizing the distance
across segments. Combined with a repetition feature, their
method defines the current state of the art in boundary re-
trieval, but still involves significant manual engineering.

For other tasks in the field of Music Information Re-
trieval, supervised learning with CNNs has already proven
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to outperform hand-designed algorithms, sometimes by a
large margin [3, 6, 8, 10, 17]. In this work, we investigate
whether CNNs are effective for structural boundary detec-
tion as well.

3. METHOD

We propose to train a neural network on human annota-
tions to predict likely musical boundary locations in audio
data. Our method is derived from Schlüter and Böck [17],
who use CNNs for onset detection: We also train a CNN
as a binary classifier on spectrogram excerpts, but we adapt
their method to include a larger input context and respect
the higher inaccuracy and scarcity of segment boundary
annotations compared to onset annotations. In the follow-
ing, we will describe the features, neural network, super-
vised training procedure and the post-processing of the net-
work output to obtain boundary predictions.

3.1 Feature Extraction

For each audio file, we compute a magnitude spectrogram
with a window size of 46 ms (2048 samples at 44.1 kHz)
and 50% overlap, apply a mel filterbank of 80 triangular
filters from 80 Hz to 16 kHz and scale magnitudes loga-
rithmically. To be able to train and predict on spectrogram
excerpts near the beginning and end of a file, we pad the
spectrogram with pink noise at -70 dB as needed (padding
with silence is impossible with logarithmic magnitudes,
and white noise is too different from the existing back-
ground noise in natural recordings). To bring the input val-
ues to a range suitable for neural networks, we follow [17]
in normalizing each frequency band to zero mean and unit
variance. Finally, to allow the CNN to process larger tem-
poral contexts while keeping the input size reasonable, we
subsample the spectrogram by taking the maximum over 3,
6 or 12 adjacent time frames (without overlap), resulting in
a frame rate of 14.35 fps, 7.18 fps or 3.59 fps, respectively.
We will refer to these frame rates as high, std and low.

We also tried training on MFCCs and chroma vectors
(descriptors with less continuity in the ‘vertical’ feature
dimension to be exploited by convolution), as well as fluc-
tuation patterns and self-similarity matrices derived from
those. Overall, mel spectrograms proved the most suitable
for the algorithm and performed best.

3.2 Convolutional Neural Networks

CNNs are feed-forward neural networks usually consist-
ing of three types of layers: Convolutional layers, pooling
layers and fully-connected layers. A convolutional layer
computes a convolution of its two-dimensional input with
a fixed-size kernel, followed by an element-wise nonlin-
earity. The input may consist of multiple same-sized chan-
nels, in which case it convolves each with a separate ker-
nel and adds up the results. Likewise, the output may
consist of multiple channels computed with distinct sets
of kernels. Typically the kernels are small compared to
the input, allowing CNNs to process large inputs with few
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Figure 1. The arrow at the top signifies an annotated seg-
ment boundary present within a window of feature frames.
As seen in the upper panel, the target labels are set to one
in the environment of this boundary, and to zero elsewhere.
The lower panel shows how positive targets far from the
annotation are given a lower weight in training.

learnable parameters. A pooling layer subsamples its two-
dimensional input, possibly by different factors in the two
dimensions, handling each input channel separately. Here,
we only consider max-pooling, which introduces some trans-
lation invariance across the subsampled dimension. Fi-
nally, a fully-connected layer discards any spatial layout of
its input by reshaping it into a vector, computes a dot prod-
uct with a weight matrix and applies an element-wise non-
linearity to the result. Thus, unlike the other layer types,
it is not restricted to local operations and can serve as the
final stage integrating all information to form a decision.

In this work, we fix the network architecture to a con-
volutional layer of 16 8×6 kernels (8 time frames, 6 mel
bands, 16 output channels), a max-pooling layer of 3×6,
another convolution of 32 6×3 kernels, a fully-connected
layer of 128 units and a fully-connected output layer of 1
unit. This architecture was determined in preliminary ex-
periments and not further optimized for time constraints.

3.3 Training

The input to the CNN is a spectrogram excerpt of N frames,
and its output is a single value giving the probability of
a boundary in the center of the input. The network is
trained in a supervised way on pairs of spectrogram ex-
cerpts and binary labels. To account for the inaccuracy of
the ground truth boundary annotations (as observable from
the disagreement between two humans annotating the same
piece), we employ what we will refer to as target smearing:
All excerpts centered on a frame within ±E frames from
an annotated boundary will be presented to the network as
positive examples, weighted in learning by a Gaussian ker-
nel centered on the boundary. Figure 1 illustrates this for
E = 10. We will vary both the spectrogram length N and
smearing environment E in our experiments. To compen-
sate for the scarceness of positive examples, we increase
their chances of being randomly selected for a training step
by a factor of 3.

Training is performed using gradient descent on cross-



entropy error with mini-batches of 64 examples, momen-
tum of 0.95, and an initial learning rate of 0.6 multiplied by
0.85 after every mini-epoch of 2000 weight updates. We
apply 50% dropout to the inputs of both fully-connected
layers [7]. Training is always stopped after 20 mini-epochs,
as the validation error turned out not to be robust enough
for early stopping. Implemented in Theano [2], training a
single CNN on an Nvidia GTX 780 Ti graphics card took
50–90 minutes.

3.4 Peak-picking

At test time, we apply the trained network to each position
in the spectrogram of the music piece to be segmented, ob-
taining a boundary probability for each frame. We then
employ a simple means of peak-picking on this boundary
activation curve: Every output value that is not surpassed
within ±6 seconds is a boundary candidate. From each
candidate value we subtract the average of the activation
curve in the past 12 and future 6 seconds, to compensate
for long-term trends. We end up with a list of boundary
candidates along with strength values that can be thresh-
olded at will. We found that more elaborate peak picking
methods did not improve results.

4. DATASET

We evaluate our algorithm on a subset of the Structural
Analysis of Large Amounts of Music Information (SALAMI)
database [20]. In total, this dataset contains over 2400
structural annotations of nearly 1400 musical recordings
of different genres and origins. About half of the annota-
tions (779 recordings, 498 of which are doubly-annotated)
are publicly available. 1 A part of the dataset was also
used in the “Audio Structural Segmentation” task of the
annual MIREX evaluation campaign in 2012 and 2013. 2

Along with quantitative evaluation results, the organizers
published the ground truth and predictions of 17 different
algorithms for each recording. By matching the ground
truth to the public SALAMI annotations, we were able to
identify 487 recordings. These serve as a test set to evalu-
ate our algorithm against the 17 MIREX submissions. We
had another 733 recordings at our disposal, annotated fol-
lowing the SALAMI guidelines, which we split into 633
items for training and 100 for validation.

5. EXPERIMENTAL RESULTS

5.1 Evaluation

For boundary retrieval, the MIREX campaign uses two
evaluation measures: Median deviation and Hit rate. The
former measures the median distance between each anno-
tated boundary and its closest predicted boundary or vice
versa. The latter checks which predicted boundaries fall
close enough to an unmatched annotated boundary (true

1 http://ddmal.music.mcgill.ca/datasets/salami/
SALAMI_data_v1.2.zip, accessed 2014-05-02

2 Music Information Retrieval Evaluation eXchange, http://www.
music-ir.org/mirex, accessed 2014-04-29

Figure 2. Optimization of the threshold shown for model
8s_std_3s at tolerance ±0.5 seconds. Boundary re-
trieval precision, recall and F-measure are averaged over
the 100 validation set files.

positives), records remaining unmatched predictions and
annotations as false positives and negatives, respectively,
then computes the precision, recall and F-measure. Since
not only the temporal distance of predictions, but also the
figures of precision and recall are of interest, we opted for
the Hit rate at as our central measure of evaluation, com-
puted at a temporal tolerance of ±0.5 seconds (as in [21])
and ±3 seconds (as in [9]). For accumulation over mul-
tiple recordings, we follow the MIREX evaluation by cal-
culating F-measure, precision and recall per item and av-
eraging the three measures over the items for the final re-
sult. Note that the averaged F-measure is not necessarily
the harmonic mean of the averaged precision and recall.
Our evaluation code is publicly available for download. 3

5.2 Baseline and upper bound

Our focus for evaluation lies primarily on the F-measure.
Theoretically, the F-measure is bounded by F ∈ [0, 1], but
for the given task, we can derive more useful lower and up-
per bounds to compare our results to. As a baseline, we use
regularly spaced boundary predictions starting at time 0.
Choosing an optimal spacing, we obtain an F-measure of
Finf,3 ≈ 0.33 for±3 seconds tolerance, and Finf,0.5 ≈ 0.13
for a tolerance of ±0.5 seconds. Note that it is crucial to
place the first boundary at 0 seconds, where a large frac-
tion of the music pieces has annotated segment bound-
aries. Many pieces have only few boundaries at all, thus
the impact can be considerable. An upper bound Fsup can
be derived from the insight that no annotation will be per-
fect given the fuzzy nature of the segmentation task. Even
though closely following annotation guidelines, 4 two an-
notators might easily disagree on the existence or exact po-

3 http://ofai.at/research/impml/projects/
audiostreams/ismir2014/

4 cf. the SALAMI Annotator’s Guide: http://www.music.
mcgill.ca/~jordan/salami/SALAMI-Annotator-Guide.
pdf, accessed 2014-04-30
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Figure 3. Comparison of different model parameters (con-
text length, resolution and target smearing) with respect
to mean F-measure on our validation set at ±0.5 seconds
tolerance. Mean and minimum-maximum range of five in-
dividually trained models for each parameter combination
are shown, as well as results for bagging the five models.

sitions of segment boundaries. By analyzing the items in
the public SALAMI dataset that have been annotated twice
(498 pieces in total), we calculated Fsup,3 ≈ 0.76 for ±3
seconds tolerance, and Fsup,0.5 ≈ 0.67 for ±0.5 seconds
tolerance. Within our evaluation data subset (439 double-
annotations), the results are only marginally different with
Fsup,0.5 ≈ 0.68.

5.3 Threshold optimization

Peak-picking, described in Section 3.4, delivers the posi-
tions of potential boundaries along with their probabilities,
as calculated by the CNN. The application of a threshold
to those probabilities rejects part of the boundaries, affect-
ing the precision and recall rates and consequently the F-
measure we use for evaluation. Figure 2 shows precision
and recall rates as well as the F-measure as a function of
the threshold for the example of the 8s_std_3smodel (8
seconds of context, standard resolution, target smearing 3
seconds) at±0.5 seconds tolerance, applied to the 100 files
of the validation data set. By locating the maximum of the
F-measure we retrieve an estimate for the optimum thresh-
old which is specific for each individual learned model.
Since the curve for the F-measure is typically flat-topped
for a relatively wide range of threshold values, the choice
of the actual value is not very delicate.

5.4 Temporal context investigation

It is intuitive to assume that the CNN needs a certain amount
of temporal context to reliably judge the presence of a bound-
ary. Furthermore, the temporal resolution of the input spec-
tra (Section 3.1) and the applied target smearing (Section 3.3)
is expected to have an impact on the temporal accuracy of
the predictions. See Figure 3 and Figure 4 for comparisons
of these model parameters, for tolerances ±0.5 seconds

Figure 4. Comparison of different model parameters (con-
text length, resolution and target smearing) with respect to
mean F-measure on our validation set at ±3 seconds tol-
erance. Mean and minimum-maximum range of five in-
dividually trained models for each parameter combination
are shown, as well as results for bagging the five models.

and ±3 seconds, respectively. Each bar in the plots rep-
resents the mean and minimum-maximum range of five in-
dividual experiments with different random initializations.
For the case of only ±0.5 seconds of acceptable error, we
conclude that target smearing must also be small: A smear-
ing width of 1 to 1.5 seconds performs best. Low temporal
spectral resolution tends to diminish results, and the con-
text length should not be shorter than 8 seconds. For ±3
seconds tolerance, context length and target smearing are
the most influential parameters, with the F-measure peak-
ing at 32 seconds context and 4 to 6 seconds smearing.
Low temporal resolution is sufficient, keeping the CNN
smaller and easier to train.

5.5 Model bagging

As described in Section 5.4, for each set of parameters
we trained five individual models. This allows us to im-
prove the performance on the given data using a statisti-
cal approach: Bagging, in our case averaging the outputs
of multiple identical networks trained from different ini-
tializations before the peak-picking stage, should help to
reduce model uncertainty. After again applying the above
described threshold optimization process on the resulting
boundaries, we arrived at improvements of the F-measure
of up to 0.03, indicated by arrow tips in Figures 3 and
4. Tables 1 and 2 show our final best results after model
bagging for tolerances ±0.5 seconds and ±3 seconds, re-
spectively. The results are set in comparison with the al-
gorithms submitted to the MIREX campaign in 2012 and
2013, and the lower and upper bounds calculated from the
annotation ground-truth (see Section 5.2).



Algorithm F-measure Precision Recall
Upper bound (est.) 0.68
16s_std_1.5s 0.4646 0.5553 0.4583
MP2 (2013) 0.3280 0.3001 0.4108
MP1 (2013) 0.3149 0.3043 0.3605
OYZS1 (2012) 0.2899 0.4561 0.2583
32s_low_6s 0.2884 0.3592 0.2680
KSP2 (2012) 0.2866 0.2262 0.4622
SP1 (2012) 0.2788 0.2202 0.4497
KSP3 (2012) 0.2788 0.2202 0.4497
KSP1 (2012) 0.2788 0.2201 0.4495
RBH3 (2013) 0.2683 0.2493 0.3360
RBH1 (2013) 0.2567 0.2043 0.3936
RBH2 (2013) 0.2567 0.2043 0.3936
RBH4 (2013) 0.2567 0.2043 0.3936
CF5 (2013) 0.2128 0.1677 0.3376
CF6 (2013) 0.2101 0.2396 0.2239
SMGA1 (2012) 0.1968 0.1573 0.2943
MHRAF1 (2012) 0.1910 0.1941 0.2081
SMGA2 (2012) 0.1770 0.1425 0.2618
SBV1 (2012) 0.1546 0.1308 0.2129
Baseline (est.) 0.13

Table 1. Boundary recognition results on our test set at
±0.5 seconds tolerance. Our best result is emphasized and
compared with results from the MIREX campaign in 2012
and 2013.

Algorithm F-measure Precision Recall
Upper bound (est.) 0.76
32s_low_6s 0.6164 0.5944 0.7059
16s_std_1.5s 0.5726 0.5648 0.6675
MP2 (2013) 0.5213 0.4793 0.6443
MP1 (2013) 0.5188 0.5040 0.5849
CF5 (2013) 0.5052 0.3990 0.7862
SMGA1 (2012) 0.4985 0.4021 0.7258
RBH1 (2013) 0.4920 0.3922 0.7482
RBH2 (2013) 0.4920 0.3922 0.7482
RBH4 (2013) 0.4920 0.3922 0.7482
SP1 (2012) 0.4891 0.3854 0.7842
KSP3 (2012) 0.4891 0.3854 0.7842
KSP1 (2012) 0.4888 0.3850 0.7838
KSP2 (2012) 0.4885 0.3846 0.7843
SMGA2 (2012) 0.4815 0.3910 0.6965
RBH3 (2013) 0.4804 0.4407 0.6076
CF6 (2013) 0.4759 0.5305 0.5102
OYZS1 (2012) 0.4401 0.6354 0.4038
SBV1 (2012) 0.4352 0.3694 0.5929
MHRAF1 (2012) 0.4192 0.4342 0.4447
Baseline (est.) 0.33

Table 2. Boundary recognition results on our test set at
±3 seconds tolerance. Our best result is emphasized and
compared with results from the MIREX campaign in 2012
and 2013.

6. DISCUSSION AND OUTLOOK

Employing Convolutional Neural Networks trained directly
on mel-scaled spectrograms, we are able to achieve bound-
ary recognition F-measures strongly outperforming any al-
gorithm submitted to MIREX 2012 and 2013. The net-
works have been trained on human-annotated data, consid-
ering different context lengths, temporal target smearing
and spectrogram resolutions. As we did not need any do-
main knowledge for training, we expect our method to be
easily adaptable to different ‘foci of annotation’ such as,
e.g., determined by different musical genres or annotation
guidelines. In fact, our method is itself an adaption of a
method for onset detection [17] to a different time focus.

There are a couple of conceivable strategies to improve
the results further: With respect to the three fundamen-
tal approaches to segmentation described in Section 1, the
CNNs in this work can only account for novelty and ho-
mogeneity, which can be seen as two sides of the same
medal. To allow them to leverage repetition cues as well,
the vectorial repetition features of McFee et al. [13] might
serve as an additional input. Alternatively, the network
could be extended with recurrent connections to yield a
Recurrent CNN. Given suitable training data, the resulting
memory might be able to account for repeating patterns.
Secondly, segmentation of musical data by humans is not a
trivially sequential process but inherently hierarchical. The
SALAMI database actually provides annotations on two
levels: A coarse one, as used in the MIREX campaign, but
also a more fine-grained variant, encoding subtler details of
the temporal structure. It could be helpful to feed both lev-
els to the CNN training, weighted with respect to the sig-
nificance. Thirdly, we leave much of the data preprocess-
ing to the CNN, very likely using up a considerable part of
its capacity. For example, the audio files in the SALAMI
collection are of very different loudness, which could be
fixed in a simple preprocessing step, either on the whole
files, or using some dynamic gain control. Similarly, many
of the SALAMI audio files start or end with noise or back-
ground sounds. A human annotator easily recognizes this
as not belonging to the actual musical content, ignoring it
in the annotations. The abrupt change from song-specific
background noise to our pink noise padding may be mis-
taken for a boundary by the CNN, though. Therefore it
could be worthwhile to apply some intelligent padding of
appropriate noise or background to provide context at the
beginnings and endings of the audio. And finally, we have
only explored a fraction of the hyperparameter space re-
garding network architecture and learning, and expect fur-
ther improvements by a systematic optimization of these.

Another promising direction of research is to explore
the internal processing of the trained networks, e.g., by vi-
sualization of connection weights and receptive fields [19].
This may help to understand the segmentation process as
well as differences to existing approaches, and to refine the
network architecture.
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